CN111477729B - 带有五阶梯型量子阱和v型电子阻挡层结构的发光二极管 - Google Patents

带有五阶梯型量子阱和v型电子阻挡层结构的发光二极管 Download PDF

Info

Publication number
CN111477729B
CN111477729B CN202010480168.2A CN202010480168A CN111477729B CN 111477729 B CN111477729 B CN 111477729B CN 202010480168 A CN202010480168 A CN 202010480168A CN 111477729 B CN111477729 B CN 111477729B
Authority
CN
China
Prior art keywords
layer
quantum well
thick
emitting diode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010480168.2A
Other languages
English (en)
Other versions
CN111477729A (zh
Inventor
赵志斌
曲轶
谢琼涛
乔忠良
李林
李再金
刘国军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN202010480168.2A priority Critical patent/CN111477729B/zh
Publication of CN111477729A publication Critical patent/CN111477729A/zh
Application granted granted Critical
Publication of CN111477729B publication Critical patent/CN111477729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,包括蓝宝石衬底,蓝宝石衬底顶端自下而上依次生长有n‑Al0.6Ga0.4N层、多量子阱有源区、p‑AlxGa0.18N电子阻挡层、p‑Al0.6Ga0.4N层、p‑GaN欧姆接触层,p‑AlxGa0.18N电子阻挡层为V型电子阻挡层,V型电子阻挡层平均分为两层,下层Al组分x自下而上由0.82渐变到0.57,上层Al组分x自下而上由0.57渐变到0.82。本发明通过五阶梯型量子阱和V型电子阻挡层结构的同时作用,提高了发光二极管的辐射复合效率。

Description

带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管
技术领域
本发明属于发光二极管技术领域,更具体的说是涉及一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管。
背景技术
目前,AlGaN基深紫外LED领域迅速发展,深紫外LED在许多方面都展现出了其十分重要的技术应用价值。然而,由于AlGaN基深紫外LED具有极强的极化电场,导致能带弯曲,这种能带弯曲会导致电子和空穴波函数重叠率变低;导致减少电子阻挡层对电子的限制和对空穴造成一定的阻挡势垒,阻碍空穴向有源区中的注入,使得LED的辐射辐合效率降低。
因此,如何提供一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,通过五阶梯型量子阱和V型电子阻挡层结构的同时作用,提高了发光二极管的辐射复合效率。
为了实现上述目的,本发明采用如下技术方案:
一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,包括:蓝宝石衬底,所述蓝宝石衬底顶端自下而上依次生长有n-Al0.6Ga0.4N层、多量子阱有源区、p-AlxGa0.18N电子阻挡层、p-Al0.6Ga0.4N层、p-GaN欧姆接触层,所述p-AlxGa0.18N电子阻挡层为V型电子阻挡层,V型电子阻挡层平均分为两层,下层Al组分x自下而上由0.82渐变到0.57,上层Al组分x自下而上由0.57渐变到0.82。
优选的,所述多量子阱有源区包括5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱,5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱分别被6个10nm厚的Al0.6Ga0.4N量子垒隔开。
优选的,Al0.5Ga0.5N五阶梯型量子阱包括自下而上依次设置的0.3nm厚的Al0.55Ga0.45N、0.4nm厚的Al0.5Ga0.5N、0.6nm厚的Al0.45Ga0.55N、0.4nm厚的Al0.5Ga0.5N、0.3nm厚的Al0.55Ga0.45N。
优选的,所述n-Al0.6Ga0.4N层的厚度为3μm,n型掺杂浓度为5×1018cm-3
优选的,所述p-AlxGa0.18N电子阻挡层的厚度为20nm,p型掺杂浓度为1×1019cm-3
优选的,所述p-Al0.6Ga0.4N层的厚度为20nm,p型掺杂浓度为2×1019cm-3
优选的,所述p-GaN欧姆接触层的厚度为100nm,p型掺杂浓度为2×1019cm-3
优选的,V型电子阻挡层的下层Al与上层Al的组分x的变化均为线性变化。
一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管的制备方法,包括如下步骤:
(1)选取蓝宝石衬底,在氢气气氛、温度为1000-1200℃下在蓝宝石衬底上生长一层厚度3μm的n-Al0.6Ga0.4N层;
(2)在氮气气氛、温度为800-1000℃下,在n-Al0.6Ga0.4N层上生长多量子阱有源区;
(3)在氮气气氛、温度为1000-1200℃下,在多量子阱有源区上生长一层p-AlxGa0.18N电子阻挡层,p-AlxGa0.18N电子阻挡层平均分为两层,下层Al组分x自下而上由0.82渐变到0.57,上层Al组分x自下而上由0.57渐变到0.82;
(4)在氢气气氛且温度为800-1000℃下在p-AlxGa0.18N电子阻挡层上生长20nm厚的p-Al0.6Ga0.4N层,p-Al0.6Ga0.4N层上生长100nm厚的p-GaN欧姆接触层。
优选的,多量子阱有源区所述多量子阱有源区包括5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱,5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱分别被6个10nm厚的Al0.6Ga0.4N量子垒隔开。
本发明的有益效果在于:
本发明采用了五阶梯型量子阱改善了由极化效应导致能带弯曲,提高了电子和空穴波函数重叠率;V型电子阻挡层改善了由极化效应导致的最上层一个Al0.6Ga0.4N量子垒或p-AlxGa0.18N电子阻挡层界面之前的能带弯曲,增强电子的限制作用、减弱空穴的阻挡。五阶梯型量子阱和V型电子阻挡层结构同时作用提高了发光二极管的辐射复合效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明的结构示意图。
图2附图为本发明多量子阱有源区的结构示意图。
图3附图为本发明五阶梯型量子阱的原理图。
图4附图为本发明p-AlxGa0.18N电子阻挡层的原理图。
其中,图中,
1、蓝宝石衬底;2、n-Al0.6Ga0.4N层;3、多量子阱有源区;4、p-AlxGa0.18N电子阻挡层;5、p-Al0.6Ga0.4N层;6、p-GaN欧姆接触层;7、Al0.5Ga0.5N五阶梯型量子阱;8、Al0.6Ga0.4N量子垒;9、P面电极;10、N面电极。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
请参阅附图1-4,本发明提供了一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,包括:蓝宝石衬底1,蓝宝石衬底1顶端自下而上依次生长有n-Al0.6Ga0.4N层2、多量子阱有源区3、p-AlxGa0.18N电子阻挡层4、p-Al0.6Ga0.4N层5、p-GaN欧姆接触层6,p-AlxGa0.18N电子阻挡层4为V型电子阻挡层,V型电子阻挡层平均分为两层,下层Al组分x自下而上由0.82渐变到0.57,上层Al组分x自下而上由0.57渐变到0.82。p-GaN欧姆接触层6顶端连接有有P面电极9,n-Al0.6Ga0.4N层2连接有N面电极10。
多量子阱有源区3包括5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱7,5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱7分别被6个10nm厚的Al0.6Ga0.4N量子垒8隔开。
其中,Al0.5Ga0.5N五阶梯型量子阱7包括自下而上依次设置的0.3nm厚的Al0.55Ga0.45N、0.4nm厚的Al0.5Ga0.5N、0.6nm厚的Al0.45Ga0.55N、0.4nm厚的Al0.5Ga0.5N、0.3nm厚的Al0.55Ga0.45N。
为了进一步优化上述技术方案,n-Al0.6Ga0.4N层2的厚度为3μm,n型掺杂浓度为5×1018cm-3
为了进一步优化上述技术方案,p-AlxGa0.18N电子阻挡层4的厚度为20nm,p型掺杂浓度为1×1019cm-3
为了进一步优化上述技术方案,p-Al0.6Ga0.4N层5的厚度为20nm,p型掺杂浓度为2×1019cm-3
为了进一步优化上述技术方案,p-GaN欧姆接触层6的厚度为100nm,p型掺杂浓度为2×1019cm-3
为了进一步优化上述技术方案,V型电子阻挡层的下层Al与上层Al的组分x的变化均为线性变化。
实施例2
本发明还提供了一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管的制备方法,采用金属有机化学气相沉积(MOCVD)的方法,包括如下步骤:
(1)选取蓝宝石衬底1,在氢气气氛、温度为1000-1200℃下在蓝宝石衬底1上生长一层厚度3μm的n-Al0.6Ga0.4N层2,掺杂物为Si,浓度为5×1018cm-3
(2)在氮气气氛、温度为800-1000℃下,在n-Al0.6Ga0.4N层2上生长多量子阱有源区3;其中,多量子阱有源区3多量子阱有源区3包括5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱7,Al0.5Ga0.5N五阶梯型量子阱7生长5个周期,5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱7分别被6个10nm厚的Al0.6Ga0.4N量子垒8隔开。
(3)在氮气气氛、温度为1000-1200℃下,在多量子阱有源区3上生长一层p-AlxGa0.18N电子阻挡层4,p-AlxGa0.18N电子阻挡层4平均分为两层,下层Al组分x自下而上由0.82渐变到0.57,上层Al组分x自下而上由0.57渐变到0.82。p-AlxGa0.18N电子阻挡层4掺杂物为Mg,浓度为1×1019cm-3
(4)在氢气气氛且温度为800-1000℃下在p-AlxGa0.18N电子阻挡层4上生长20nm厚的p-Al0.6Ga0.4N层5,p-Al0.6Ga0.4N层5上生长100nm厚的p-GaN欧姆接触层6。p-Al0.6Ga0.4N层5掺杂物为Mg,浓度为2×1019cm-3;p-GaN欧姆接触层6掺杂物为Mg,浓度为2×1019cm-3
本发明采用了五阶梯型量子阱改善了由极化效应导致能带弯曲,提高了电子和空穴波函数重叠率;V型电子阻挡层改善了由极化效应导致的最上层一个Al0.6Ga0.4N量子垒8或p-AlxGa0.18N电子阻挡层4界面之前的能带弯曲,增强电子的限制作用、减弱空穴的阻挡。五阶梯型量子阱和V型电子阻挡层结构同时作用提高了发光二极管的辐射复合效率。本发明为AlGaN基280nmLED器件结构,能够发射波长为280nm深紫外LED,可用于杀菌消毒、生化探测、安全通讯,紫外固化、白光固态照明,能源以及军事探测等领域。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,其特征在于,包括:蓝宝石衬底,所述蓝宝石衬底顶端自下而上依次生长有n-Al0.6Ga0.4N层、多量子阱有源区、p-AlxGa0.18N电子阻挡层、p-Al0.6Ga0.4N层、p-GaN欧姆接触层,所述p-AlxGa0.18N电子阻挡层为V型电子阻挡层,V型电子阻挡层平均分为两层,下层Al组分x自下而上由0.82渐变到0.57,上层Al组分x自下而上由0.57渐变到0.82;
所述多量子阱有源区包括5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱,5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱分别被6个10nm厚的Al0.6Ga0.4N量子垒隔开;
Al0.5Ga0.5N五阶梯型量子阱包括自下而上依次设置的0.3nm厚的Al0.55Ga0.45N、0.4nm厚的Al0.5Ga0.5N、0.6nm厚的Al0.45Ga0.55N、0.4nm厚的Al0.5Ga0.5N、0.3nm厚的Al0.55Ga0.45N。
2.根据权利要求1所述的一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,其特征在于,所述n-Al0.6Ga0.4N层的厚度为3μm,n型掺杂浓度为5×1018cm-3
3.根据权利要求1所述的一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,其特征在于,所述p-AlxGa0.18N电子阻挡层的厚度为20nm,p型掺杂浓度为1×1019cm-3
4.根据权利要求1所述的一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,其特征在于,所述p-Al0.6Ga0.4N层的厚度为20nm,p型掺杂浓度为2×1019cm-3
5.根据权利要求1所述的一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,其特征在于,所述p-GaN欧姆接触层的厚度为100nm,p型掺杂浓度为2×1019cm-3
6.根据权利要求1所述的一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管,其特征在于,V型电子阻挡层的下层Al与上层Al的组分x的变化均为线性变化。
7.一种带有五阶梯型量子阱和V型电子阻挡层结构的发光二极管的制备方法,其特征在于,包括如下步骤:
(1)选取蓝宝石衬底,在氢气气氛、温度为1000-1200℃下在蓝宝石衬底上生长一层厚度3μm的n-Al0.6Ga0.4N层;
(2)在氮气气氛、温度为800-1000℃下,在n-Al0.6Ga0.4N层上生长多量子阱有源区;
(3)在氮气气氛、温度为1000-1200℃下,在多量子阱有源区上生长一层p-AlxGa0.18N电子阻挡层,p-AlxGa0.18N电子阻挡层平均分为两层,下层Al组分x自下而上由0.82渐变到0.57,上层Al组分x自下而上由0.57渐变到0.82;
(4)在氢气气氛且温度为800-1000℃下在p-AlxGa0.18N电子阻挡层上生长20nm厚的p-Al0.6Ga0.4N层,p-Al0.6Ga0.4N层上生长100nm厚的p-GaN欧姆接触层;
所述多量子阱有源区包括5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱,5个2nm厚的Al0.5Ga0.5N五阶梯型量子阱分别被6个10nm厚的Al0.6Ga0.4N量子垒隔开;
Al0.5Ga0.5N五阶梯型量子阱包括自下而上依次设置的0.3nm厚的Al0.55Ga0.45N、0.4nm厚的Al0.5Ga0.5N、0.6nm厚的Al0.45Ga0.55N、0.4nm厚的Al0.5Ga0.5N、0.3nm厚的Al0.55Ga0.45N。
CN202010480168.2A 2020-05-30 2020-05-30 带有五阶梯型量子阱和v型电子阻挡层结构的发光二极管 Active CN111477729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010480168.2A CN111477729B (zh) 2020-05-30 2020-05-30 带有五阶梯型量子阱和v型电子阻挡层结构的发光二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010480168.2A CN111477729B (zh) 2020-05-30 2020-05-30 带有五阶梯型量子阱和v型电子阻挡层结构的发光二极管

Publications (2)

Publication Number Publication Date
CN111477729A CN111477729A (zh) 2020-07-31
CN111477729B true CN111477729B (zh) 2023-03-14

Family

ID=71765540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010480168.2A Active CN111477729B (zh) 2020-05-30 2020-05-30 带有五阶梯型量子阱和v型电子阻挡层结构的发光二极管

Country Status (1)

Country Link
CN (1) CN111477729B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382710A (zh) * 2020-10-30 2021-02-19 苏州紫灿科技有限公司 一种具有阶梯型电子阻挡层结构的深紫外led及制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820394B (zh) * 2011-06-07 2015-04-01 山东华光光电子有限公司 一种采用铝组分渐变电子阻挡层的led结构
CN102569571B (zh) * 2012-03-06 2015-06-24 华灿光电股份有限公司 半导体发光二极管及其制造方法
CN103985798B (zh) * 2014-05-16 2018-11-30 广东德力光电有限公司 一种具有新型量子阱结构的led及其制作方法
CN104201263A (zh) * 2014-09-15 2014-12-10 圆融光电科技有限公司 发光二极管外延及发光二极管电子阻挡层的生长方法
CN104810447A (zh) * 2015-03-13 2015-07-29 西安神光皓瑞光电科技有限公司 一种GaN基LED的电子阻挡层结构及其外延生长方法
DE102016117477A1 (de) * 2016-09-16 2018-03-22 Osram Opto Semiconductors Gmbh Halbleiterschichtenfolge
CN106992233A (zh) * 2017-04-13 2017-07-28 聚灿光电科技股份有限公司 反极性紫外led外延结构及其制备方法
CN108649109A (zh) * 2018-05-22 2018-10-12 华灿光电(浙江)有限公司 一种发光二极管外延片及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Min Zhang等.Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells.2014,第63-71页. *

Also Published As

Publication number Publication date
CN111477729A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
JP5229566B2 (ja) 窒化物半導体発光素子
US20060118821A1 (en) Light-emitting semiconductor device using group III nitrogen compound
US9373750B2 (en) Group III nitride semiconductor light-emitting device
KR101646255B1 (ko) 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법
JP4892618B2 (ja) 半導体発光素子
JP5836338B2 (ja) 窒化物半導体構造及び半導体発光デバイス
CN109950371B (zh) 紫外led外延结构及其制备方法
US20230207728A1 (en) Light-emitting diode
US20210313489A1 (en) Optoelectronic device having a boron nitride alloy electron blocking layer and method of production
CN113540305A (zh) 提高发光效率的紫外发光二极管芯片及其制备方法
CN103972340A (zh) 氮化物半导体结构及半导体发光元件
CN111477729B (zh) 带有五阶梯型量子阱和v型电子阻挡层结构的发光二极管
CN111477730B (zh) 带有五阶梯型量子阱和倒v型电子阻挡层的发光二极管
KR101170674B1 (ko) 불소 계열 물질이 도핑된 투명 전극층을 구비하는 반도체 발광 소자 및 그 제조 방법
CN107833956B (zh) 氮化物半导体结构及半导体发光元件
EP0675552B1 (en) Light emitting semiconductor device using group III nitrogen compound
US10403794B2 (en) Semiconductor device
EP2009707B1 (en) Light emitting diode and method for manufacturing the same
CN111477731B (zh) 带有五阶梯型量子阱和三角形电子阻挡层的发光二极管
US20230231073A1 (en) LIGHT-EMITTING DIODE COMPRISING A SEMICONDUCTOR BASED ON AlN P-DOPED WITH MAGNESIUM ATOMS AND A LAYER OF DOPED DIAMOND
CN107316924B (zh) 氮化物半导体结构及半导体发光元件
US20230178685A1 (en) Light-emitting device
CN116995160B (zh) 一种AlGaN基深紫外发光二极管
CN114038959B (zh) 外延结构及其制作方法、led器件
CN117352611A (zh) 深紫外发光二极管及其外延生长方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant