CN111477471A - 一种煤焦油基电极材料的制备方法 - Google Patents

一种煤焦油基电极材料的制备方法 Download PDF

Info

Publication number
CN111477471A
CN111477471A CN202010335859.3A CN202010335859A CN111477471A CN 111477471 A CN111477471 A CN 111477471A CN 202010335859 A CN202010335859 A CN 202010335859A CN 111477471 A CN111477471 A CN 111477471A
Authority
CN
China
Prior art keywords
coal tar
precursor
sol
room temperature
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010335859.3A
Other languages
English (en)
Inventor
孟宇
刘小艳
郭卓
马亚军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yulin University
Original Assignee
Yulin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yulin University filed Critical Yulin University
Priority to CN202010335859.3A priority Critical patent/CN111477471A/zh
Publication of CN111477471A publication Critical patent/CN111477471A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/33Preparation characterised by the starting materials from distillation residues of coal or petroleum; from petroleum acid sludge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • C01B32/348Metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种煤焦油基电极材料的制备方法,首先采用1‑烯丙基‑3‑甲基咪唑氯盐溶解并分散煤焦油,然后通过氢氧化钾活化,制备炭粉;然后以CO‑MOF为前驱体,以所述炭粉为基础材料,构建溶胶前驱体;最后将溶胶前驱体进行冷冻干燥后,置于微波管式炉内,在氮气保护下,以5℃/min升温速率升至1000℃保持3 h,而后自然降温至室温,即得。本发明实现了煤焦油的高附加价值利用,能够在复合材料中形成具有较高电导率的空间网络结构,从而大大提高了电极材料的高倍率性能和循环稳定性,以该材料为电极所构建的电容器具有体积比容量高、循环稳定性好和功率密度高等优点。

Description

一种煤焦油基电极材料的制备方法
技术领域
本发明涉及电极材料领域,具体涉及一种煤焦油基电极材料的制备方法。
背景技术
煤焦油,又称煤膏,是煤在隔绝空气干馏后得到的粘稠状液体产物,在室温条件下呈黑色或黑褐色。煤焦油是廉价的化工副产品,每年的产量超过两千万吨,其产量约占装炉煤量的3%~4%,其成分可达上万种,主要含有苯、甲苯、二甲苯、萘、蒽等芳烃类,芳香族含氧化合物,含硫、氮元素的杂环化合物等有机物。
金属-有机框架物(MOFs)是由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机-无机杂化材料。在MOFs 中,有机配体和金属离子或团簇的排列具有明显的方向性,可以形成不同的框架孔隙结构,从而表现出不同的吸附性能、光学性质、电磁学性质。它具有高孔隙率、低密度、大比表面积、孔道规则、孔径可调以及拓扑结构多样性和可裁剪性等优点。
发明内容
为解决上述问题,本发明提供了一种煤焦油基电极材料的制备方法,采用1-烯丙基-3-甲基咪唑氯盐溶解并分散煤焦油,然后通过氢氧化钾活化,制备炭粉;然后以CO-MOF为前驱体, 以所述炭粉为基础材料,制备煤焦油基电极材料,实现了煤焦油的高附加价值利用。
为实现上述目的,本发明采取的技术方案为:
一种煤焦油基电极材料的制备方法,通过以下步骤制备所得:
S1、将1-烯丙基-3-甲基咪唑氯盐逐滴加入煤焦油中,搅拌使煤焦油完全溶解后,分多次加入粉末状氢氧化钾,得到预处理后的反应物;
S2、将所得的反应物置于刚玉瓷舟中,并将刚玉瓷舟置于微波管式炉内,氮气保护下,以400~500℃/小时的升温速率从室温升温至600~800℃保持60min后,自然降温至室温;
S3、取出产物,研磨粉碎后,置于烧杯内,加入蒸馏水,超声清洗15~20min后,过滤,再用蒸馏水将过滤物洗涤至中性,得炭粉;
S4、将硝酸钴与对苯二甲酸有机配体按摩尔比为1:1的比例混合溶解于适量N,N-二甲基甲酰胺中,超声分散后,将溶液转移至聚四氟乙烯高压釜中,在 100~150℃下反应35~45h,然后缓慢冷却至室温,过滤后,固体用无水乙醇洗涤3次,在60~70℃下干燥3~5 h,即得前驱体;
S5、取适量炭粉加入到200~300mL的乙醇中,超声震荡3小时后,将前驱体加入到上述混合物中充分搅拌1.5h后,逐渐加热到60~80℃,使乙醇和去离子水不断挥发,直至形成凝胶,即得溶胶前驱体;
S6、将溶胶前驱体进行冷冻干燥后,置于微波管式炉内,在氮气保护下,以5℃/min升温速率升至1000 ℃保持3 h,而后自然降温至室温,即得。
进一步地,所述步骤S1中,煤焦油与离子液体两者的质量比为0.5:1~1:1;煤焦油与氢氧化钾的质量比为1:3~1:5。
本发明具有以下有益效果:
采用1-烯丙基-3-甲基咪唑氯盐溶解并分散煤焦油,然后通过氢氧化钾活化,制备炭粉;然后以CO-MOF为前驱体, 以所述炭粉为基础材料,制备煤焦油基电极材料,实现了煤焦油的高附加价值利用,能够在复合材料中形成具有较高电导率的空间网络结构,从而大大提高了电极材料的高倍率性能和循环稳定性,以该材料为电极所构建的电容器具有体积比容量高、循环稳定性好速率性能良好等优点。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种煤焦油基电极材料的制备方法,通过以下步骤制备所得:
S1、将1-烯丙基-3-甲基咪唑氯盐逐滴加入煤焦油中,搅拌使煤焦油完全溶解后,分多次加入粉末状氢氧化钾,得到预处理后的反应物;其中,煤焦油与离子液体两者的质量比为0.5:1;煤焦油与氢氧化钾的质量比为1:3;
S2、将所得的反应物置于刚玉瓷舟中,并将刚玉瓷舟置于微波管式炉内,氮气保护下,以400℃/小时的升温速率从室温升温至600℃保持60min后,自然降温至室温;
S3、取出产物,研磨粉碎后,置于烧杯内,加入蒸馏水,超声清洗15~20min后,过滤,再用蒸馏水将过滤物洗涤至中性,得炭粉;
S4、将2.91g硝酸钴与1.66g对苯二甲酸有机配体混合溶解于60ml的N,N-二甲基甲酰胺中,超声分散后,将溶液转移至聚四氟乙烯高压釜中,在 130℃下反应30h,然后缓慢冷却至室温,过滤后,固体用无水乙醇洗涤3次,在65℃下干燥4 h,即得前驱体;
S5、取200mg炭粉加入到200mL的乙醇中,超声震荡3小时后,将前驱体加入到上述混合物中充分搅拌1.5h后,逐渐加热到60~80℃,使乙醇和去离子水不断挥发,直至形成凝胶,即得溶胶前驱体;
S6、将溶胶前驱体进行冷冻干燥后,置于微波管式炉内,在氮气保护下,以5℃/min升温速率升至1000 ℃保持3 h,而后自然降温至室温,即得。
电化学性能测试:将煤焦油基电极材料与聚四氟乙烯(PTFE)按照70:10
的质量比混合,辊压、冲孔获得电极,组装成对称型超级电容器。所得电极材料在6MKOH电解液中,在0.05A/g电流密度下,其比容为265F/g;在20A/g电流密度下,其比容为208F/g,显示了良好的速率性能,同时,在0.05A/g电流密度下,10000次充放电后,其比容保持率能达到98.12%,具有卓越的循环性能。
实施例2
一种煤焦油基电极材料的制备方法,通过以下步骤制备所得:
S1、将1-烯丙基-3-甲基咪唑氯盐逐滴加入煤焦油中,搅拌使煤焦油完全溶解后,分多次加入粉末状氢氧化钾,得到预处理后的反应物;其中,煤焦油与离子液体两者的质量比为1:1;煤焦油与氢氧化钾的质量比为1:5;
S2、将所得的反应物置于刚玉瓷舟中,并将刚玉瓷舟置于微波管式炉内,氮气保护下,以500℃/小时的升温速率从室温升温至800℃保持60min后,自然降温至室温;
S3、取出产物,研磨粉碎后,置于烧杯内,加入蒸馏水,超声清洗15~20min后,过滤,再用蒸馏水将过滤物洗涤至中性,得炭粉;
S4、将2.91g硝酸钴与1.66g对苯二甲酸有机配体混合溶解于60ml的N,N-二甲基甲酰胺中,超声分散后,将溶液转移至聚四氟乙烯高压釜中,在 130℃下反应30h,然后缓慢冷却至室温,过滤后,固体用无水乙醇洗涤3次,在65℃下干燥4 h,即得前驱体;
S5、取200mg炭粉加入到 300mL的乙醇中,超声震荡3小时后,将前驱体加入到上述混合物中充分搅拌1.5h后,逐渐加热到60~80℃,使乙醇和去离子水不断挥发,直至形成凝胶,即得溶胶前驱体;
S6、将溶胶前驱体进行冷冻干燥后,置于微波管式炉内,在氮气保护下,以5℃/min升温速率升至1000 ℃保持3 h,而后自然降温至室温,即得。
电化学性能测试:将煤焦油基电极材料与聚四氟乙烯(PTFE)按照70:10
的质量比混合,辊压、冲孔获得电极,组装成对称型超级电容器。所得电极材料在6MKOH电解液中,在0.05A/g电流密度下,其比容为293F/g;在20A/g电流密度下,其比容为248F/g,显示了良好的速率性能,同时,在0.05A/g电流密度下,10000次充放电后,其比容保持率能达到98.32%,具有卓越的循环性能。
实施例3
一种煤焦油基电极材料的制备方法,通过以下步骤制备所得:
S1、将1-烯丙基-3-甲基咪唑氯盐逐滴加入煤焦油中,搅拌使煤焦油完全溶解后,分多次加入粉末状氢氧化钾,得到预处理后的反应物;其中,煤焦油与离子液体两者的质量比为0.75:1;煤焦油与氢氧化钾的质量比为1:4;
S2、将所得的反应物置于刚玉瓷舟中,并将刚玉瓷舟置于微波管式炉内,氮气保护下,以450℃/小时的升温速率从室温升温至700℃保持60min后,自然降温至室温;
S3、取出产物,研磨粉碎后,置于烧杯内,加入蒸馏水,超声清洗15~20min后,过滤,再用蒸馏水将过滤物洗涤至中性,得炭粉;
S4、将2.91g硝酸钴与1.66g对苯二甲酸有机配体混合溶解于60ml的N,N-二甲基甲酰胺中,超声分散后,将溶液转移至聚四氟乙烯高压釜中,在 130℃下反应30h,然后缓慢冷却至室温,过滤后,固体用无水乙醇洗涤3次,在65℃下干燥4 h,即得前驱体;
S5、取200mg炭粉加入到250mL的乙醇中,超声震荡3小时后,将前驱体加入到上述混合物中充分搅拌1.5h后,逐渐加热到60~80℃,使乙醇和去离子水不断挥发,直至形成凝胶,即得溶胶前驱体;
S6、将溶胶前驱体进行冷冻干燥后,置于微波管式炉内,在氮气保护下,以5℃/min升温速率升至1000 ℃保持3 h,而后自然降温至室温,即得。
电化学性能测试:将煤焦油基电极材料与聚四氟乙烯(PTFE)按照70:10的质量比混合,辊压、冲孔获得电极,组装成对称型超级电容器。所得电极材料在6M KOH电解液中,在0.05A/g电流密度下,其比容为313F/g;在20A/g电流密度下,其比容为273F/g,显示了良好的速率性能,同时,在0.05A/g电流密度下,10000次充放电后,其比容保持率能达到97.93%,具有卓越的循环性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种煤焦油基电极材料的制备方法,其特征在于,通过以下步骤制备所得:
S1、将1-烯丙基-3-甲基咪唑氯盐逐滴加入煤焦油中,搅拌使煤焦油完全溶解后,分多次加入粉末状氢氧化钾,得到预处理后的反应物;
S2、将所得的反应物置于刚玉瓷舟中,并将刚玉瓷舟置于微波管式炉内,氮气保护下,以400~500℃/小时的升温速率从室温升温至600~800℃保持60min后,自然降温至室温;
S3、取出产物,研磨粉碎后,置于烧杯内,加入蒸馏水,超声清洗15~20min后,过滤,再用蒸馏水将过滤物洗涤至中性,得炭粉;
S4、将硝酸钴与对苯二甲酸有机配体按摩尔比为1:1的比例混合溶解于适量N,N-二甲基甲酰胺中,超声分散后,将溶液转移至聚四氟乙烯高压釜中,在 100~150℃下反应35~45h,然后缓慢冷却至室温,过滤后,固体用无水乙醇洗涤3次,在60~70℃下干燥3~5 h,即得前驱体;
S5、取适量炭粉加入到200~300mL的的乙醇中,超声震荡3小时后,将前驱体加入到上述混合物中充分搅拌1.5h后,逐渐加热到60~80℃,使乙醇和去离子水不断挥发,直至形成凝胶,即得溶胶前驱体;
S6、将溶胶前驱体进行冷冻干燥后,置于微波管式炉内,在氮气保护下,以5℃/min升温速率升至1000 ℃保持3 h,而后自然降温至室温,即得。
2.如权利要求1所述的一种煤焦油基电极材料的制备方法,其特征在于,所述步骤S1中,煤焦油与离子液体两者的质量比为0.5:1~1:1;煤焦油与氢氧化钾的质量比为1:3~1:5。
CN202010335859.3A 2020-04-25 2020-04-25 一种煤焦油基电极材料的制备方法 Pending CN111477471A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010335859.3A CN111477471A (zh) 2020-04-25 2020-04-25 一种煤焦油基电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010335859.3A CN111477471A (zh) 2020-04-25 2020-04-25 一种煤焦油基电极材料的制备方法

Publications (1)

Publication Number Publication Date
CN111477471A true CN111477471A (zh) 2020-07-31

Family

ID=71755799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010335859.3A Pending CN111477471A (zh) 2020-04-25 2020-04-25 一种煤焦油基电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN111477471A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201516A (ja) * 1989-12-28 1991-09-03 Isuzu Motors Ltd 電気二重層コンデンサ
CN105845458A (zh) * 2016-05-06 2016-08-10 上海利物盛企业集团有限公司 一种石墨烯活化金属有机骨架电极材料及其制备和应用
CN106629656A (zh) * 2017-01-12 2017-05-10 安徽工业大学 一种通过添加离子液体制备超级电容器用煤焦油基多孔炭片的方法
CN109273279A (zh) * 2018-11-26 2019-01-25 河南城建学院 一种超级电容器电极材料
CN110473712A (zh) * 2019-08-27 2019-11-19 华东师范大学 一种mof衍生纳米片插层材料及制备方法和其应用
CN110867327A (zh) * 2019-11-27 2020-03-06 华北电力大学 多级次孔碳气凝胶材料、超级电容器电极材料及制法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201516A (ja) * 1989-12-28 1991-09-03 Isuzu Motors Ltd 電気二重層コンデンサ
CN105845458A (zh) * 2016-05-06 2016-08-10 上海利物盛企业集团有限公司 一种石墨烯活化金属有机骨架电极材料及其制备和应用
CN106629656A (zh) * 2017-01-12 2017-05-10 安徽工业大学 一种通过添加离子液体制备超级电容器用煤焦油基多孔炭片的方法
CN109273279A (zh) * 2018-11-26 2019-01-25 河南城建学院 一种超级电容器电极材料
CN110473712A (zh) * 2019-08-27 2019-11-19 华东师范大学 一种mof衍生纳米片插层材料及制备方法和其应用
CN110867327A (zh) * 2019-11-27 2020-03-06 华北电力大学 多级次孔碳气凝胶材料、超级电容器电极材料及制法

Similar Documents

Publication Publication Date Title
Tian et al. High‐entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium–sulfur batteries
Jiang et al. Composition engineering boosts voltage windows for advanced sodium-ion batteries
Wang et al. Metal–organic frameworks for energy storage: Batteries and supercapacitors
Xiao et al. Recent progress in two-dimensional polymers for energy storage and conversion: design, synthesis, and applications
Lai et al. Metal-organic frameworks-derived mesoporous carbon for high performance lithium–selenium battery
Chen et al. High-performance all-solid-state asymmetric supercapacitors based on sponge-like NiS/Ni3S2 hybrid nanosheets
Geng et al. Freestanding eggshell membrane-based electrodes for high-performance supercapacitors and oxygen evolution reaction
Mahmood et al. Fused aromatic network structures as a platform for efficient electrocatalysis
CN106915735B (zh) 一种氮或金属掺杂碳材料的制备方法
WO2022021643A1 (zh) 一种新型锂离子电池负极材料及其制备方法
Shao et al. A high N content cobalt-based metal organic framework with nanorod structure for supercapacitor electrode material
Zhao et al. Expired milk powder emulsion-derived carbonaceous framework/Si composite as efficient anode for lithium-ion batteries
CN113809325A (zh) 基于电活性共价有机框架聚合物的碱性水系二次电池及应用
Chen et al. Modified metal− organic frameworks for electrochemical applications
Li et al. Co–TiO2 nanoparticles anchored in porous carbon matrix as an efficient sulfur host for lithium/sulfur batteries
WO2022021641A1 (zh) 一种电池负极材料及其制备方法
Zhang et al. Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for lithium-ion batteries
Jin et al. Highly stabilized silicon nanoparticles for lithium storage via hierarchical carbon architecture
Deng et al. Sulfonated covalent organic framework modified separators suppress the shuttle effect in lithium-sulfur batteries
Mondal et al. Porous and chemically robust MIL-100 (V) MOF as an efficient cathode material for zinc‑ion batteries
Cai et al. Preparation and performance of metal-organic-frameworks-derived activated mesoporous carbon polyhedron with sponge-like structure for lithium–sulfur batteries
Han et al. A self-assembled nanoflower-like Ni5P4@ NiSe2 heterostructure with hierarchical pores triggering high-efficiency electrocatalysis for Li–O2 batteries
Li et al. Metal-free covalent organic frameworks containing precise heteroatoms for electrocatalytic oxygen reduction reaction
Deka et al. Two-dimensional layered nickel-based coordination polymer for supercapacitive performance
Qu et al. Metal-organic frameworks-derived CoO/C penetrated with self-supporting graphene enabling accelerated polysulfide conversion for lithium-sulfur batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200731