CN111477472A - 自充电超级电容器 - Google Patents

自充电超级电容器 Download PDF

Info

Publication number
CN111477472A
CN111477472A CN201910065369.3A CN201910065369A CN111477472A CN 111477472 A CN111477472 A CN 111477472A CN 201910065369 A CN201910065369 A CN 201910065369A CN 111477472 A CN111477472 A CN 111477472A
Authority
CN
China
Prior art keywords
electrode
capacitor
metal
self
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910065369.3A
Other languages
English (en)
Other versions
CN111477472B (zh
Inventor
罗志灵
刘长洪
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201910065369.3A priority Critical patent/CN111477472B/zh
Priority to TW108103651A priority patent/TWI690959B/zh
Priority to US16/738,186 priority patent/US11024467B2/en
Publication of CN111477472A publication Critical patent/CN111477472A/zh
Application granted granted Critical
Publication of CN111477472B publication Critical patent/CN111477472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G17/00Structural combinations of capacitors or other devices covered by at least two different main groups of this subclass with other electric elements, not covered by this subclass, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供一种自充电超级电容器,包括:电容器第一电极、电容器第二电极、第一电解液以及金属电极;所述电容器第一电极与所述电容器第二电极间隔且相对设置,所述电容器第一电极、所述电容器第二电极以及所述第一电解液共同形成一超级电容器;所述金属电极一部分与所述电容器第二电极的远离所述电容器第一电极的表面欧姆接触,所述金属电极另一部分与所述电容器第一电极间隔且相对设置,所述金属电极与所述电容器第一电极能够形成一金属‑空气电池。

Description

自充电超级电容器
技术领域
本发明涉及一种超级电容器。
背景技术
超级电容器是通过电极与电解质之间形成的界面双层来存储能量的电学元器件,既具有电容器快速充放电的特性,同时又具有电池的储能特性。但现有的超级电容器通常只是存储能量并不能自发产生能量,即现有的超级电容器不能实现既产生能量又能够将产生的能量存储。
发明内容
有鉴于此,确有必要提供一种既能够生产能量又能够储存能量的超级电容器。
一种自充电超级电容器,包括:电容器第一电极、电容器第二电极、第一电解液以及金属电极;所述电容器第一电极与所述电容器第二电极间隔且相对设置,所述电容器第一电极、所述电容器第二电极以及所述第一电解液共同形成一超级电容器;所述金属电极一部分与所述电容器第二电极的远离所述电容器第一电极的表面欧姆接触,所述金属电极另一部分与所述电容器第一电极间隔且相对设置,所述金属电极与所述电容器第一电极能够形成一金属-空气电池。
相较于现有技术,本发明提供的自充电超级电容器可以利用人体产生的汗液实现自供能,可以作为可穿戴电子产品的能量供给器件。
附图说明
图1为本发明第一实施例提供的自充电超级电容器结构示意图。
图2为本发明第一实施例提供的自充电超级电容器分别处于正常状态与弯曲状态时的照片。
图3为本发明第一实施例中金属电极与电容器第二电极接触部位的电流-电压曲线。
图4为本发明第一实施例提供的自充电超级电容器充电方法流程图。
图5为本发明第一实施例提供的自充电超级电容器功能单元示意图。
图6为本发明第一实施例提供的自充电超级电容器自充电模式与非自充电模式示意图。
图7为本发明第一实施例提供的带有通孔的自充电超级电容器结构示意图。
图8为本发明第一实施例提供的自充电超级电容器输出电压曲线图。
图9为本发明第二实施例提供的自充电超级电容器结构示意图。
图10为本发明实施例提供的多个自充电超级电容器连接示意图。
主要元件符号说明
自充电超级电容器 10a,10b
超级电容器区块 100
电容器第一电极 110
第一部分 111
第二部分 113
电容器第二电极 120
第三部分 121
第四部分 123
第一电解液 130
绝缘层 140
金属-空气电池区块 200
金属电极 210a,210b
隔膜 220
第二电解液 230
通孔 240
具体实施方式
下面将结合附图及具体实施例对本发明作进一步的详细说明。
本发明提供一种自充电超级电容器,包括电容器第一电极、电容器第二电极、第一电解液以及金属电极。
所述电容器第一电极与所述电容器第二电极间隔且相对设置,并且与所述第一电解液共同构成一超级电容器。该超级电容器优选为对称型超级电容器(symmetricsupercapacitor),此时电容器第一电极与电容器第二电极的材料相同,例如均采用聚苯胺/碳纳米管复合材料电极。
所述金属电极与所述电容器第二电极欧姆接触。具体地,可以通过在金属电极与电容器第二电极的接触面涂布导电胶黏剂、在电容器第二电极表面沉积金属等方式实现金属电极与电容器第二电极的欧姆接触。
所述金属电极与所述电容器第一电极间隔且相对设置。所述间隔设置可以通过在金属电极与电容器第一电极之间设置一隔膜实现。所述金属电极可以与所述电容器第一电极一同形成一金属-空气电池(metal-air cell)。
实施例1
请参阅图1,本发明第一实施例提供一种自充电超级电容器10a,包括电容器第一电极110、电容器第二电极120、第一电解液130以及金属电极210a。
所述电容器第一电极110与所述电容器第二电极120平行、间隔且相对设置,所述电容器第一电极110、电容器第二电极120以及第一电解液130共同形成一超级电容器。所述金属电极210a与所述电容器第二电极120欧姆接触,与所述电容器第一电极110间隔且相对设置,所述金属电极210a与所述电容器第一电极110分别为金属-空气电池的负极与正极。
所述电容器第一电极110与电容器第二电极120的材料可以为现有的各种超级电容器电极材料。本实施例中,电容器第一电极110与电容器第二电极120的材料均为聚苯胺/碳纳米管复合材料。所述碳纳米管/聚苯胺复合材料包括碳纳米管网状结构及导电聚合物聚苯胺。所述碳纳米管网状结构由多个碳纳米管相互连接形成。相邻的碳纳米管之间通过范德华力相互连接。所述碳纳米管/聚苯胺复合材料中,碳纳米管网状结构作为骨架,所述聚苯胺层包覆在所述碳纳米管网状结构中的碳纳米管的表面,即,所述碳纳米管网状结构可支撑该聚苯胺层,使得该聚苯胺层可分布在碳纳米管的表面。在本实施例中,所述聚苯胺层均匀地分布在所述碳纳米管网状结构的全部表面,即,所述碳纳米管网状结构中每个碳纳米管的表面都均匀分布有聚苯胺层。此外,所述碳纳米管网状结构具有多个微孔。这些微孔是由多个碳纳米管所围成,且每一个微孔的内表面均设置有上聚苯胺层。所述微孔的尺寸范围为60nm~400nm。由于多个微孔的存在,使得所述电容器第一电极110及电容器第二电极120具有较小的密度,从而重量较轻。请参见图2,由于所述电容器第一电极110及电容器第二电极120均是由碳纳米管和聚苯胺组成的复合材料,该电容器第一电极110及电容器第二电极120具有非常好的柔性,可以任意弯曲。
所述电容器第一电极110与电容器第二电极120的尺寸可以基本相同。通常电容器第一电极110与电容器第二电极120的长度可以为20mm~90mm,宽度可以为5mm~20mm,厚度可以为50μm~200μm。本实施例中,电容器第一电极110与电容器第二电极120均为矩形电极片,长度约为45mm,宽度约为10mm,厚度约为100μm。
所述电容器第一电极110包含两个相对的表面,本实施例中将其中与电容器第二电极120相对的表面定义为第一电极内表面,将远离电容器第二电极120的表面定义为第一电极外表面。同样地,电容器第二电极120也包含两个相对的表面,将其中与电容器第一电极110相对的表面定义为第二电极内表面,将远离电容器电容器第一电极110的表面定义为第二电极外表面。
所述电容器第一电极110可以进一步划分为相互间隔的两个部分:第一部分111及第二部分113。类似地,所述电容器第二电极120也可以进一步划分为相互间隔的两个部分:第三部分121及第四部分123。
在上述四个部分中,所述第一部分111与第三部分121间隔且相对设置形成一第一空隙,所述第一部分111与第三部分121的尺寸可以基本相同,且所述第一部分111与第三部分121之间填充有第一电解液130。该第一电解液130可以为各种适用于超级电容器系统的电解液,如聚乙烯醇/硫酸(PVA/H2SO4)凝胶电解液。所述第一部分111、第三部分121以及第一电解液130共同形成一超级电容器100。
在上述四个部分中,所述第二部分113与所述第四部分123间隔且相对设置,所述第二部分113与第四部分123的尺寸可以基本相同。所述第四部分123靠近第二部分113的表面(即第四部分123内表面)设置有金属电极210a。所述金属电极210a的材料可选用镁、铝、锌、汞、铁等金属空气电池负极材料。所述金属电极210a的长度与宽度可与第四部分123基本相同,所述金属电极210a的厚度可以为25μm~100μm。本实施例中,所述金属电极210a选用的是一片厚度约50μm的铝箔。
所述金属电极210a与第四部分123内表面之间欧姆接触。所述欧姆接触可以通过在所述金属电极210a与第四部分123之间涂布导电胶黏剂的方式实现。所述导电胶黏剂可以选用导电银胶(silver paste)。请参阅图3,通过导电银胶紧密接触的金属电极210a与电容器第二电极120之间电流-电压曲线接近一直线,表明两者之间的接触可以视为欧姆接触。
所述金属电极210a与电容器第一电极110间隔且相对设置。所述间隔设置可以通过在金属电极210a与第二部分113之间设置一隔膜220实现,该隔膜220的长度与宽度应至少与所述第二部分113相同。所述隔膜220可以阻止金属电极210a与电容器第一电极110直接接触,但可以允许电解质离子通过。隔膜220可以为现有的各种适用于电池系统的隔膜。本实施例中,所述隔膜220选用定性滤纸,且设置于第二部分113的内表面。
本实施例中,所述电容器第一电极110在自身长度方向依次划分为三个等宽的矩形子部分,即所述第一部分111、所述第一部分111与第二部分113之间的第一间隔部分112、以及第二部分113,其中,所述第一部分111的尺寸约为23mm×10mm,所述第一间隔部分112的尺寸约为10mm×10mm,所述第二部分113的尺寸约为12mm×10mm;同样地,所述电容器第二电极120在自身长度方向依次划分为三个等宽的矩形子部分,即第三部分121、所述第三部分121与第四部分123之间的第二间隔部分122、以及第四部分123,其中,所述第三部分121的尺寸约为23mm×10mm,所述第二间隔部分122的尺寸约为12mm×10mm,所述第四部分123的尺寸约为10mm×10mm。其中,所述第一间隔部分112与第二间隔部分122的内表面均设置有绝缘层140,以避免电容器第一电极110与电容器第二电极120直接接触。本实施例中所述绝缘层140分为两部分,分别设置于所述第一间隔部分112的内表面与所述第二间隔部分122的内表面。可以理解,所述绝缘层140也可以为一体结构,设置于所述第一间隔部分112与所述第二间隔部分122之间的空隙,防止所述第一间隔部分112与所述第二间隔部分122直接接触。所述绝缘层140也可以仅设置于第一间隔部分112的内表面或仅设置于第二间隔部分122的内表面。在上述不同设置方式中,所述绝缘层140可以与所述第一间隔部分112的内表面、所述第二间隔部分122的内表面接触,也可也不与所述第一间隔部分112的内表面、所述第二间隔部分122的内表面接触。
请参见图4,本实施例进一步提供一种对所述自充电超级电容器10a进行自充电的方法,包括以下步骤:
S1,提供一自充电超级电容器10a,该自充电超级电容器10a包括电容器第一电极110、电容器第二电极120、第一电解液130以及金属电极210a;所述电容器第一电极110与所述电容器第二电极120间隔且相对设置,所述电容器第一电极110、所述电容器第二电极120以及所述第一电解液130共同形成一超级电容器;所述金属电极210a与所述电容器第二电极120欧姆接触;所述金属电极210a与所述电容器第一电极110间隔且相对设置;以及
S2,将所述金属电极210a与所述电容器第一电极110通过一第二电解液230导通。
请参见图5,本发明实施例提供的自充电超级电容器10a可以根据功能进一步分为超级电容器区块100与金属-空气电池区块200。超级电容器区块100包括:电容器第一电极110、电容器第二电极120、第一电解液130。金属-空气电池区块200包括电容器第一电极110、金属电极210a、隔膜220。其中,电容器第一电极110既是超级电容器的电极,也是金属-空气电池的正极。
请参见图6,当金属电极210a与电容器第一电极110之间存在第二电解液230且被该第二电解液230导通时,所述金属-空气电池区块200处于工作状态,输出电能,该金属-空气电池区块200向超级电容器区块100充电,此时该自充电超级电容器10a处于自充电模式。当金属电极210a与电容器第一电极110之间不存在第二电解液230或不能被第二电解液230导通时,所述金属-空气电池区块200处于非工作状态,不输出电能,该金属-空气电池区块200不向超级电容器区块100充电,此时该自充电超级电容器10a处于非自充电模式。
可见,可以通过第二电解液230控制自充电超级电容器10a处于自充电模式或非自充电模式。具体地,可以通过接触或按压等方式将承载物,如手指、棉签,上携带的第二电解液230,如汗液、NaCl溶液,施加到金属电极210a与电容器第一电极110之间。本实施例中,采用以下两种方式在金属电极210a与电容器第一电极110之间施加第二电解液230:
1)用带汗液的手指接触或按压金属-空气电池区块200,使金属电极210a与电容器第一电极110通过手指上的汗液导通;
2)用沾有NaCl溶液的棉签接触或按压金属-空气电池区块200,使金属电极210a与电容器第一电极110通过棉签上的NaCl溶液导通。
携带有第二电解液230的承载物可以接触或按压金属-空气电池区块200的第三部分113、第四部分123、隔膜220等部位。承载物与金属-空气电池区块200的相互接触可以使承载物所携带的第二电解液230转移到金属-空气电池区块200,上述转移到金属-空气电池区块200的第二电解液230可以进一步填充到金属电极210a与电容器第一电极110之间,以使金属电极210a与电容器第一电极110导通。
金属电极210a与电容器第一电极110之间的空隙越小,金属电极210a与电容器第一电极110越容易被第二电解液230导通。本实施例中,金属电极210a与电容器第一电极110之间的空隙可以为0~100μm。利用携带有第二电解液230的承载物按压金属-空气电池区块200可以进一步减小金属电极210a与电容器第一电极110之间的空隙。具体地按压方式可以为:1)压力作用在第三部分113的外表面,压力的方向由第三部分113指向第四部分123;2)压力作用在隔膜220,压力的方向由隔膜220指向第四部分123;3)压力作用在第四部分123的外表面,压力的方向由第四部分123指向第三部分113。
进一步地,隔膜220的尺寸可以略大于电容器第一电极110的尺寸。请参见图2,图中箭头所示的白色区域即为没有完全被电容器第一电极110遮挡的隔膜220。沾有NaCl溶液的棉签可以直接接触或按压图2中的白色隔膜220,以使棉签所携带的NaCl溶液迅速通过隔膜220填满金属电极210a与电容器第一电极110之间使所述金属电极210a与所述第三部分113导通。
进一步地,所述第三部分113、第四部分123、金属电极210a上可以开有通孔或通槽。请参见图7,第三部分113、第四部分123、金属电极210a上设置有通孔240,第二电解液230可以通过所述通孔240流入金属电极210a与电容器第一电极110之间的空隙。
可以理解,第二电解液230并非必须通过承载物(如手指、棉签)填充到金属电极210a与电容器第一电极110之间的空隙。例如,该自充电超级电容器10a作为可穿戴电子产品的电源时,可以将该自充电超级电容器10a贴近皮肤表面设置,运动产生的汗液将逐渐浸入金属电极210a与电容器第一电极110之间的空隙直至使金属电极210a与电容器第一电极110导通。所述隔膜220可以超出电容器第一电极110、金属电极210a,且容易被汗液浸湿。
请参见图7,曲线1中第二电解液230为1M NaCl溶液,用沾有1M NaCl溶液的棉签按压隔膜220后,自充电超级电容器10a的电压在14s内由0V迅速下降到-0.50V,并且在第290s进一步下降到-0.69V,储存在自充电超级电容器10a的能量达到25.6mJ/cm2,并且其能量密度为71.4%。曲线2中第二电解液230为0.085M NaCl溶液(人体汗液的主要成分),用沾有0.085M M NaCl溶液的棉签按压隔膜220后,在第556s自充电超级电容器10a的电压下降到-0.60V。
本实施例提供的自充电超级电容器10a可以作为可穿戴电子产品的能量供给器件。人体产生的汗液进入到金属电极210a与电容器第一电极110之间的空隙,与金属电极210a、电容器第一电极110共同形成一金属-空气电池,该金属-空气电池可以向自充电超级电容器10a充电。即利用人体产生的汗液实现自供能。
实施例2
请参阅图8,本发明第二实施例提供一种自充电超级电容器10b,包括电容器第一电极110、电容器第二电极120、第一电解液130以及金属电极210b。
本实施例的自充电超级电容器10b与第一实施例所提供的自充电超级电容器10a区别在于,所述第一实施例中金属电极210a与电容器第二电极120的内表面之间欧姆接触,而本实施例中,所述金属电极210b的一部分与电容器第二电极120的外表面欧姆接触,所述金属电极210b的另一部分与电容器第一电极110相对设置作为金属-空气电池的负极。
所述金属电极210b的材料可选用镁、铝、锌、汞、铁等金属空气电池负极材料,本实施例中金属电极210b选用的是一片厚度约50μm的铝箔。当没有外力按压时,金属电极210b可以保持自支撑状态,当有外力按压时,金属电极可以向电容器第一电极110侧弯曲。
多个自充电超级电容器10a可以通过串联或并联形成一自充电超级电容器组。请参见图10,三个自充电超级电容器10a的通过串联的方式形成自充电超级电容器组,该自充电超级电容器组的电压可达到1.5V以上,可以直接驱动发光二极管(LED)。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

1.一种自充电超级电容器,其特征在于,包括:电容器第一电极、电容器第二电极、第一电解液以及金属电极;
所述电容器第一电极与所述电容器第二电极间隔且相对设置,所述电容器第一电极、所述电容器第二电极以及所述第一电解液共同形成一超级电容器;
所述金属电极一部分与所述电容器第二电极的远离所述电容器第一电极的表面欧姆接触,所述金属电极另一部分与所述电容器第一电极间隔且相对设置,所述金属电极与所述电容器第一电极能够形成一金属-空气电池。
2.如权利要求1所述的自充电超级电容器,其特征在于,所述金属电极与所述电容器第一电极之间填充有第二电解液且被该第二电解液导通时,所述金属-空气电池处于工作状态;所述金属电极与所述电容器第一电极之间不导通时,所述金属-空气电池处于非工作状态
3.如权利要求2所述的自充电超级电容器,其特征在于,所述第二电解液为汗液。
4.如权利要求1所述的自充电超级电容器,其特征在于,所述金属电极与所述电容器第二电极通过导电胶黏剂实现欧姆接触。
5.如权利要求1所述的自充电超级电容器,其特征在于,所述自充电超级电容器进一步包括一隔膜设置于所述金属电极与所述电容器第一电极之间,所述隔膜用于阻止所述金属电极与所述电容器第一电极直接接触,允许电解质离子通过。
6.如权利要求5所述的自充电超级电容器,其特征在于,所述隔膜的尺寸大于电容器第一电极的尺寸。
7.如权利要求1所述的自充电超级电容器,其特征在于,所述第一电解液与所述金属电极间隔设置。
8.如权利要求1所述的自充电超级电容器,其特征在于,所述金属电极上设置有通孔或通槽,所述第二电解液能够通过所述通孔或通槽流入所述金属电极与所述电容器第一电极之间使所述金属电极与所述电容器第一电极导通。
9.如权利要求1所述的自充电超级电容器,其特征在于,所述电容器第一电极、所述电容器第二电极的材料均为聚苯胺/碳纳米管复合材料。
10.如权利要求1所述的自充电超级电容器,其特征在于,所述金属电极为厚度范围为25μm~100μm的铝箔。
CN201910065369.3A 2019-01-23 2019-01-23 自充电超级电容器 Active CN111477472B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910065369.3A CN111477472B (zh) 2019-01-23 2019-01-23 自充电超级电容器
TW108103651A TWI690959B (zh) 2019-01-23 2019-01-30 自充電超級電容器
US16/738,186 US11024467B2 (en) 2019-01-23 2020-01-09 Self-charging supercapacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910065369.3A CN111477472B (zh) 2019-01-23 2019-01-23 自充电超级电容器

Publications (2)

Publication Number Publication Date
CN111477472A true CN111477472A (zh) 2020-07-31
CN111477472B CN111477472B (zh) 2021-04-02

Family

ID=71134510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910065369.3A Active CN111477472B (zh) 2019-01-23 2019-01-23 自充电超级电容器

Country Status (3)

Country Link
US (1) US11024467B2 (zh)
CN (1) CN111477472B (zh)
TW (1) TWI690959B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382511A (zh) * 2020-10-14 2021-02-19 北京理工大学 一种自充电的微型光电容器装置及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127538B2 (en) 2017-02-20 2021-09-21 The Research Foundation For The State University Of New York Multi-cell multi-layer high voltage supercapacitor apparatus including graphene electrodes
CN111477466B (zh) * 2019-01-23 2021-04-02 清华大学 自充电超级电容器的充电方法
CN111477459B (zh) * 2019-01-23 2021-04-02 清华大学 自充电超级电容器
CN111952080B (zh) * 2019-05-17 2022-08-16 清华大学 可原位充电的储能装置
US11862396B1 (en) 2022-07-12 2024-01-02 King Fahd University Of Petroleum And Minerals Single junction supercapacitive solar cell for energy harvesting and energy storage and method of preparation thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121585A1 (en) * 2007-08-17 2009-05-14 Electronics And Telecommunications Research Institute Thin film type integrated energy harvest-storage device
CN203377111U (zh) * 2013-03-20 2014-01-01 纳米新能源(唐山)有限责任公司 自充电超级电容器
CN103779885A (zh) * 2013-09-26 2014-05-07 国家纳米科学中心 恒压自充电能量供给设备及其制造方法
CN104064361A (zh) * 2013-03-20 2014-09-24 纳米新能源(唐山)有限责任公司 自充电超级电容器
CN107947319A (zh) * 2017-10-31 2018-04-20 柔电(武汉)科技有限公司 一种自充电移动电源的制备方法
CN108539837A (zh) * 2018-04-04 2018-09-14 中国地质大学(武汉) 穿戴式石墨烯型驻极体自发电与超级电容一体化编织布
CN109031834A (zh) * 2018-07-23 2018-12-18 上海第二工业大学 一种自充电聚吡咯变色电池及其制备方法
CN109216753A (zh) * 2017-07-04 2019-01-15 北京纳米能源与系统研究所 固态锂离子电池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014988A (ko) * 2001-08-14 2003-02-20 한국전자통신연구원 하이브리드 전원소자 및 그 제조방법
DE102004035309A1 (de) 2004-07-21 2006-02-16 Pemeas Gmbh Membran-Elektrodeneinheiten und Brennstoffzellen mit erhöhter Lebensdauer
US9786444B2 (en) 2009-06-25 2017-10-10 Nokia Technologies Oy Nano-structured flexible electrodes, and energy storage devices using the same
JP4967034B2 (ja) * 2010-01-27 2012-07-04 株式会社日立製作所 グラフェン膜と金属電極とが電気的接合した回路装置
US8859143B2 (en) * 2011-01-03 2014-10-14 Nanotek Instruments, Inc. Partially and fully surface-enabled metal ion-exchanging energy storage devices
US9780291B2 (en) * 2011-09-13 2017-10-03 Georgia Tech Research Corporation Self-charging energy storage system
WO2016149919A1 (en) * 2015-03-25 2016-09-29 GM Global Technology Operations LLC Capacitor-battery hybrid formed by plasma powder electrode coating
US20160293954A1 (en) * 2015-03-30 2016-10-06 Aruna Zhamu Partially and fully surface-enabled transition metal ion-exchanging energy storage devices
TWM527147U (zh) * 2015-10-08 2016-08-11 冠亞智財股份有限公司 超級電容器結構
EP3555897B1 (en) * 2016-12-13 2024-09-25 Innocell Aps Electrochemical and capacitative energy storage device and method of manufacture
CN206640374U (zh) 2017-03-01 2017-11-14 潍坊歌尔电子有限公司 一种可穿戴设备
CN111477466B (zh) * 2019-01-23 2021-04-02 清华大学 自充电超级电容器的充电方法
CN111477459B (zh) * 2019-01-23 2021-04-02 清华大学 自充电超级电容器
CN111952080B (zh) * 2019-05-17 2022-08-16 清华大学 可原位充电的储能装置
CN111952079B (zh) * 2019-05-17 2022-04-22 清华大学 可持续充电的储能装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121585A1 (en) * 2007-08-17 2009-05-14 Electronics And Telecommunications Research Institute Thin film type integrated energy harvest-storage device
CN203377111U (zh) * 2013-03-20 2014-01-01 纳米新能源(唐山)有限责任公司 自充电超级电容器
CN104064361A (zh) * 2013-03-20 2014-09-24 纳米新能源(唐山)有限责任公司 自充电超级电容器
CN103779885A (zh) * 2013-09-26 2014-05-07 国家纳米科学中心 恒压自充电能量供给设备及其制造方法
CN109216753A (zh) * 2017-07-04 2019-01-15 北京纳米能源与系统研究所 固态锂离子电池
CN107947319A (zh) * 2017-10-31 2018-04-20 柔电(武汉)科技有限公司 一种自充电移动电源的制备方法
CN108539837A (zh) * 2018-04-04 2018-09-14 中国地质大学(武汉) 穿戴式石墨烯型驻极体自发电与超级电容一体化编织布
CN109031834A (zh) * 2018-07-23 2018-12-18 上海第二工业大学 一种自充电聚吡咯变色电池及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382511A (zh) * 2020-10-14 2021-02-19 北京理工大学 一种自充电的微型光电容器装置及其制备方法
CN112382511B (zh) * 2020-10-14 2021-08-13 北京理工大学 一种自充电的微型光电容器装置及其制备方法

Also Published As

Publication number Publication date
TW202029239A (zh) 2020-08-01
US11024467B2 (en) 2021-06-01
TWI690959B (zh) 2020-04-11
CN111477472B (zh) 2021-04-02
US20200234891A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
CN111477466B (zh) 自充电超级电容器的充电方法
CN111477472B (zh) 自充电超级电容器
CN111477459B (zh) 自充电超级电容器
CN111952079B (zh) 可持续充电的储能装置
CN111952080B (zh) 可原位充电的储能装置
CN105914053B (zh) 可拉伸的超级电容器及其制造方法
EP4243122A2 (en) Composite electrode
CN108511199B (zh) 电化学器件
TWI464951B (zh) 集流體、 鋰離子電池電極及鋰離子電池
CN105097289A (zh) 混合储能器件
JP5458505B2 (ja) 電気二重層キャパシタ用電極及びその製造方法
US11621652B2 (en) Ultrathin triboelectric nanogenerator and application thereof
KR102398468B1 (ko) 전기이중층 커패시터용 시트전극 및 그 제조방법
KR102042262B1 (ko) 마이크로-수퍼커패시터 및 이의 제조방법
KR102422011B1 (ko) 그래핀 셀 및 제조방법
Tekale et al. A study paper on carbon nanotube based paper battery
JP6442681B2 (ja) 電気二重層キャパシタの製造方法
JP2017517855A (ja) 電気化学的エネルギ貯蔵装置及びバッテリー

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant