CN111478720A - 一种基于交叉子带划分的多带双曲调频扩频通信方法 - Google Patents

一种基于交叉子带划分的多带双曲调频扩频通信方法 Download PDF

Info

Publication number
CN111478720A
CN111478720A CN202010043963.5A CN202010043963A CN111478720A CN 111478720 A CN111478720 A CN 111478720A CN 202010043963 A CN202010043963 A CN 202010043963A CN 111478720 A CN111478720 A CN 111478720A
Authority
CN
China
Prior art keywords
band
sub
spread spectrum
hyperbolic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010043963.5A
Other languages
English (en)
Other versions
CN111478720B (zh
Inventor
余华
张雅琦
季飞
陈芳炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010043963.5A priority Critical patent/CN111478720B/zh
Publication of CN111478720A publication Critical patent/CN111478720A/zh
Priority to PCT/CN2020/125523 priority patent/WO2021248784A1/zh
Priority to US18/009,338 priority patent/US12101114B2/en
Application granted granted Critical
Publication of CN111478720B publication Critical patent/CN111478720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明公开了一种基于交叉子带划分的多带双曲调频扩频通信方法。本方案提出将水声系统可用带宽按照当前扩频周期序号的奇偶性进行不同子带数量的多带划分,以达到交叉子带划分的目的。在此基础上,将划分的多个子带两两分组,每个分组采用子带选择激活的方式根据传输数据的不同进行子带的选择,实现多带并行传输。同时,每个扩频周期内,被激活子带分别采用升、降双曲调频信号对调制后的信号进行调频。相对于其他水声双曲扩频调频方案,本发明采用交叉子带划分的方案,提高了对信道最大时延的容忍度;利用升、降双曲调频信号的弱相关性,承载传输不同的信息;采取基于QPSK调制的多带并行传输方案,进一步提高了系统的频带利用率与传输速率。

Description

一种基于交叉子带划分的多带双曲调频扩频通信方法
技术领域
本发明涉及水声通信领域,具体涉及一种双曲调频信号,结合交叉子带与升降HFM信号的扩频通信方法。
背景技术
由于海洋环境的复杂性,水声信道存在严重的多径效应和时变特性。而海水介质对高频衰减非常严重,导致水声通信可用带宽非常小。水声通信经历了从非相干技术到相干技术的发展,相较于非相干技术而言,相干技术的频谱利用率高,可以大大提高通信系统的效率。然而严重的多径效应与时变性,是水声相干通信主要的制约因素,与此同时在信噪比较低的环境下,较难确保通信的可靠性。
扩展频谱(spread spectrum,SS)技术是一种能有效对抗干扰的技术,它以其自身的优势,在低信噪比以及存在多径扩展的复杂信道情况下,仍可以在保证一定通信速率的前提下,实现可靠信息的传输。常见的扩频方式主要有三种,分别是直接序列扩频(DSSS),跳频扩频(FHSS)以及调频扩频(CSS)等。本发明中选取双曲调频信号作为扩频信号。双曲调频作为一种适用于水声通信的扩频通信方式,具备其独特的优势。
为了便于对后续算法的理解,双曲调频信号模型如下所示:
双曲调频(HFM)信号,可以定义为
Figure BDA0002368717840000011
其中,fb表示HFM信号起始点的频率,fe表示HFM信号截止点的频率,B=|fe-fb|表示带宽(调频区间),T表示HFM信号持续周期,
Figure BDA0002368717840000021
表示调频率。特别地,若fe>fb,则称为升频,此时调频率β<0;若fe<fb,则称为降频,此时调频率β>0。HFM信号的瞬时频率为,
Figure BDA0002368717840000022
瞬时频率是一个随时间t变化的双曲函数,因此该信号被称为双曲调频信号。双曲调频信号具有良好的脉冲压缩性和多普勒宽容性。其脉冲压缩性体现在,在接收信号与本地HFM信号进行相关后能够呈现主瓣尖锐、旁瓣迅速衰弱的脉冲,因此具备良好的抗噪性能。与此同时,在信号传输过程中,由于收发端的高速相对运动会造成严重的多普勒尺度效应,信号会产生时间上的压缩或者扩展。在信号经历了多普勒尺度效应之后,接收端经过匹配滤波依旧可以较好的形成脉冲,则认为该信号具有多普勒宽容性。
假设一个HFM信号发生了大小为α的尺度变换。对应接收到的HFM信号可以表达为
Figure BDA0002368717840000023
发生尺度变化后,信号的瞬时频率变为
Figure BDA0002368717840000024
这里我们可以找到一个合适的Δt,使得fα(t-Δt)=f(t),即
Figure BDA0002368717840000025
Figure BDA0002368717840000026
由此可见,该时延Δt是一个由尺度因子决定且与时间无关的常数,即HFM信号在经历了多普勒效应之后,其瞬时频率相较于未发生尺度变化之前,只是在时间轴上发生了一个平移,这样在接收端进行匹配滤波后,依旧可以形成较好的脉冲,只是脉冲的位置会平移Δt,因此HFM信号具备多普勒宽容性。
此外,对于多序列扩频通信而言,各序列之间的正交性十分重要。同时序列的持续时间长度必须要超过信道的最大时延,以尽可能的保证其接收信号序列的正交性。
使用HFM进行扩频通信虽然能增强抗干扰能力和抗多普勒效应,但是面临的一个较为严重的问题就是频带利用率比较低。另外,若信道的最大时延超过扩频周期,接收信号序列的正交性将会受到影响,为了能一定程度缓解以上两种情况,提高HFM扩频通信的频带利用率以及对信道最大时延的容忍度是值得研究的问题。
本发明所述的一种基于交叉子带划分的多带双曲调频扩频通信方法,正是基于如上所述的信号模型和背景所提出的。
发明内容
对一般的HFM扩频通信方法而言,系统可用带宽只用于单个HFM调频信号,因此系统的频带利用率很低。此外,一般的水声扩频通信方案,通常是基于单个扩频周期超过信道时延这样的原则进行方案设计。但当信道最大时延超过扩频周期时,接收端序列的正交性会受到一定的影响,增加相邻符号之间的干扰。为此,本发明提出一种新的扩频通信方案,即一种基于交叉子带划分的多带双曲调频扩频通信方法。
本发明的目的在于基于HFM信号提出一种新的扩频通信方案,通过将水声通信系统可用带宽按照扩频周期序号的奇偶性进行不同数量的子带划分,以此降低相邻符号之间的干扰,提升通信信号对信道时延的容忍度。另外,采用子带选择激活的方式,以及QPSK调制方式,实现多带并行传输,提升频带利用率。同时在一个调频周期内,被激活子带分别采用升、降HFM信号作为调频信号,对调制后的QPSK符号进行扩频。
为了解决上述技术问题,本发明采用的技术方案如下。
一种基于交叉子带划分的多带双曲调频扩频通信方法,包括以下步骤:
S1、将通信系统带宽按照扩频周期序号的奇偶性划分为不同数量的若干子带;
S2、子带分别采用对应的升、降双曲调频信号进行调频;
S3、将数据、子带进行分组,根据传输的数据进行子带选择与符号映射,并进行信号调制与扩频;
S4、对扩频后的传输信号添加帧头与保护间隔,生成信号帧。
进一步地,在所述步骤S1中,扩频周期序号为奇数的扩频周期将系统使用带宽分为K1个子带,扩频周期序号为偶数的扩频周期将所用带宽分为K2个子带,后续分别进行双曲调频,提高频带利用率。
进一步地,在所述步骤S2中,每个扩频周期内,每个子带分别使用升、降HFM信号生成两种弱相关的扩频信号,进行双曲调频。
进一步地,每个子带对应的升HFM信号
Figure BDA0002368717840000041
表示为
Figure BDA0002368717840000042
其中,p为扩频周期序号;当p为奇数或偶数时的调频率分别为
Figure BDA0002368717840000051
当p为奇数时,第k个子带的起始频率与截止频率分别为
Figure BDA0002368717840000052
当p为偶数时,第k个子带的起始频率与截止频率分别为
Figure BDA0002368717840000053
同理,每个子带对应的降HFM信号
Figure BDA0002368717840000054
可表示为:
Figure BDA0002368717840000055
其中,p为扩频周期序号;当p为奇数或偶数时的调频率分别为
Figure BDA0002368717840000056
当p为奇数时,第k个子带的起始频率与截止频率分别为
Figure BDA0002368717840000057
当p为偶数时,第k个子带的起始频率与截止频率分别为
Figure BDA0002368717840000058
进一步地,在所述步骤S3中,将数据、子带进行分组,分组具体为:
待传比特每3个比特分成一组,对于第奇数个扩频周期,将K1个子带每两相邻子带分成一组,一共有K1/2个组,每组承载前述的3比特分组;对于第偶数个扩频周期,将K2个子带每两相邻子带分成一组,一共有K2/2个组,每组承载前述的3比特分组,本次方案中分组的结果为,每组2个子带传输3个比特。
进一步地,在所述步骤S3中,根据传输的数据进行子带选择与符号映射,并进行信号调制与扩频,具体为:
每个子带组传输3个比特,第1个比特用于子带的选择:该比特为0时,选择该子带组的第1个子带进行扩频传输,当该比特为1时选择该子带组的第2个子带进行扩频传输,
第2、3个比特则用于QPSK符号映射,由第1个比特激活的子带进行相应的扩频传输。
进一步地,在所述步骤S4中,帧头采用占用整个通信频段的升、降HFM信号与零间隔,保护间隔采用占用整个通信频段的降HFM信号与零符号作间隔。
与现有技术相比,本发明实现的有益效果是:采用交叉子带划分的方案,提高了对信道最大时延的容忍度;利用升、降双曲调频信号的弱相关性,承载传输不同的信息;采取基于QPSK调制的多带并行传输方案,进一步提高了系统的频带利用率与传输速率。
附图说明
图1为本发明一种结合交叉子带与升降HFM信号的水声双曲调频扩频通信方案的调频示意图。
图2为实例对应的子带选择示意图。
图3为本发明通信方案发送端的扩频调制流程图。
图4为发送信号帧结构图。
图5为本发明通信方案接收端的解调解扩流程图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。各标号的含义如下:
f0:通信频段的起始频率,本实例取f0=9KHz。
f1:通信频段的截止频率,本实例取f1=15KHz。
B:带宽,本实例取B=6KHz。
TH:双曲调频信号的周期,本实例取TH=20.48ms。
TG:符号保护间隔周期。
TL:帧头持续时间。
fs:双曲调频信号采样率,本实例取fs=100KHz。
N:双曲调频信号一个扩频周期的采样点数,N=TH*fs,本实例中N=2048。
K1:第奇数个扩频周期的子带个数,本实例取K1=4。
K2:第偶数个扩频周期的子带个数,本实例取K2=2。
M:每帧数据包含的扩频周期数,本实例取M=10。
fkb:表示第k个子带的起始频率,进一步分升频与降频、奇数符号周期序号与偶数符号周期序号4种情况。
fke:表示第k个子带的截止频率,进一步分升频与降频、奇数符号周期序号与偶数符号周期序号4种情况。
Figure BDA0002368717840000071
第k个子带升HFM信号的调频率,进一步分奇数符号周期序号与偶数符号周期序号2种情况。
Figure BDA0002368717840000072
第k个子带降HFM信号的调频率,进一步分奇数符号周期序号与偶数符号同期序号2种情况。
本实施案例中一种结合交叉子带与升降HFM信号的水声双曲调频扩频通信方法,包括以下步骤:
S1、子带划分。将系统带宽按照扩频周期序号的奇偶性划分为不同数量的若干子带。对于通信频段的起始频率为f0,截止频率为f1,带宽为B=f1-f0的系统,我们将系统带宽分别划分成2种情况:分成K1、K2个子带,K1、K2为2的整数倍,K1≠K2。其中K1个子带用于扩频周期序号为奇数的扩频调制,K2个子带用于扩频周期序号为偶数的扩频调制,扩频周期均为TH。设采样率为fs,一个扩频周期的采样点数为N,每帧数据包含M个HFM扩频周期。本实例交叉子带划分方式具体可见图1。
S2、子带HFM信号生成。子带分别采用对应的升、降双曲调频信号进行调频。每个子带对应的升HFM信号
Figure BDA0002368717840000081
表示为
Figure BDA0002368717840000082
其中,p为扩频周期序号,n表示一个扩频周期内的第n个采样点;当p为奇数或偶数时的调频率分别为
Figure BDA0002368717840000083
当p为奇数时,第k个子带的起始频率与截止频率分别为
Figure BDA0002368717840000084
当p为偶数时,第k个子带的起始频率与截止频率分别为
Figure BDA0002368717840000091
同理,每个子带对应的降HFM信号
Figure BDA0002368717840000092
可表示为:
Figure BDA0002368717840000093
其中,p为扩频周期序号;当p为奇数或偶数时的调频率分别为
Figure BDA0002368717840000094
当p为奇数时,第k个子带的起始频率与截止频率分别为
Figure BDA0002368717840000095
当p为偶数时,第k个子带的起始频率与截止频率分别为
Figure BDA0002368717840000096
本实例通信方案的子带HFM信号生成方式如图1所示,其中箭头向右上表示升频,箭头向右下表示降频;f2、f3、f4分别表示将B=f1-f0的通信带宽划分为四个子带后,各子带的起始与截止频率。
S3、信号调制。将数据、子带进行分组,根据传输的数据进行子带选择与符号映射,并进行信号调制与扩频。待传比特每3个比特分成一组。对于第奇数个扩频周期,将K1个子带每两相邻子带分成一组,一共有K1/2个组;对于第偶数个扩频周期,将K2个子带每两相邻子带分成一组,一共有K2/2个组;每个子带分组将承载前述的3比特分组。本方案中分组的结果为,每组2个子带,携带3个比特。
第1个比特用于子带的选择:该比特为0时,选择该子带组的第1个子带进行扩频传输;该比特为1时选择该子带组的第2个子带进行扩频传输。假设传输的随机比特流为001110100101111010…,按照每3个比特为一组,即:001 110 100 101 111 010…,每组的第1个比特(带下划的比特)用于子带选择,那么被激活的子带如图2所示。即,第1组比特中第1比特为0,因此第1个扩频周期的第1个子带组选择第1个子带;第2组比特中第1比特为1,因此第1个扩频周期的第2个子带组选择第2个子带;第3组比特中第1比特为1,因此第2个扩频周期的第1个子带组选择第2个子带,同时该扩频周期只有1个子带组,后续比特将调制到下一个扩频周期;其它比特组依次类推。
第2、3个比特则用于QPSK符号映射,由第1个比特激活的子带进行相应的扩频传输。
记第q组的3个比特为bq1bq2bq3,则当前多带双曲调频扩频符号的发送信号表示为
Figure BDA0002368717840000101
Figure BDA0002368717840000102
其中,Q为当前扩频周期的子带组数,在第奇数个扩频周期中Q=K1/2,在第偶数个扩频周期中Q=K2/2;kq=2q+bq1-1为第q组激活的子带编号;上式中
Figure BDA0002368717840000103
表示对第q组的第2、3个比特则采用QPSK符号映射,其中j为虚数单位。具体调制流程如图3所示。
S4、信号帧生成。帧头采用占用整个通信频段的升、降HFM信号与零间隔以便同步检测,保护间隔采用占用整个通信频段的降HFM信号与零符号作间隔。发送的信号帧结构如图4所示。
S5、接收同步。信号在接收端经过带通滤波后,利用占用整个通信频段的升降HFM信号进行同步和信道估计。假设信道估计的结果为:多径数为L条,第l(1,…,L)条路径对应的参数为幅度
Figure BDA0002368717840000111
时延
Figure BDA0002368717840000112
多普勒因子
Figure BDA0002368717840000113
根据信道参数,分别计算每条路径的峰值偏移量。对于一个数据帧中的当前扩频周期,其第l(1,…,L)条路径的峰值偏移量Δnk,l
Figure BDA0002368717840000114
其中,
Figure BDA0002368717840000115
为多普勒扩展导致的偏移;βk为第k个子带的调频率,fkb表示第k个子带的起始频率。βk与fkb需要根据升频降频以及当前扩频周期序号的奇偶性确定相应的值,具体见S2中定义。
S6、相关运算。将接收信号与每个子带的升HFM扩频符号,分别做互相关运算,根据峰值偏移量Δnk,l,在相关运算后的对应点获得峰值。第k个子带,第l条路径的峰值
Figure BDA0002368717840000116
表示为
Figure BDA0002368717840000117
其中,r[n]表示数据帧中的当前扩频周期符号。同理,接收信号与子带的降HFM扩频符号做互相关运算后,峰值
Figure BDA0002368717840000118
表示为
Figure BDA0002368717840000119
S7、确定激活子带。根据峰值
Figure BDA00023687178400001110
Figure BDA00023687178400001111
进行激活子带的判决。对数据帧中的当前扩频周期的第q个子带组,激活子带的判决规则如下:
Figure BDA0002368717840000121
则认为第q个子带组的第1个子带为激活子带,根据S3中的激活方案,判定第q个子带组传输的第1个比特为
Figure BDA0002368717840000122
Figure BDA0002368717840000123
则认为第q个子带组的第2个子带为激活子带,根据S3中的激活方案,判定第q个子带组传输的第1个比特为
Figure BDA0002368717840000124
其中,qf=2q-1表示第q个子带组的第1个子带;qs=2q表示第q个子带组的第2个子带。在第奇数个扩频周期中,qf与qs在1,…,K1之间取值;在第偶数个扩频周期中,qf与qs在1,…,K2之间取值。
S8、在激活子带上进行符号解调。根据S7的检测结果可确定激活的子带序号为k,对该子带进行符号解调。利用最大合并比准则,对L条路径的峰值作合并处理并进行符号判决,解调出的符号为
Figure BDA0002368717840000125
其中,j为虚数单位,
Figure BDA0002368717840000126
表示第l(1,…,L)条路径对应幅度
Figure BDA0002368717840000127
的共轭。而后根据S进行QPSK符号解映射得bq2bq3,最终获得该子带组传输的3个比特bq1bq2bq3。数据帧中每个扩频周期符号各子带组的解调流程如图5所示。

Claims (7)

1.一种基于交叉子带划分的多带双曲调频扩频通信方法,包括以下步骤:
S1、将通信系统带宽按照扩频周期序号的奇偶性划分为不同数量的若干子带;
S2、子带分别采用对应的升、降双曲调频信号进行调频;
S3、将数据、子带进行分组,根据传输的数据进行子带选择与符号映射,并进行信号调制与扩频;
S4、对扩频后的传输信号添加帧头与保护间隔,生成信号帧。
2.根据权利要求1所述的一种基于交叉子带划分的多带双曲调频扩频通信方法,其特征在于:在所述步骤S1中,扩频周期序号为奇数的扩频周期将系统使用带宽分为K1个子带,扩频周期序号为偶数的扩频周期将所用带宽分为K2个子带,后续分别进行双曲调频。
3.根据权利要求1所述的一种基于交叉子带划分的多带双曲调频扩频通信方法,其特征在于:在所述步骤S2中,每个扩频周期内,每个子带分别使用升、降HFM信号生成两种弱相关的扩频信号,进行双曲调频。
4.根据权利要求3所述的一种基于交叉子带划分的多带双曲调频扩频通信方法,其特征在于:每个子带对应的升HFM信号
Figure FDA0002368717830000011
表示为
Figure FDA0002368717830000021
其中,p为扩频周期序号;当p为奇数或偶数时的调频率分别为
Figure FDA0002368717830000022
当p为奇数时,第k个子带的起始频率与截止频率分别为
Figure FDA0002368717830000023
当p为偶数时,第k个子带的起始频率与截止频率分别为
Figure FDA0002368717830000024
同理,每个子带对应的降HFM信号
Figure FDA0002368717830000025
可表示为:
Figure FDA0002368717830000026
其中,p为扩频周期序号;当p为奇数或偶数时的调频率分别为
Figure FDA0002368717830000027
当p为奇数时,第k个子带的起始频率与截止频率分别为
Figure FDA0002368717830000028
当p为偶数时,第k个子带的起始频率与截止频率分别为
Figure FDA0002368717830000029
5.根据权利要求1所述的一种基于交叉子带划分的多带双曲调频扩频通信方法,其特征在于:在所述步骤S3中,将数据、子带进行分组,分组具体为:
待传比特每3个比特分成一组,对于第奇数个扩频周期,将K1个子带每两相邻子带分成一组,一共有K1/2个组,每组承载前述的3比特分组;对于第偶数个扩频周期,将K2个子带每两相邻子带分成一组,一共有K2/2个组,每组承载前述的3比特分组,本次方案中分组的结果为,每组2个子带传输3个比特。
6.根据权利要求1所述的一种基于交叉子带划分的多带双曲调频扩频通信方法,其特征在于:在所述步骤S3中,根据传输的数据进行子带选择与符号映射,并进行信号调制与扩频,具体为:
每个子带组传输3个比特,第1个比特用于子带的选择:该比特为0时,选择该子带组的第1个子带进行扩频传输,当该比特为1时选择该子带组的第2个子带进行扩频传输,
第2、3个比特则用于QPSK符号映射,由第1个比特激活的子带进行相应的扩频传输。
7.根据权利要求1所述的一种基于交叉子带划分的多带双曲调频扩频通信方法,其特征在于:在所述步骤S4中,帧头采用占用整个通信频段的升、降HFM信号与零间隔,保护间隔采用占用整个通信频段的降HFM信号与零符号作间隔。
CN202010043963.5A 2020-06-09 2020-06-09 一种基于交叉子带划分的多带双曲调频扩频通信方法 Active CN111478720B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010043963.5A CN111478720B (zh) 2020-06-09 2020-06-09 一种基于交叉子带划分的多带双曲调频扩频通信方法
PCT/CN2020/125523 WO2021248784A1 (zh) 2020-06-09 2020-10-30 一种基于交叉子带划分的多带双曲调频扩频通信方法
US18/009,338 US12101114B2 (en) 2020-06-09 2020-10-30 Multi-band hyperbolic frequency modulation spread spectrum communication method based on cross sub-band division

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010043963.5A CN111478720B (zh) 2020-06-09 2020-06-09 一种基于交叉子带划分的多带双曲调频扩频通信方法

Publications (2)

Publication Number Publication Date
CN111478720A true CN111478720A (zh) 2020-07-31
CN111478720B CN111478720B (zh) 2021-07-16

Family

ID=71746240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010043963.5A Active CN111478720B (zh) 2020-06-09 2020-06-09 一种基于交叉子带划分的多带双曲调频扩频通信方法

Country Status (2)

Country Link
CN (1) CN111478720B (zh)
WO (1) WO2021248784A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021248784A1 (zh) * 2020-06-09 2021-12-16 华南理工大学 一种基于交叉子带划分的多带双曲调频扩频通信方法
CN115022139A (zh) * 2022-05-27 2022-09-06 中国人民解放军63921部队 一种基于双曲调频信号的相位预调制方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050111588A1 (en) * 2003-11-26 2005-05-26 Green Maurice D. High range rate signaling
US20080165617A1 (en) * 2007-01-04 2008-07-10 Ocean Acoustical Services And Insrumentation Systems (Oasis) Inc. Methods of and systems for continually measuring the range between mobile underwater vehicles carrying acoustical signal transmitters and remotely deployed synchronized underwater acoustical receivers provided with signal processing for continually determining such range during the underwater moving of the vehicle, and for measuring acoustic underwater transmission loss, geoacoustical properties and for other purposes
CN102025423A (zh) * 2010-11-30 2011-04-20 中国船舶重工集团公司第七一五研究所 一种适合移动平台的被动时反水声通信方法
CN102170314A (zh) * 2011-02-24 2011-08-31 西北工业大学 一种双曲调频扩频水声通信方法
CN105323198A (zh) * 2014-06-13 2016-02-10 中国科学院声学研究所 一种利用双曲调频进行水下信号发射和接收的方法
CN106603117A (zh) * 2016-12-09 2017-04-26 江苏理工学院 一种水下测量传播时延的方法
CN106899357A (zh) * 2017-03-13 2017-06-27 哈尔滨工程大学 一种模拟海豚哨声的伪装隐蔽水下通信装置
CN107947868A (zh) * 2017-11-22 2018-04-20 华南理工大学 一种基于子带选择激活的多带双曲调频扩频水声通信方法
CN110266622A (zh) * 2018-03-12 2019-09-20 中国科学院声学研究所 一种正交多载波m元混沌调相扩频水声通信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478720B (zh) * 2020-06-09 2021-07-16 华南理工大学 一种基于交叉子带划分的多带双曲调频扩频通信方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050111588A1 (en) * 2003-11-26 2005-05-26 Green Maurice D. High range rate signaling
US20080165617A1 (en) * 2007-01-04 2008-07-10 Ocean Acoustical Services And Insrumentation Systems (Oasis) Inc. Methods of and systems for continually measuring the range between mobile underwater vehicles carrying acoustical signal transmitters and remotely deployed synchronized underwater acoustical receivers provided with signal processing for continually determining such range during the underwater moving of the vehicle, and for measuring acoustic underwater transmission loss, geoacoustical properties and for other purposes
CN102025423A (zh) * 2010-11-30 2011-04-20 中国船舶重工集团公司第七一五研究所 一种适合移动平台的被动时反水声通信方法
CN102170314A (zh) * 2011-02-24 2011-08-31 西北工业大学 一种双曲调频扩频水声通信方法
CN105323198A (zh) * 2014-06-13 2016-02-10 中国科学院声学研究所 一种利用双曲调频进行水下信号发射和接收的方法
CN106603117A (zh) * 2016-12-09 2017-04-26 江苏理工学院 一种水下测量传播时延的方法
CN106899357A (zh) * 2017-03-13 2017-06-27 哈尔滨工程大学 一种模拟海豚哨声的伪装隐蔽水下通信装置
CN107947868A (zh) * 2017-11-22 2018-04-20 华南理工大学 一种基于子带选择激活的多带双曲调频扩频水声通信方法
CN110266622A (zh) * 2018-03-12 2019-09-20 中国科学院声学研究所 一种正交多载波m元混沌调相扩频水声通信方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LAN ZHANG;XIAOMEI XU;WEI FENG;YOUGAN CHEN: "HFM spread spectrum modulation scheme in shallow water acoustic channels", 《2012 OCEANS》 *
凌志强: "水声通信中低计算复杂度的信号检测与同步技术研究", 《中国优秀硕士学位论文全文数据库》 *
赵砚博: "宽带水声信道参数估计及应用", 《中国优秀博士学位论文全文数据库》 *
钟晓辉: "最小误码率准则在水下通信中的应用", 《中国优秀硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021248784A1 (zh) * 2020-06-09 2021-12-16 华南理工大学 一种基于交叉子带划分的多带双曲调频扩频通信方法
CN115022139A (zh) * 2022-05-27 2022-09-06 中国人民解放军63921部队 一种基于双曲调频信号的相位预调制方法及系统

Also Published As

Publication number Publication date
WO2021248784A1 (zh) 2021-12-16
US20230239002A1 (en) 2023-07-27
CN111478720B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
Kim et al. Parameter study of OFDM underwater communications system
CN107947868B (zh) 一种基于子带选择激活的多带双曲调频扩频水声通信方法
CN109474305B (zh) 一种5g多载波扩频水声通信方法
CN111478720B (zh) 一种基于交叉子带划分的多带双曲调频扩频通信方法
CN101567727A (zh) 一种差分循环移位扩频水声通信方法
CN103905085B (zh) 一种猝发混合扩频水声隐蔽通信方法
WO2020113462A1 (zh) 一种基于混沌序列的5g多载波扩频水声通信方法
CN113315541B (zh) 一种伪随机相位序列扩频调制方法
WO2020113463A1 (zh) 一种5g多载波扩频水声通信方法
CN109302208A (zh) 一种交织Gold映射序列的并行组合扩频水声通信方法
CN101534278A (zh) 时频扩展的正交频分复用收发装置、方法及系统
CN109257113B (zh) 一种移动水声通信方法
CN102832964A (zh) 多频带ds-mfsk调制解调器
Qi et al. UW-CTSM: Circular time shift modulation for underwater acoustic communications
Zhang et al. Experimental demonstration of spread spectrum communication over long range multipath channels
He et al. M-ary CDMA multiuser underwater acoustic communication and its experimental results
Rezzouki et al. Differential chirp spread spectrum to perform acoustic long range underwater localization and communication
CN115426233A (zh) 一种叠加导频的m元多相序列扩频水声通信方法
Sherlock et al. Signal and receiver design for low-power acoustic communications using m-ary orthogonal code keying
JP2005124140A (ja) 超広帯域通信システムにおいて送信されたデータシンボルを検出するための装置および方法
US12101114B2 (en) Multi-band hyperbolic frequency modulation spread spectrum communication method based on cross sub-band division
CN110752861B (zh) 采用rake接收技术的水声混沌扩频通信系统及方法
Ra et al. Superimposed DSSS transmission based on cyclic shift keying in underwater acoustic communication
He et al. Multiuser underwater acoustic communication using cyclic shift keying
Tian et al. Code Index Modulation CSK Spread Spectrum Underwater Acoustic Communications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant