WO2020113462A1 - 一种基于混沌序列的5g多载波扩频水声通信方法 - Google Patents

一种基于混沌序列的5g多载波扩频水声通信方法 Download PDF

Info

Publication number
WO2020113462A1
WO2020113462A1 PCT/CN2018/119345 CN2018119345W WO2020113462A1 WO 2020113462 A1 WO2020113462 A1 WO 2020113462A1 CN 2018119345 W CN2018119345 W CN 2018119345W WO 2020113462 A1 WO2020113462 A1 WO 2020113462A1
Authority
WO
WIPO (PCT)
Prior art keywords
spread spectrum
underwater acoustic
data
chaotic
acoustic communication
Prior art date
Application number
PCT/CN2018/119345
Other languages
English (en)
French (fr)
Inventor
吴金秋
刘鹏云
康鹏斌
邵会兵
姚宏达
刘辉
王小虎
刘浩源
Original Assignee
北京控制与电子技术研究所
唐山照澜海洋科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京控制与电子技术研究所, 唐山照澜海洋科技有限公司 filed Critical 北京控制与电子技术研究所
Priority to AU2018452060A priority Critical patent/AU2018452060B2/en
Priority to PCT/CN2018/119345 priority patent/WO2020113462A1/zh
Publication of WO2020113462A1 publication Critical patent/WO2020113462A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the invention relates to a 5G multi-carrier spread spectrum underwater acoustic communication method based on chaotic sequence, which belongs to the field of underwater acoustic communication, and relates to generalized frequency division multiplexing underwater acoustic communication technology and chaotic sequence spread spectrum underwater acoustic communication technology.
  • Spread spectrum communication technology is a common technology in long-distance underwater acoustic communication technology. With the development of communication technology, its communication methods can be divided into direct sequence spread spectrum (DS, Direct Sequence Spread Spectrum), frequency hopping according to different spectrum spreading methods. (FH, Frequency-Hopping Spread Spectrum), time hopping (TH, Time Hopping), pulse frequency modulation (Chirp Modulation) and hybrid spread spectrum and other methods.
  • DS Direct Sequence Spread spectrum
  • FH Frequency-Hopping Spread Spectrum
  • TH Time Hopping
  • Puls Modulation pulse frequency modulation
  • hybrid spread spectrum hybrid spread spectrum and other methods.
  • the field of underwater acoustic communication needs effective information transmission methods.
  • the purpose of the present invention is to provide a 5G multi-carrier spread spectrum underwater acoustic communication system based on chaotic sequences in the field of underwater acoustic communication with limited channel bandwidth resources.
  • the invention proposes a 5G multi-carrier spread spectrum underwater acoustic communication system suitable for underwater acoustic field, which realizes effective information transmission in underwater acoustic channels with limited bandwidth resources, and realizes error-free information transmission in experiments.
  • the purpose of the present invention is to provide an effective information transmission method for the field of underwater acoustic communication with limited channel bandwidth resources, which is of great significance to the development of underwater acoustic technology.
  • the present invention provides a 5G multi-carrier spread spectrum underwater acoustic communication method based on chaotic sequences.
  • the method includes the following steps:
  • Step 1 At the transmitting end, the source data is encoded, and the chaotic spreading sequence is used to spread the encoded serial data data;
  • Step 2 Perform GFDM modulation on the spread data, and then add a cyclic prefix to the modulated data to obtain the transmitted data;
  • Step 3 After the modulated signal passes through the underwater acoustic channel, at the receiving end, the data is synchronized and GFDM demodulated;
  • Step 4 De-spread the demodulated data using the chaotic signal generated locally at the receiving end, integrate and judge the resulting signal for the duration, and obtain the estimated data at the receiving end.
  • the present invention further includes the feature of selecting any one of 1-4:
  • step one is:
  • d(n) and the chaotic sequence c(n) used for spreading have a value of 1 or -1
  • g(t) and p(t) are rectangular pulses of unit amplitude of duration T b and T c , respectively
  • N represents the length of the spreading sequence.
  • T b NT c .
  • the sequence p(t) after spreading is:
  • step two The modulation process in step two is expressed as:
  • the discrete spread spectrum signal of GFDM using BPSK modulation can be expressed as:
  • d k [i] is the data on the kth subcarrier
  • c k [j] represents the corresponding spreading sequence to be multiplied
  • N c represents the number of subcarriers
  • GFDM demodulate the received signal y'(t), with g -1 [ ⁇ ] representing the GFDM demodulation process, then the signal to be despread r(t) can be expressed as:
  • step 4 The despreading process of the received signal in step 4 is:
  • the pulse duration of the spreading sequence c(t) is T b , that is
  • q(t) can be expressed as:
  • the beneficial effect of the present invention is: a multi-carrier spread spectrum underwater acoustic communication system based on chaotic sequence is realized, and simulation and experiment verify that the system has a GFDM spread based on commonly used spread spectrum sequence
  • the 5G spread spectrum underwater acoustic communication technology system based on the chaotic sequence described in the invention realizes the bit error rate when the signal-to-noise ratio is 4dB for the underwater acoustic communication system using common spreading sequence spread spectrum, and the performance is improved by 13dB;
  • Figure 1 Schematic diagram of underwater acoustic spread spectrum system based on chaotic sequence
  • Figure 2 (a) Schematic diagram of the transmitting end of the chaotic spread spectrum underwater acoustic system and (b) Schematic diagram of the receiving end of the chaotic spread spectrum underwater acoustic system;
  • the present invention focuses on the direct spread spectrum underwater acoustic communication system based on GFDM. Its advantages are:
  • Spread spectrum communication technology uses a spread spectrum sequence to spread the frequency of the transmitted signal at the transmitting end, expands the original bandwidth occupied by the signal, and uses a related inspection method to despread the transmitted signal at the receiving end to reduce the noise in the transmission process.
  • the signal is expanded into a wideband signal, and the target signal can be extracted by a narrowband filtering method, which has a relatively high signal-to-noise ratio, which can effectively improve the anti-interference performance of the system and reduce the bit error rate of the system.
  • the spread signal band is widened, can be submerged in noise, is not easily intercepted by the enemy, and is less likely to cause interference to surrounding electronic equipment.
  • the potential for military applications is huge.
  • Frequency-hopping radio stations in the HF, VHF and UHF bands have been used in foreign military communications equipment. Direct sequence spread spectrum radio stations have also begun to enter the practical stage. Therefore, it has good concealment.
  • the signal after passing through multiple channels can be extracted conveniently and effectively.
  • the spread spectrum communication technology has high reliability and good confidentiality.
  • Spread spectrum systems can be divided into time domain spread spectrum communication systems and frequency domain spread spectrum communication systems according to the spread spectrum operations performed in the time and frequency domains.
  • the present invention conducts research on time-domain spreading.
  • the spread spectrum technology in the present invention uses chaotic sequences, which mainly have the following advantages:
  • the length of the traditional spreading sequence is relatively fixed, both are 2 n -1, and the number of spreading codes that can be selected is small. Since chaotic sequences are sensitive to initial values, a huge number of spreading sequences can be obtained by changing the parameters and initial values of the chaotic system, and the sequence length can be set arbitrarily. Therefore, the number of available spreading codes is very large, so it has better confidentiality than traditional spreading sequences.
  • the chaotic spreading sequence has its own characteristics such as aperiodic, broadband and noise-like, which is similar to the random process, so that it is not easy to be intercepted during the actual transmission process. Therefore, the system has a considerable degree of confidentiality and is difficult to decipher, which can greatly improve the security of the communication system.
  • Time domain spread spectrum The block diagram of multi-carrier time domain spread spectrum transmission is shown in Figure 1. Perform serial-to-parallel conversion of the data signal at the sending end, then use a spread spectrum code in the time domain to perform a spread spectrum operation on each data symbol, and finally use a subcarrier of a different frequency for each spread data Modulation, finally realized multi-carrier time-domain spread spectrum. It can be seen from the figure that all the chips of each transmitted data after time-domain spreading are transmitted on one subcarrier, indicating that the system has poor ability to resist frequency selective fading, and each transmitted data passes through After domain spreading, the chip length is the same as the spreading code length, so it has a strong ability to resist time-selective fading.
  • a commonly used spread spectrum sequence underwater acoustic communication system is to perform GFDM modulation on N parallel signals that have completed spread spectrum.
  • the number of parallel data is less than the number of subcarriers of the OFDM system.
  • Commonly used spread spectrum sequence underwater acoustic communication systems transmit multiple directly spread data in parallel.
  • the spread spectrum signal is limited by the bandwidth.
  • the spreading code is long, the transmission signal and the receiving end are synchronized. It takes a lot of time.
  • the receiver of the GFDM-DS spread spectrum system adopts the method introduced above, as shown in Figure 2(b).
  • the bit error rate performance can be seen from the figure, when the m-sequence order is 5 (that is, the length is 63), the commonly used spread spectrum sequence underwater acoustic communication system can achieve the error code close to the chaotic spread spectrum underwater acoustic communication system. ⁇ Rate performance.
  • the experiment was conducted in a silencing pool in May 2017.
  • the pool is 25 meters long, 15 meters wide and 10 meters high.
  • the working frequency band of the transmitting transducer is 3-8kHz
  • the deployment depth is 3 meters
  • the receiving hydrophone adopts the standard hydrophone
  • the deployment depth is 3 meters
  • the horizontal distance between the transmitting transducer and the receiving hydrophone is 5 meters.
  • the measured channel impulse response is shown in Figure 7.
  • the maximum multipath delay is about 5.5ms, and the sampling frequency is 48kHz.
  • the results of the experiment using the RC filter combined with the RRC filter bank and the roll-off parameter in the two spread spectrum systems as examples Comparison.
  • the invention includes the following steps:
  • Step 1 At the transmitting end, the binary source data is encoded, and the encoded serial data data is spread with a chaotic spreading sequence.
  • the chaotic spreading process is:
  • Figure 2(a) is the principle diagram of the spreading and despreading transmitter and receiver of the GFDM spread spectrum system.
  • the data after the parallel-to-serial conversion is spread in time domain with the spreading sequence, and then GFDM modulation is performed according to the GFDM modulation method , To get the modulated data, plus the cyclic prefix, you have to transmit data.
  • At the receiving end first synchronize the received signal. Under the premise of ensuring correct synchronization, demodulate and despread the synchronized signal, and then integrate the resulting signal for the duration and make a judgment to obtain the receiving end estimate.
  • the transmission data is represented by d(t), then the process can be expressed as:
  • d(n) and the chaotic sequence c(n) used for spreading have a value of 1 or -1
  • g(t) and p(t) are rectangular pulses of unit amplitude of duration T b and T c , respectively
  • N represents the length of the spreading sequence.
  • T b NT c .
  • the sequence p(t) after spreading is:
  • Step 2 Perform GFDM modulation on the spread data, and then add a cyclic prefix to the modulated data to obtain the transmitted data;
  • the modulated data is y(t), and g[ ⁇ ] represents the GFDM modulation process, then:
  • the discrete spread spectrum signal of GFDM using BPSK modulation can be expressed as:
  • d k [i] is the data on the kth subcarrier
  • c k [j] represents the corresponding spreading sequence to be multiplied
  • N c represents the number of subcarriers
  • Step 3 After the modulated signal passes through the underwater acoustic channel, at the receiving end, the data is synchronized and GFDM demodulated;
  • GFDM demodulate the received signal y'(t), with g -1 [ ⁇ ] representing the GFDM demodulation process, then the signal to be despread r(t) can be expressed as:
  • Step 4 De-spread the demodulated data using the chaotic signal generated locally at the receiving end, integrate and judge the resulting signal for the duration to obtain the estimated data at the receiving end,
  • the pulse duration of the spreading sequence c(t) is T b , that is
  • q(t) can be expressed as:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种基于混沌序列的5G多载波扩频水声通信方法,属于水声通信领域,涉及广义频分复用水声通信技术,混沌序列扩频水声通信技术。本发明提出了一种适用于水声领域的5G多载波扩频水声通信系统,实现了在带宽资源有限的水声信道中有效的信息传输,在实验中实现了无误码的信息传输。本发明的目的是针对信道带宽资源有限的水声通信领域,提供一种有效的信息传输方法,对水声技术的发展具有重要意义。

Description

一种基于混沌序列的5G多载波扩频水声通信方法 技术领域
本发明涉及一种基于混沌序列的5G多载波扩频水声通信方法,属于水声通信领域,涉及广义频分复用水声通信技术,混沌序列扩频水声通信技术。
背景技术
扩频通信技术是长距离水声通信技术中的常用技术,随着通信技术的发展,其通信方式可以根据频谱扩展方法的不同分为直接序列扩频(DS,Direct Sequence Spread Spectrum)、跳频(FH,Frequency-Hopping Spread Spectrum)、跳时(TH,Time Hopping)、脉冲调频(Chirp Modulation)及混合扩频等几种方式。
水声通信领域需要有效的信息传输方法。
发明内容
本发明的目的是针对信道带宽资源有限的水声通信领域,提供一种基于混沌序列的5G多载波扩频水声通信系统。
本发明提出了一种适用于水声领域的5G多载波扩频水声通信系统,实现了在带宽资源有限的水声信道中有效的信息传输,在实验中实现了无误码的信息传输。本发明的目的是针对信道带宽资源有限的水声通信领域,提供一种有效的信息传输方法,对水声技术的发展具有重要意义。
本发明提供了一种基于混沌序列的5G多载波扩频水声通信方法,所述方法包括如下步骤:
步骤一:在发射端,对源数据进行编码,对编码后的串行数据数据用混沌扩频序列进行扩频操作;
步骤二:对扩频后的数据进行GFDM调制,之后对调制后的数据加循环前缀,得发射数据;
步骤三:调制后的信号经过水声信道后,在接收端,对数据进行同步、GFDM解调;
步骤四:对解调后的数据,利用接收端本地产生的混沌信号进行解扩,对所得信号在持续时间内做积分、判决,得到接收端估计出的数据。
优选地,本发明还包括选择1-4任一项的特征:
1.步骤一中扩频过程为:
发射数据用d(t)表示,则过程可表示为:
Figure PCTCN2018119345-appb-000001
Figure PCTCN2018119345-appb-000002
d(n)和扩频所用的混沌序列c(n)的取值为1或-1,g(t)和p(t)分别是持续时间为T b和T c的单位幅度的矩形脉冲,N代表扩频序列的长度,一般情况下,T b=NT c。扩频后的序列p(t)为:
p(t)=d(t)c(t)
步骤二中调制过程表示为:
经过GFDM调制后的数据为y(t),用g[·]表示GFDM调制过程,则:
y(t)=g[p(t)]=g[d(t)c(t)]
采用BPSK调制方式的GFDM的离散扩频信号可表示为:
Figure PCTCN2018119345-appb-000003
其中,d k[i]为第k个子载波上的数据,c k[j]代表其对应所乘的扩频序列,N c代表子载波个数,Δf′=1/T c是子载波间隔。
2.步骤三中对接收信号进行GFDM解调过程为:
在接收端,正确同步的前提下,对接收信号y’(t)进行GFDM解调,用g -1[·]代表GFDM解调过程,则待解扩信号r(t)可表示为:
r(t)=g -1[y'(t)]。
3.步骤四中对接收信号解扩过程为:
利用本地产生的与发射端相同的混沌扩频序列c r(t)对r(t)解扩:
m(t)=r(t)c r(t)=g -1[y'(t)]c r(t)
=g -1[g[d(t)c(t)]]c r(t)=d(t)c(t)c r(t)
对信号所在持续时间内进行积分:
Figure PCTCN2018119345-appb-000004
其中扩频序列c(t)的脉冲持续时间为T b,即
Figure PCTCN2018119345-appb-000005
因此,q(t)可表示为:
Figure PCTCN2018119345-appb-000006
与现有技术相比,本发明的有益效果是:实现了一种基于混沌序列的多载波扩频水声通信系统,并通过仿真和实验验证了该系统具有较基于常用扩频序列的GFDM扩频水声通信系统更好的性能,能够利用更少的序列初值(其他常用扩频序列为了产生与混沌序列相同数量,需要更多的初始值,增加了通信系统的信息传输量,占用宝贵带宽资源,降低传输效率),实现整个通信系统更低的误码率,以调制器结构M=2,K=29为例分析,在高斯白噪声信道下,信噪比为-9dB时,本发明所述的基于混沌序列的5G扩频水声通信技术系统实现了采用常用扩频序列扩频的水声通信系统在信噪比为4dB时的误码率,性能提升13dB;多途水声信道下,在信噪比为-3dB时,实现了常用扩频序列扩频的水声通信系统在信噪比为6dB时的误码率,性能提升9dB。并在实验中实现了无误码的信息传输,证明该基于混沌序列的GFDM扩频水声通信系统是一种全新可灵活利用传输信道带宽的高效通信系统,更适用于水声通信领域中。
附图说明
图1基于混沌序列的水声扩频系统示意图;
图2(a)混沌扩频水声系统发射端原理图和(b)混沌扩频水声系统接收端原理图;
图3调制器结构为M=2,K=29的高斯白噪声信道下不同扩频水声通信系统误码率性能比较图;
图4调制器结构为M=2,K=29的多途信道下不同扩频水声通信系统误码率性能比较图;
图5调制器结构为M=29,K=2的高斯白噪声信道下不同扩频水声通信系统误码率性能比较图;
图6调制器结构为M=29,K=2的多途信道下不同扩频水声通信系统误码率性能比较图;
图7实验信道冲击响应;
图8实验发射接收图片(a)发射图像(b)常用扩频序列水声通信系统(M=2,K=29)误码率为0.0119(c)混沌扩频水声通信系统接收图像(M=2,K=29)误码率为0.0046(d)GFDM混沌扩频水声通信系统接收图像(M=29,K=2)。
具体实施方式
本发明重点研究基于GFDM的直接扩频水声通信系统其优势在于:
1.抗干扰能力强,误码率低
扩频通信技术在发射端,利用扩频序列对发射信号进行扩频处理,将信号所占的原始带宽扩展,在接收端采用相关检查法对传输信号进行解扩处理,将传输过程中的噪声信号扩展成了宽带信号,可通过窄带滤波方法对目标信号进行提取,具有相对较高的信噪比,可以有 效的提高系统的抗干扰性能,降低了系统的误码率。
2.隐蔽性能好,截获概率低
扩频后的信号频带被展宽,可淹没在噪声,不易被敌方截获,对周围的电子设备产生干扰的可能性也很小。军事应用潜力巨大,国外的军事通信装备上已经使用了HF,VHF和UHF频段的跳频无线电台,直接序列扩频电台也开始进入实用阶段。因此,具有良好的隐蔽性。
3.抗多径性能好
由于扩频码的良好的自相关性,经过多途信道后的信号可以方便有效的提取出来。
4.保密性好
由于扩频信号的功率谱密度很低,信号淹没在噪声中,并且不同路信号或不同用户的信号采用不同的伪随机序列扩展频谱,接收方只有知道扩频序列的正确形式才能解扩解调出原始信息数据。因此扩频通信技术可靠性高,保密性好。
扩频系统可依据在时域和频域进行的扩频操作,分为时域扩频通信系统和频域扩频通信系统。一方面由于水下声信道可用带宽资源有限,另一方面由于频域扩频会破坏子载波间的相关性,因此本发明针对时域扩频展开研究。
本发明中的扩频技术采用混沌序列,主要有以下优势:
首先,传统扩频序列长度相对固定,均为2 n-1,并且可选则的扩频码数量少。而混沌序列由于对初值敏感,通过改变混沌系统的参数及初始值可以得到数量巨大的扩频序列,并且序列长度可任意设置。因此可供选择的扩频码数量非常多,因此,较传统扩频序列具有更好的保密性。
其次,混沌扩频序列自身具有非周期性、宽带和类噪声等特性,类似于随机过程,使其在实际传输过程中,不易被发现截获。因此,系统具有相当程度的保密性能,很难被破译,可以很大程度的提高通信系统的安全性。
最后,混沌序列的产生与复制很方便,只要给出一个混沌系统迭代公式与一个初始值,就能产生一个混沌扩频序列。
因此,基于混沌序列的上述优点,将其应用到本发明一种基于混沌序列的5G多载波扩频水声通信技术中。
时域扩频:多载波时域扩频发送框图如图1所示。在发送端将数据信号进行串并转换,之后利用时域分布的扩频码,对每一个数据符号分别进行扩频操作,最后再将每一个经过扩频后的数据用不同频率的子载波进行调制,最终实现了多载波时域扩频。从图中可以看出,每一个发射数据经过时域扩频后的所有码片都在一个子载波上进行传输,说明该系统对抗频率选择性衰落的能力较差,而每一个发射数据经过时域扩频后,码片长度与扩频码长度相同, 因此对抗时间选择性衰落的能力较强。
常用扩频序列水声通信系统是对N路并行的且已经完成扩频的信号进行GFDM调制,一般情况下,并行数据数目小于OFDM系统的子载波数目。常用扩频序列水声通信系统将多个经直接扩频后的数据进行并行传输,在水声通信中,扩频信号受带宽限制,当扩频码较长时,传输信号和接收端同步均需要耗费大量的时间,GFDM-DS扩频系统接收端采用上文介绍的方法,如图2(b)所示。
图3和图4分别比较了高斯白噪声信号和多途信道下,调制矩阵为M=2,K=29的3阶、5阶常用扩频序列水声通信系统和混沌扩频水声通信系统的误码率性能,从图中可以看出,当m序列阶数为5(即长度为63)时,常用扩频序列水声通信系统可以实现与混沌扩频水声通信系统接近的误码率性能。同样,图5和图6分别比较了高斯白噪声信号和多途信道下,调制矩阵为M=29,K=2的3阶、5阶常用扩频序列水声通信系统和混沌扩频水声通信系统的误码率性能,可以得出相似结论,在此不作赘述。
下面结合附图与具体实施方式对本发明作进一步详细描述。
实验于2017年5月在消声水池进行,水池长25米,宽15米,高10米,水池周围布有消声尖劈。发射换能器的工作频带为3-8kHz,布放深度为3米,接收水听器采用标准水听器,布放深度为3米,发射换能器和接收水听器水平距离5米。实测信道冲击响应如图7所示,最大多途时延约为5.5ms,采样频率48kHz,以两种扩频系统中RC滤波器组合RRC滤波器组,滚降参数的情况为例进行实验结果的对比。采用RC滤波器和RRC滤波器组进行的GFDM-DS和GFDM-CSSS扩频水声通信系统的发射和接收。
本发明包括如下步骤:
步骤一:在发射端,对二进制源数据进行编码,对编码后的串行数据数据用混沌扩频序列进行扩频操作,其中混沌扩频过程为:
图2(a)为GFDM扩频系统扩频及解扩发射端和接收端原理图,用扩频序列对进行了并串转换后的数据进行时域扩频,之后按照GFDM调制方法进行GFDM调制,得到调制后的数据,加循环前缀,得发射数据。在接收端,首先对接收到的信号做同步,在保证同步正确的前提下,对同步后的信号进行解调、解扩,之后对所得信号在持续时间内做积分后判决,得到接收端估计出的数据。发射数据用d(t)表示,则过程可表示为:
Figure PCTCN2018119345-appb-000007
Figure PCTCN2018119345-appb-000008
d(n)和扩频所用的混沌序列c(n)的取值为1或-1,g(t)和p(t)分别是持续时间为T b和T c 的单位幅度的矩形脉冲,N代表扩频序列的长度,一般情况下,T b=NT c。扩频后的序列p(t)为:
p(t)=d(t)c(t)。
步骤二:对扩频后的数据进行GFDM调制,之后对调制后的数据加循环前缀,得发射数据;
经过调制后的数据为y(t),用g[·]表示GFDM调制过程,则:
y(t)=g[p(t)]=g[d(t)c(t)]
采用BPSK调制方式的GFDM的离散扩频信号可表示为:
Figure PCTCN2018119345-appb-000009
其中,d k[i]为第k个子载波上的数据,c k[j]代表其对应所乘的扩频序列,N c代表子载波个数,Δf′=1/T c是子载波间隔。
步骤三:调制后的信号经过水声信道后,在接收端,对数据进行同步、GFDM解调;
在接收端,正确同步的前提下,对接收信号y’(t)进行GFDM解调,用g -1[·]代表GFDM解调过程,则待解扩信号r(t)可表示为:
r(t)=g -1[y'(t)]
步骤四:对解调后的数据,利用接收端本地产生的混沌信号进行解扩,对所得信号在持续时间内做积分、判决,得到接收端估计出的数据,
利用本地产生的与发射端相同的混沌扩频序列c r(t)对r(t)解扩:
m(t)=r(t)c r(t)=g -1[y'(t)]c r(t)
=g -1[g[d(t)c(t)]]c r(t)=d(t)c(t)c r(t)
对信号所在持续时间内进行积分:
Figure PCTCN2018119345-appb-000010
其中扩频序列c(t)的脉冲持续时间为T b,即
Figure PCTCN2018119345-appb-000011
因此,q(t)可表示为:
Figure PCTCN2018119345-appb-000012
图8(a)为实验发射图片,(b)和(c)为调制器结构M=2,K=29的接收图像,误码率分别为:0.0119和0.0046。(d)为调制器结构M=29,K=2的常用扩频序列水声通信系统和混沌扩频水声通信系统接收图像,误码率均为0。
根据实验结果,在传输信号占用带宽相同,不同调制矩阵结构包含的子载波平分信道资源的情况下,随着子载波数目的增多,混沌扩频水声通信系统和常用扩频序列水声通信系统扩频系统性能均有下降,因为子载波数目多时,对于非正交多载波技术来说,各个子载波间主瓣重叠严重,进而导致了误码性能的下降。因此,一方面需要设计合理的子载波结构,避免载波间干扰,另一方面需要针对GFDM的调制器结构研究设计合理的信道估计方法,去除信道对系统的影响,提高GFDM扩频系统性能。
以上所述具体实例,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质上对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (4)

  1. 一种基于混沌序列的5G多载波扩频水声通信方法,其特征在于,所述方法包括如下步骤:
    步骤一:在发射端,对源数据进行编码,对编码后的串行数据数据用混沌扩频序列进行扩频操作;
    步骤二:对扩频后的数据进行GFDM调制,之后对调制后的数据加循环前缀,得发射数据;
    步骤三:调制后的信号经过水声信道后,在接收端,对数据进行同步、GFDM解调;
    步骤四:对解调后的数据,利用接收端本地产生的混沌信号进行解扩,对所得信号在持续时间内做积分、判决,得到接收端估计出的数据。
  2. 根据权利要求1所述的一种基于混沌序列的5G多载波扩频水声通信方法,其特征在于:步骤一中扩频过程为:
    发射数据用d(t)表示,则过程可表示为:
    Figure PCTCN2018119345-appb-100001
    Figure PCTCN2018119345-appb-100002
    d(n)和扩频所用的混沌序列c(n)的取值为1或-1,g(t)和p(t)分别是持续时间为T b和T c的单位幅度的矩形脉冲,N代表扩频序列的长度,一般情况下,T b=NT c,扩频后的序列p(t)为:
    p(t)=d(t)c(t)
    步骤二中调制过程表示为:
    经过GFDM调制后的数据为y(t),用g[·]表示GFDM调制过程,则:
    y(t)=g[p(t)]=g[d(t)c(t)]
    采用BPSK调制方式的GFDM的离散扩频信号可表示为:
    Figure PCTCN2018119345-appb-100003
    其中,d k[i]为第k个子载波上的数据,c k[j]代表其对应所乘的扩频序列,N c代表子载波个数,Δf′=1/T c是子载波间隔。
  3. 根据权利要求1所述的一种基于混沌序列的5G多载波扩频水声通信方法,其特征在于:步骤三中对接收信号进行GFDM解调过程为:
    在接收端,正确同步的前提下,对接收信号y’(t)进行GFDM解调,用g -1[·]代表GFDM解调过程,则待解扩信号r(t)可表示为:
    r(t)=g -1[y'(t)]。
  4. 根据权利要求1所述的一种基于混沌序列的5G多载波扩频水声通信方法,其特征在于:步骤四中对接收信号解扩过程为:
    利用本地产生的与发射端相同的混沌扩频序列c r(t)对r(t)解扩:
    m(t)=r(t)c r(t)=g -1[y'(t)]c r(t)
    =g -1[g[d(t)c(t)]]c r(t)=d(t)c(t)c r(t)
    对信号所在持续时间内进行积分:
    Figure PCTCN2018119345-appb-100004
    其中扩频序列c(t)的脉冲持续时间为T b,即
    Figure PCTCN2018119345-appb-100005
    因此,q(t)可表示为:
    Figure PCTCN2018119345-appb-100006
PCT/CN2018/119345 2018-12-05 2018-12-05 一种基于混沌序列的5g多载波扩频水声通信方法 WO2020113462A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2018452060A AU2018452060B2 (en) 2018-12-05 2018-12-05 Chaotic sequence-based 5G multi-carrier spread spectrum underwater acoustic communication method
PCT/CN2018/119345 WO2020113462A1 (zh) 2018-12-05 2018-12-05 一种基于混沌序列的5g多载波扩频水声通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/119345 WO2020113462A1 (zh) 2018-12-05 2018-12-05 一种基于混沌序列的5g多载波扩频水声通信方法

Publications (1)

Publication Number Publication Date
WO2020113462A1 true WO2020113462A1 (zh) 2020-06-11

Family

ID=70974430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119345 WO2020113462A1 (zh) 2018-12-05 2018-12-05 一种基于混沌序列的5g多载波扩频水声通信方法

Country Status (2)

Country Link
AU (1) AU2018452060B2 (zh)
WO (1) WO2020113462A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431834A (zh) * 2020-03-25 2020-07-17 哈尔滨工程大学 一种具有高可靠性的高效水下电流场通信方法
CN112073352A (zh) * 2020-08-28 2020-12-11 西北工业大学深圳研究院 基于索引调制的单载波高速扩频水声通信方法
CN113612713A (zh) * 2021-06-21 2021-11-05 深圳信恳智能电子有限公司 一种5g网络中混沌多址结合ofdm的安全通信系统
CN114513275A (zh) * 2020-10-29 2022-05-17 海鹰航空通用装备有限责任公司 一种基于混沌扩频的时分复用无人机蜂群通信方法
CN116846484A (zh) * 2023-07-17 2023-10-03 哈尔滨工程大学 一种基于水中气枪源的极地冰下声通信方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515683A (zh) * 2015-12-23 2016-04-20 西安理工大学 基于混杂系统的差分混沌键控通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105515683A (zh) * 2015-12-23 2016-04-20 西安理工大学 基于混杂系统的差分混沌键控通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINQIU WU ET AL.: "Emerging 5G Multicarrier Chaotic Sequence Spread Spectrum Technology for Underwater Acoustic Communication", COMPLEXITY, no. 2018, 18 October 2018 (2018-10-18), XP055711597, DOI: 20190730155124X *
RAJATH P HEBBAR ET AL.: "Generalized Frequency Division Multiplexing for Acoustic Communication in Underwater Systems", PROCEEDING OF SECOND INTERNATIONAL CONFERENCE ON CIRCUITS, CONTROLS AND COMMUNICATIONS, 25 June 2018 (2018-06-25), XP055711599, DOI: 20190730155708Y *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431834A (zh) * 2020-03-25 2020-07-17 哈尔滨工程大学 一种具有高可靠性的高效水下电流场通信方法
CN111431834B (zh) * 2020-03-25 2023-10-27 哈尔滨工程大学 一种具有高可靠性的高效水下电流场通信方法
CN112073352A (zh) * 2020-08-28 2020-12-11 西北工业大学深圳研究院 基于索引调制的单载波高速扩频水声通信方法
CN112073352B (zh) * 2020-08-28 2022-06-10 西北工业大学深圳研究院 基于索引调制的单载波高速扩频水声通信方法
CN114513275A (zh) * 2020-10-29 2022-05-17 海鹰航空通用装备有限责任公司 一种基于混沌扩频的时分复用无人机蜂群通信方法
CN114513275B (zh) * 2020-10-29 2024-01-05 海鹰航空通用装备有限责任公司 一种基于混沌扩频的时分复用无人机蜂群通信方法
CN113612713A (zh) * 2021-06-21 2021-11-05 深圳信恳智能电子有限公司 一种5g网络中混沌多址结合ofdm的安全通信系统
CN113612713B (zh) * 2021-06-21 2024-01-12 深圳信恳智能电子有限公司 一种5g网络中混沌多址结合ofdm的安全通信系统
CN116846484A (zh) * 2023-07-17 2023-10-03 哈尔滨工程大学 一种基于水中气枪源的极地冰下声通信方法和装置
CN116846484B (zh) * 2023-07-17 2024-05-10 哈尔滨工程大学 一种基于水中气枪源的极地冰下声通信方法和装置

Also Published As

Publication number Publication date
AU2018452060B2 (en) 2022-08-11
AU2018452060A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2020113462A1 (zh) 一种基于混沌序列的5g多载波扩频水声通信方法
CN109474305B (zh) 一种5g多载波扩频水声通信方法
CN110518935B (zh) 基于mc-cdma的水声通信系统及papr抑制方法
AU2018451596B2 (en) 5G multi-carrier spread spectrum underwater acoustic communication method
US20090225741A1 (en) Wireless system using a new type of preamble for a burst frame
CN101079674B (zh) 一种浅海远程水平信道水声通信方法
CN1939019A (zh) 用于生成并且处理具有减少的离散功率谱密度分量的宽带信号的方法和装置
CN101505291A (zh) 基于ofdm编码的水声通信差分解码方法
He et al. Passive time reversal communication with cyclic shift keying over underwater acoustic channels
CN112398774A (zh) 一种基于正交时频拓展的扩频通信方法
CN100474798C (zh) 一种用于远程水声通信中的M-ary扩频通信方法
CN108377158A (zh) 一种实现扩频信号的多频段分割和聚合方法
CN109495128B (zh) 一种基于混沌序列的5g多载波扩频水声通信方法
CN111478720B (zh) 一种基于交叉子带划分的多带双曲调频扩频通信方法
Sun et al. Novel pseudorandom phase generation in transform domain communication systems
CA2583842A1 (en) Spectrally shaped generalized multitone direct sequence spread spectrum modulation
Zhang et al. Experimental demonstration of spread spectrum communication over long range multipath channels
He et al. M-ary CDMA multiuser underwater acoustic communication and its experimental results
He et al. Multiuser underwater acoustic communication using cyclic shift keying
Qi et al. Orthogonal Signal Division Multiple Access for Multiuser Underwater Acoustic Networks
Shi et al. Towards robust high speed underwater acoustic communications using chirp multiplexing
CN112994833A (zh) 基于wfrft的透明转发器用户协作物理层安全传输方法
Zhang et al. Cyclic-feature based Doppler scale estimation for orthogonal frequency-division multiplexing (OFDM) signals over doubly selective underwater acoustic channels
CN110752861A (zh) 采用rake接收技术的水声混沌扩频通信系统及方法
CN113824468B (zh) 一种基于激活载波标号调制的Chirp扩频人体通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018452060

Country of ref document: AU

Date of ref document: 20181205

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942029

Country of ref document: EP

Kind code of ref document: A1