CN111464002A - 一种电压调节装置 - Google Patents

一种电压调节装置 Download PDF

Info

Publication number
CN111464002A
CN111464002A CN201910055913.6A CN201910055913A CN111464002A CN 111464002 A CN111464002 A CN 111464002A CN 201910055913 A CN201910055913 A CN 201910055913A CN 111464002 A CN111464002 A CN 111464002A
Authority
CN
China
Prior art keywords
voltage
stage
post
circuit
regulation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910055913.6A
Other languages
English (en)
Inventor
徐�明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FSP Powerland Technology Inc
Original Assignee
FSP Powerland Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FSP Powerland Technology Inc filed Critical FSP Powerland Technology Inc
Priority to CN201910055913.6A priority Critical patent/CN111464002A/zh
Priority to US16/745,373 priority patent/US11211867B2/en
Publication of CN111464002A publication Critical patent/CN111464002A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Abstract

本发明公开了一种电压调节装置,包括前级电路和后级电路,所述前级电路接受输入电压,并输出中间母线电压,所述后级电路接受中间母线电压,并输出输出电压,所述后级电路包括多个后级变换器,且所述后级变换器交错并联,这样使得所述后级电路的电感较小,减小了装置的体积,提升了装置的功率密度。

Description

一种电压调节装置
技术领域
本发明涉及电源技术领域,且特别是有关于一种电压调节装置。
背景技术
微处理器的功耗近似地与它的供电电压平方和工作频率成正比。随着微处理器主频的提高,为了降低功耗,必须降低其供电电压。而为了得到更快的运算速度并保证微处理器对功率越来越高的要求,微处理器的供电电流也需要增大。新一代计算机微处理器发展的趋势是低压大电流。工作电压低至1V,甚至1V以下,工作电流高达130A,一些服务器中使用的微处理器甚至需要170A的电流。随着微处理器运算速度的提高,所需要的供电电流变化率di/dt越来越大。这就要求给微处理器供电的电压调节模块(Voltage regulatormodular,VRM)能够有足够的动态响应速度。
随着信息产业的快速发展,高效率高动态特性负载点(Point of load,POL)变换器得到了越来越多的应用。VRM就是一种特殊的POL变换器。随着用户对微处理器越来越高的要求,微处理器对VRM的要求也越来越严格。低压、大电流、高功率密度和高动态特性是VRM设计的主要指标。
发明内容
本发明正是思及于此,提供一种电压调节装置,实现了最优的实现了电压调节装置的低压、大电流、高功率密度和高动态特性。
一种电压调节装置,包括前级电路和后级电路,所述前级电路接受输入电压,并输出中间母线电压,所述后级电路接受中间母线电压,并输出输出电压,所述电压调节装置还包括前级驱动电路,所述前级驱动电路采样输出电压和中间母线电流生成驱动前级电路的前级驱动信号,所述前级驱动电路根据输出电压调节所述前级驱动信号的占空比。
上述后级电路包括n个交错并联的后级变换器,所述中间母线电压为n倍的输出电压,所述输出电压Vo的电压值为1V或者0.75V。
上述后级变换器包括一后级开关电路和一后级电感。
上述电压调节装置还包括一后级驱动电路,所述后级驱动电路生成驱动所述后级开关电路中的开关的后级驱动信号,所述后级驱动信号的占空比固定。
上述后级变换器交错并联,错相360°/n。
上述后级驱动信号控制所述后级开关电路中的主开关管的导通时间为Ts/n,所述Ts为第一至第n开关电路中主开关导通时间的总和,且所述后级驱动信号占空比不可调节。
上述后级开关电路中的主开关管的开关频率为600KHZ~2MHZ。
上述后级电感通过磁集成技术合为一体。
上述前级电路包括多个并联的降压变换电路,所述降压变换电路的电感两两之间耦合。
上述后级变换器为降压变换器或者升压变换器。
有益效果,后级变换电路的输出电流纹波为零,这样后级变换电的电感的感值很小,从而减小电路的体积、提高功率密度。同时电感通过磁集成技术合为一体,漏感很小,电路的响应速度更快。
为让发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。
附图说明
图1为本发明电压调节装置的示意图。
图2为本发明电压调节装置一具体实施例。
图3为本发明电压调节装置的后级驱动电路输出关键波形图。
图4为本发明电压调节装置的另一具体实施例。
具体实施方式
为使本发明实施例的目的和技术方案更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明电压调节装置包括前级电路11和后级电路12,所述前级电路11接受输入电压Vin,并输出中间母线电压Vbus;所述后级电路接受中间母线电压Vbus,并输出输出电压Vo。所述电压调节装置还包括前级驱动电路13,所述前级驱动电路13采样输出电压Vo和中间母线电流Ibus生成前级驱动信号M1,更具体说,所述前级电路11为一开关电路,所述前级驱动信号M1为所述前级电路11中的开关的驱动信号,所述前级驱动信号M1的占空比根据输出电压Vo变化,调节中间母线电压Vbus。
所述后级电路12包括n个并联的后级变换器121-12n,后级变换器121-12n的占空比固定,中间母线电压Vbus与输出电压Vo具有比例关系Vbus=n*Vo,这是一个大约的比例关系,在实际应用中可能并不精确相等。优选的,所述输出电压Vo的电压值为1V或者0.75V。
所述后级变换器121-12n交错并联,错相360°/n,包括第一至第n开关电路和电感L1-Ln,所述第n开关电路和所述电感Ln串联,所述电压调节装置还包括后级驱动电路14,所述后级驱动电路14输出后级驱动信号M2,所述后级驱动信号M2控制所述第n开关电路中的主开关管的导通时间为Ts/n,优选的,所述第n开关电路中的主开关管的开关频率为600KHZ~2MHZ,参考图3,且相邻的主开关电路之间错相360°/n,所述Ts为第一至第n开关电路中主开关导通时间的总和。控制所述后级变换器121-12n的占空比不可调节。在理想状况下,这种驱动方式可以使得后级变换电路12的输出电流纹波为零,这样的电感L1-Ln的感值可以很小,从而减小电路的体积、提高功率密度。电感L1-Ln通过磁集成技术合为一体,漏感很小,电路的响应速度更快。
请再参考图2,为本发明一优选实施例,所述前级变换电路21为多个并联的降压变换电路,本实施例中仅以两个并联的降压变换电路为例进行说明,所述降压变换电路211包括开关S1和S2以及电感L211,所述开关S1和S2以及电感L211构成BUCK电路,所述降压变换电路212包括开关S3和S4以及电感L212,开关S3和S4以及电感L212构成BUCK电路,所述电感L211和所述电感L212之间进行磁耦合,实现所述降压变换电路211和所述降压变换电路212的输出电流均流。所述前级驱动电路23采样所述降压变换电路211的输出电流Ibus1和所述所述降压变换电路212的输出电流Ibus2,并根据输出电流Ibus1、输出电流Ibus2和输出电压Vo生成控制所述前级电路21的开关S1-S4的驱动信号。
本实施例中,所述后级变换电路212包括n个降压变换器,降压变换器221-22n交错并联,所述降压变换22n包括主控开关Sn1和同步整流开关Sn2,以及电感Ln,所述主控开关Sn1和同步整流开关Sn2以及电感Ln构成BUCK电路,但是本发明并不以此为限,如图4所示,所述所述主控开关Sn1和同步整流开关Sn2以及电感Ln构成BOOST电路。
本发明的一种调压电路,后级变换电路的输出电流纹波为零,这样后级变换电的电感的感值可以很小,从而减小电路的体积、提高功率密度。同时电感通过磁集成技术合为一体,漏感很小,电路的响应速度更快。
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视后附的申请专利范围所界定者为准。

Claims (10)

1.一种电压调节装置,包括前级电路和后级电路,所述前级电路接受输入电压,并输出中间母线电压,所述后级电路接受中间母线电压,并输出输出电压,其特征在于,所述电压调节装置还包括前级驱动电路,所述前级驱动电路采样输出电压和中间母线电流生成驱动前级电路的前级驱动信号,所述前级驱动电路根据输出电压调节所述前级驱动信号的占空比。
2.如权利要求1所述一种电压调节装置,其特征在于,所述后级电路包括n个交错并联的后级变换器,所述中间母线电压为n倍的输出电压,所述输出电压Vo的电压值为1V或者0.75V。
3.如权利要求2所述一种电压调节装置,其特征在于,所述后级变换器包括一后级开关电路和一后级电感。
4.如权利要求3所述一种电压调节装置,其特征在于,所述电压调节装置还包括一后级驱动电路,所述后级驱动电路生成驱动所述后级开关电路中的开关的后级驱动信号,所述后级驱动信号的占空比固定。
5.如权利要求4所述一种电压调节装置,其特征在于,所述后级变换器交错并联,错相360°/n。
6.如权利要求5所述一种电压调节装置,其特征在于,所述后级驱动信号控制所述后级开关电路中的主开关管的导通时间为Ts/n,所述Ts为第一至第n开关电路中主开关导通时间的总和,且所述后级驱动信号占空比不可调节。
7.如权利要求6所述一种电压调节装置,其特征在于,所述后级开关电路中的主开关管的开关频率为600KHZ~2MHZ。
8.如权利要求6所述一种电压调节装置,其特征在于,所述后级电感通过磁集成技术合为一体。
9.如权利要求1所述一种电压调节装置,其特征在于,所述前级电路包括多个并联的降压变换电路,所述降压变换电路的电感两两之间耦合。
10.如权利要求3所述一种电压调节装置,其特征在于,所述后级变换器为降压变换器或者升压变换器。
CN201910055913.6A 2019-01-18 2019-01-18 一种电压调节装置 Pending CN111464002A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910055913.6A CN111464002A (zh) 2019-01-18 2019-01-18 一种电压调节装置
US16/745,373 US11211867B2 (en) 2019-01-18 2020-01-17 Voltage regulating apparatus with pre-stage circuit and post-stage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910055913.6A CN111464002A (zh) 2019-01-18 2019-01-18 一种电压调节装置

Publications (1)

Publication Number Publication Date
CN111464002A true CN111464002A (zh) 2020-07-28

Family

ID=71609146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910055913.6A Pending CN111464002A (zh) 2019-01-18 2019-01-18 一种电压调节装置

Country Status (2)

Country Link
US (1) US11211867B2 (zh)
CN (1) CN111464002A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852269A (zh) * 2021-11-30 2021-12-28 深圳市永联科技股份有限公司 一种多相交错拓扑电路及降低纹波输出的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084790A (en) * 1999-01-07 2000-07-04 Astec International Limited Circuit to ensure equal current sharing and switching losses between parallel power devices
US6897641B1 (en) * 2004-06-24 2005-05-24 Edward Herbert Buck (or boost) converter with very fast output current transitions and low ripple voltage
CN101090231A (zh) * 2007-05-18 2007-12-19 华为技术有限公司 非隔离开关直流-直流电源模块、电源装置和通信装置
US20080019158A1 (en) * 2005-07-26 2008-01-24 International Rectifier Corporation Multi-phase buck converter with a plurality of coupled inductors
CN106452119A (zh) * 2016-10-19 2017-02-22 南京博兰得电子科技有限公司 多路交错并联的电源变换器及其控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479769B2 (en) * 2003-08-29 2009-01-20 Nxp B.V. Power delivery system having cascaded buck stages
US8269141B2 (en) * 2004-07-13 2012-09-18 Lincoln Global, Inc. Power source for electric arc welding
TWI285571B (en) * 2004-12-15 2007-08-21 Univ Nat Cheng Kung Power conversion apparatus for pulse current
US9647555B2 (en) * 2005-04-08 2017-05-09 Lincoln Global, Inc. Chopper output stage for arc welder power source
JP2009044831A (ja) * 2007-08-08 2009-02-26 Renesas Technology Corp 電源装置
US8319485B2 (en) * 2009-01-08 2012-11-27 Linear Technology Corporation Extending input to output voltage range in multiple channel switching regulator applications
US9878635B1 (en) * 2013-02-13 2018-01-30 University Of Maryland Powertrain system in plug-in electric vehicles
US10396684B2 (en) * 2014-12-16 2019-08-27 Virginia Tech Intellectual Properties, Inc Coupled inductor for interleaved multi-phase three-level DC-DC converters
US10862398B2 (en) * 2015-02-03 2020-12-08 Astec International Limited DC-DC power converter for use in data communications distributed power architecture
EP3618281B1 (en) * 2018-09-03 2023-05-10 IHP GmbH - Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik Parallel fractional-n phase locked loop circuit
US10756624B2 (en) * 2018-09-12 2020-08-25 Bel Fuse (Macao Commercial Offshore) Limited Hybrid DC-DC converter
TWI682614B (zh) * 2018-10-26 2020-01-11 緯穎科技服務股份有限公司 多相位電源降壓系統

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6084790A (en) * 1999-01-07 2000-07-04 Astec International Limited Circuit to ensure equal current sharing and switching losses between parallel power devices
US6897641B1 (en) * 2004-06-24 2005-05-24 Edward Herbert Buck (or boost) converter with very fast output current transitions and low ripple voltage
US20080019158A1 (en) * 2005-07-26 2008-01-24 International Rectifier Corporation Multi-phase buck converter with a plurality of coupled inductors
CN101090231A (zh) * 2007-05-18 2007-12-19 华为技术有限公司 非隔离开关直流-直流电源模块、电源装置和通信装置
CN106452119A (zh) * 2016-10-19 2017-02-22 南京博兰得电子科技有限公司 多路交错并联的电源变换器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
殷健: "宽输入电压范围DC/DC变换器研究", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅱ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852269A (zh) * 2021-11-30 2021-12-28 深圳市永联科技股份有限公司 一种多相交错拓扑电路及降低纹波输出的方法

Also Published As

Publication number Publication date
US20200235670A1 (en) 2020-07-23
US11211867B2 (en) 2021-12-28

Similar Documents

Publication Publication Date Title
Zhang et al. A 3-Z-network boost converter
Li et al. A novel quadratic boost converter with low inductor currents
Wu et al. A PFC single-coupled-inductor multiple-output LED driver without electrolytic capacitor
CN100479313C (zh) 具有级联降压级的电源传输系统
US7760525B2 (en) Voltage regulator
Matsumoto et al. A two-phase high step down coupled-inductor converter for next generation low voltage CPU
US20050093525A1 (en) Asymmetrical multiphase DC-to-DC power converter
Lu et al. A single phase voltage regulator module (VRM) with stepping inductance for fast transient response
Huh et al. A Hybrid Structure Dual-Path Step-Down Converter With 96.2% Peak Efficiency Using 250-m $\Omega $ Large-DCR Inductor
US20150188437A1 (en) Power supply apparatus, power supply system with the power supply apparatus, and method of controlling the same
Liu et al. High step-up Y-source inverter with reduced DC-link voltage spikes
Genc et al. Experimental verification of an improved soft-switching cascade boost converter
Chakraborty et al. A novel converter topology for multiple individually regulated outputs
Li et al. Minimum active switch requirements for single-phase PFC rectifiers without electrolytic capacitors
Dung et al. Analysis and implementation of a high voltage gain 1 MHz bidirectional DC–DC converter
WO2012094670A2 (en) Dc-dc converter
Abu-Qahouq et al. Multiphase voltage-mode hysteretic controlled VRM with DSP control and novel current sharing
US6825641B2 (en) High efficiency electrical switch and DC-DC converter incorporating same
Yerra et al. Single stage three-level interleaved buck converter with current self-balancing for improved point-of-load performance
Harimon et al. A study on 3-phase interleaved DC-DC boost converter structure and operation for input current stress reduction
Chang Design and analysis of power-CMOS-gate-based switched-capacitor boost DC-AC inverter
TWI742581B (zh) 切換式電源供應器及其控制電路與快速響應方法
CN111464002A (zh) 一种电压调节装置
Ahmed et al. Comprehensive analysis and design of a switched‐inductor type low inductance‐requirement DC‐DC buck‐boost converter for low power applications
US10998819B2 (en) Method and system for DC voltage converting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination