CN100479313C - 具有级联降压级的电源传输系统 - Google Patents

具有级联降压级的电源传输系统 Download PDF

Info

Publication number
CN100479313C
CN100479313C CNB2004800245605A CN200480024560A CN100479313C CN 100479313 C CN100479313 C CN 100479313C CN B2004800245605 A CNB2004800245605 A CN B2004800245605A CN 200480024560 A CN200480024560 A CN 200480024560A CN 100479313 C CN100479313 C CN 100479313C
Authority
CN
China
Prior art keywords
buck
stages
output voltage
buck stages
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800245605A
Other languages
English (en)
Other versions
CN1842958A (zh
Inventor
P·徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1842958A publication Critical patent/CN1842958A/zh
Application granted granted Critical
Publication of CN100479313C publication Critical patent/CN100479313C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)

Abstract

一种用于微处理器或其它ASIC的电源传输系统。该电源传输系统包括多个串联连接的级联降压级,其中多个级联降压级中的最后一个降压级提供输出电压Vo以响应于施加到多个级联级的第一降压级的输入电压Vin。占空比控制器调节每个降压级的占空比以维持输出电压Vo。如果输入输出电压比(Vin/Vo)小于界限输入输出电压比RT,那么占空比控制器将多个级联降压级的第一降压级的占空比设定为1。

Description

具有级联降压级的电源传输系统
技术领域
本发明一般而言涉及集成电路,并且更具体地涉及一种供微处理器和其它专用集成电路(ASIC)使用的具有级联降压(buck)级的电源传输(power delivery)系统。
背景技术
图1示出一种供现代微处理器使用的典型的单级降压电源传输系统10。该单级降压电源传输系统10包括电压调节器模块(VRM)12,其被设置得靠近于微处理器14,以便传输高度精确的电源电压。VRM12包括单级降压,该单级降压包括并联布置的一个或多个交替(interleaved)同步的降压通道(channel)16。输入电压Vin通常是12V+/-15%的预调总线电压或6-24V的电池电压,以及输出电压Vo是0.x-1.xV的处理器电压。现在的VRM大多运行在从200KHz到300KHz的切换频率的范围。
如图1所示,每个降压通道16包括一对开关SW1、SW2,它们通常通过使用场效应晶体管或其它合适的开关器件来实施。开关SW1、SW2的打开和闭合由占空比控制器18来控制,该占空比控制器根据输出电压Vo以已知的方式来调整开关SW1、SW2的占空比。每个降压通道16还包括电感器L和电容器C。这类单级降压的运行是众所周知的,并且不将进行更详细的描述。
典型地,VRM 12运行在很小的占空比,这是因为使用了高输入电压Vin和低输出电压Vo(占空比D=Vo/Vin)。由于在短时间导通的开关SW1的显著的开关损耗和在很长时间导通的SW2的大的传导损耗,所以这导致了相当大的功率损耗。
微处理器正在被不断地设计成运行在较低电压、较高电流和较高的电流转换速度。为了满足更严格的瞬态需求而不过度地增加输出电容,需要将电压调节器模块(VRM)的切换频率增加到MHz的范围,以降低输出电感和增加控制回路的带宽,从而实现更快的瞬态响应。然而,由于开关损耗正比于切换频率,所以增加切换频率的负面影响是降低了VRM效率(即较高的功率损耗)。因此,在增加的切换频率上降低VRM的功率损耗已经变成一个重要的挑战。
发明内容
本发明提供一种采用级联降压级的两级电源传输系统。对于高输入输出电压比,每个级联的降压级具有一个更合适的(即较大的)占空比,其比单级降压导致低得多的总功率损耗。对于需要较低的输入输出电压比的应用,例如电池供电的膝上型电脑,可以以准单级模式运行本发明的级联降压装置,其中第一降压级作为输入滤波器运行。
在第一方面,本发明提供一种电源传输系统,包括:多个串联连接的级联降压级,其中多个级联降压级中的最后一个降压级提供输出电压Vo以响应于施加到多个级联级的第一降压级的输入电压Vin;以及占空比控制器,用于控制每个降压级的占空比以维持输出电压Vo,其中如果输入输出电压比(Vin/Vo)小于界限输入输出电压比RT,那么占空比控制器将多个级联降压级的第一降压级的占空比设定为1。
在第二方面,本发明提供一种用于电源传输的方法,包括:串联连接多个级联降压级,其中多个级联降压级中的最后一个降压级提供输出电压Vo以响应于施加到多个级联级的第一降压级的输入电压Vin;以及控制每个降压级的占空比以维持输出电压Vo,其中如果输入输出电压比(Vin/Vo)小于界限输入输出电压比RT,那么将多个级联降压级的第一降压级的占空比设定为1。
在第三方面,本发明提供一种准单级电源传输系统,包括:串联连接的第一和第二级联降压级,其中第二降压级提供输出电压Vo以响应于施加到第一降压级的输入电压Vin;以及占空比控制器,用于控制第一和第二降压级的占空比以维持输出电压Vo,其中如果输入输出电压比(Vin/Vo)小于界限输入输出电压比RT,那么将第一降压级的占空比设定为1,以及其中如果输入输出电压比(Vin/Vo)大于界限输入输出电压比RT,那么将第一降压级的占空比设定为小于1的值。
附图说明
根据下面结合附图的本发明的多个方面的详细描述,本发明的这些和其它特征将更容易被理解,其中:
图1说明包括一个或多个交替同步的降压通道的已知单级降压电源传输系统,
图2说明根据本发明的两级级联降压电源传输系统。
图3说明根据本发明的示例的两级级联降压电源传输系统。
图4说明图1的单级降压电源传输系统和图2的两级级联降压电源传输系统的功率损耗的比较。
图5说明以准单级模式运行的图2的电源传输系统。
图6说明图1、2和5的单级、两级和准单级电源传输系统的功率损耗的比较。
应当注意,附图只是示意性的表示,并不打算描述本发明的特定参数。附图只打算描述本发明的典型的方面,因此不应当被认为限制本发明的范围。
具体实施方式
图2说明根据本发明的两级级联降压电源传输系统100。尽管下面描述的包括两个级联降压级,但是应当注意,在不背离所要求保护的本发明的范围的情况下可以一起级联两个以上的降压级。两级级联降压电源传输系统100包括电压调节器模块(VRM)102,其包括串联连接的第一降压级104和第二降压级106的级联装置。两级级联降压电源传输系统100运行以响应于施加到第一降压级104的输入端的输入电压Vin而在第二降压级106的输出端提供输出电压Vo。第一降压级104和第二降压级106都包括并联布置的一个或多个交替同步的降压通道108。输入电压Vin通常是12V+/-15%的预调总线电压或6-24V的电池电压,以及输出电压Vo是0.x-1.xV的处理器电压。
如图2所示,在第一和第二降压级104、106中的每个降压通道108包括一对开关SW1、SW2,它们通常通过使用场效应晶体管或者其它合适的开关器件来实施。在第一和第二降压级104、106中的每个降压通道108还包括电感器L和电容器C。第一降压级104以已知的方式运行,以响应于施加到它的输入端的输入电压Vin而在它的输出端提供中间电压Vint,其中Vin>Vint。第二降压级106也以已知的方式运行,以响应于由第一降压级104输出的中间电压Vint而在它的输出端提供输出电压Vo,其中Vin>Vint>Vo
通过占空比控制器110来控制在第一和第二降压级104、106中的开关SW1、SW2的打开和闭合。特别是,占空比控制器110通过第一占空比信号D1控制在第一降压级104中的开关SW1、SW2,以及通过第二占空比信号D2控制在第二降压级106中的开关SW1、SW2
如图2以及图3所说明的本发明的示例性实施例所示,第一和第二降压级104、106分别以占空比D1和D2运行。在图3中,第一降压级104被示出为包括单个降压通道108,同时第二降压级106被示出为包括一对并联布置的交替同步的降压通道108。尽管未在图3(或图5)中示出,但是通过如图2所示的占空比控制器110来提供占空比D1和D2。通常,占空比D1由Vint/Vin给出,以及占空比D2由Vo/Vint给出。因此,D1和D2都大于图1的单级降压电源传输系统10的占空比D。因为较大的占空比,所以第一和第二降压级104、106中的各个开关SW1、SW2可以具有较低的电流应力(stress)和/或较低的电压应力(与图1的单级降压相比),这导致降低的开关功率损耗。
实际上,D1和D2都可以改变以维持输出电压调节。可选择地,在一些设计中,D1或D2可以保持在一个固定值,而另一个占空比D2或D1进行改变以维持输出电压调节。另外,在其它的设计中,可以从单个源产生D1和D2,使得D1等于D2。在这种情况下,D1=D2=(Vo/Vin)1/2。与利用相同输入和输出电压的单级降压的占空比D(即D=Vo/Vin)相比,在两级级联降压中的开关占空比将总是更大的,从而导致更低的开关功率损耗。
在图4中说明图1的单级降压电源传输系统10和图2的两级级联降压电源传输系统100的各自的功率损耗的比较。特别是,图4提供对于现有技术的单级降压和本发明的两级级联降压而言总的器件功率损耗与输入电压的曲线图,假定Vo=1V,Io(输出电流)=100A,以及Fs(切换频率)=1MHz。如所示,对于高输入输出电压比(例如大于约9V的阈值电压VT的输入电压),本发明的两级级联降压的总的器件功率损耗低于现有技术的单级降压的总的器件功率损耗。应当注意,如在此所述的阈值电压VT对应于图4中的交叉点。
在较低的输入输出电压比(例如小于约9V的阈值电压VT的输入电压),在图4中可以看到,使用本发明的两级级联降压导致比单级降压更大的总的器件功率损耗。因此,为了降低在较低输入输出比时的功率损耗,可以以如图5所示的准单级结构100’来运行本发明的两级级联降压。这可以通过使用占空比控制器110(图2)设定第一降压级104的占空比D1为1来实现。结果,第一降压级104的开关SW1总是导通的,而对应的开关SW2总是断开的。如图5所示,开关SW1(总是导通的)等效于它的导通电阻R。结果,第一级降压104作为在准单级结构下的输入滤波器运行,并且可以减少用于电源传输系统的输入滤波器。应当注意,第二降压级106仍运行在图5中所说明的准单级结构中的占空比D2。
在低的输入输出电压比时通过将第一降压级104的占空比D1设定为1,消除了由于在第一降压级104中开关SW1、SW2的运行而导致的开关损耗。结果,在低的输入输出电压比时,本发明的准单级结构具有降低的功率损耗。
在图6中说明图1的单级电源传输系统10、图2的两级级联降压电源传输系统100和图5的准单级电源传输系统100’的各自的功率损耗的比较。如上所详述,对于高输入输出电压比(例如大于约9V的阈值电压VT的输入电压),本发明的两级级联降压的总的器件功率损耗可以小于现有技术的单级降压的总的器件功率损耗。然而,在较低的输入输出电压比(例如低于约9V的阈值电压VT的输入电压),级联降压的功率损耗大于现有技术的单级降压的功率损耗。对于较低的输入输出电压比,通过将两级级联降压的占空比D1调节为1,功率损耗基本上被降低到稍微大于现有技术的单级降压的功率损耗。
如图2所示,可以配置占空比控制器110来接收输入电压Vin和输出电压Vo,并根据所得的输入输出电压比来调节占空比D1和D2。例如,对于给定的输出电压Vo,占空比控制器110可以根据输入电压Vin的值来调节占空比D1。具体地,对于小于阈值电压VT的输入电压,可以将占空比D1设定为1,而对于大于阈值电压VT的输入电压,可以将占空比D1设定为等于D2或另一合适的值。因此,可以利用宽范围的输入输出电压比来使用本发明的两级级联降压电源传输系统。更一般而言,对于小于预定界限输入输出电压比RT的输入输出电压比,通过占空比控制器110可以将占空比D1设定为1,而对于大于RT的输入输出电压比,可以将占空比D1设定为等于D2或者另一合适的值。
为了说明和描述的目的已经给出了本发明的多个方面的上述描述。该描述不打算是详尽的,或者将本发明限制为所公开的精确的形式,并且显然,许多修改和变化是可能的。例如,在多级级联降压结构(即具有多于两级)中,可以以占空比D=1来运行第一级,以降低在较低的输入输出电压比时的功率损耗。对于本领域技术人员来说显而易见的修改和变化打算被包括在如由所附权利要求书限定的本发明的范围内。

Claims (16)

1、一种电源传输系统(100),包括:
多个串联连接的级联降压级(104,106),其中多个级联降压级中的最后一个降压级(106)提供输出电压(Vo)以响应于施加到多个级联级的第一降压级(104)的输入电压(Vin);以及
占空比控制器(110),用于控制每个降压级的占空比以维持输出电压(Vo),其中如果输入输出电压比(Vin/Vo)小于界限输入输出电压比(RT),那么该占空比控制器将多个级联降压级的第一降压级(104)的占空比设定为1。
2、权利要求1所述的电源传输系统,其中多个级联降压级(104,106)的每个包括一个或多个交替同步的降压通道(108),所述一个或多个交替同步的降压通道并联连接。
3、权利要求2所述的电源传输系统,其中每个降压通道(108)包括第一开关(SW1)和第二开关(SW2),以及其中当通过占空比控制器(110)将第一降压级的占空比设定为1时,第一降压级(104)的第一开关(SW1)总是导通的,而第二开关(SW2)总是断开的。
4、权利要求1所述的电源传输系统,其中当通过占空比控制器(110)将第一降压级的占空比设定为1时,第一降压级(104)作为输入滤波器运行。
5、权利要求1所述的电源传输系统,其中如果输入输出电压比(Vin/Vo)大于界限输入输出电压比(RT),那么占空比控制器(110)将第一降压级(104)的占空比设定为小于1的值。
6、权利要求1所述的电源传输系统,其中该系统运行在至少1MHz的切换频率上。
7、一种用于电源传输的方法,包括:
串联连接多个级联降压级(104,106),其中多个级联降压级中的最后一个降压级(106)提供输出电压(Vo)以响应于施加到多个级联级的第一降压级(104)的输入电压(Vin);以及
控制(110)每个降压级的占空比以维持输出电压(Vo),其中如果输入输出电压比(Vin/Vo)小于界限输入输出电压比(RT),那么将多个级联降压级的第一降压级(104)的占空比设定为1。
8、权利要求7所述的电源传输方法,其中多个级联降压级(104,106)的每个包括一个或多个交替同步的降压通道(108),所述一个或多个交替同步的降压通道并联连接。
9、权利要求8所述的电源传输方法,其中每个降压通道(108)包括第一开关(SW1)和第二开关(SW2),以及其中当将第一降压级的占空比设定为1时,第一降压级(104)的第一开关(SW1)总是导通的,而第二开关(SW2)总是断开的。
10、权利要求7所述的电源传输方法,其中当将第一降压级的占空比设定为1时,第一降压级(104)作为输入滤波器运行。
11、权利要求7所述的电源传输方法,其中如果输入输出电压比(Vin/Vo)大于界限输入输出电压比(RT),那么将第一降压级(104)的占空比设定为小于1的值。
12、权利要求7所述的电源传输方法,还包括:以至少1MHz的切换频率来运行该系统。
13、一种准单级电源传输系统(100),包括:
串联连接的第一和第二级联降压级(104,106),其中第二降压级(106)提供输出电压(Vo)以响应于施加到第一降压级(104)的输入电压(Vin);以及
占空比控制器(110),用于控制第一和第二降压级的占空比以维持输出电压(Vo),其中如果输入输出电压比(Vin/Vo)小于界限输入输出电压比(RT),那么将第一降压级(104)的占空比设定为1,以及其中如果输入输出电压比(Vin/Vo)大于界限输入输出电压比(RT),那么将第一降压级(104)的占空比设定为小于1的值。
14、权利要求1 3所述的准单级电源传输系统,其中第一和第二降压级(104,106)的每个包括一个或多个交替同步的降压通道108),所述一个或多个交替同步的降压通道并联连接。
15、权利要求14所述的准单级电源传输系统,其中每个降压通道(108)包括第一开关(SW1)和第二开关(SW2),以及其中当通过占空比控制器(110)将第一降压级的占空比设定为1时,第一降压级(104)的第一开关(SW1)总是导通的,而第一降压级(104)的第二开关(SW2)总是断开的。
16、权利要求13所述的准单级电源传输系统,其中当通过占空比控制器(110)将第一降压级的占空比设定为1时,第一降压级(104)作为输入滤波器运行。
CNB2004800245605A 2003-08-29 2004-08-23 具有级联降压级的电源传输系统 Expired - Fee Related CN100479313C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49885903P 2003-08-29 2003-08-29
US60/498,859 2003-08-29

Publications (2)

Publication Number Publication Date
CN1842958A CN1842958A (zh) 2006-10-04
CN100479313C true CN100479313C (zh) 2009-04-15

Family

ID=34272744

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800245605A Expired - Fee Related CN100479313C (zh) 2003-08-29 2004-08-23 具有级联降压级的电源传输系统

Country Status (8)

Country Link
US (1) US7479769B2 (zh)
EP (1) EP1661234B1 (zh)
JP (1) JP2007504792A (zh)
KR (1) KR20060121854A (zh)
CN (1) CN100479313C (zh)
AT (1) ATE466398T1 (zh)
DE (1) DE602004026886D1 (zh)
WO (1) WO2005022737A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846659A (zh) * 2015-02-03 2016-08-10 通用电气公司 用于改进功率变换系统中的负载瞬态响应的方法及系统
CN106787734A (zh) * 2017-02-21 2017-05-31 哈尔滨工业大学深圳研究生院 一种适用于提高级联变换器系统稳定性的控制电路

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
CN100490283C (zh) * 2007-05-18 2009-05-20 华为技术有限公司 非隔离开关直流-直流电源模块、电源装置和通信装置
EP2232663B2 (en) 2007-12-05 2021-05-26 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
WO2009072075A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2009073867A1 (en) 2007-12-05 2009-06-11 Solaredge, Ltd. Parallel connected inverters
EP2269290B1 (en) 2008-03-24 2018-12-19 Solaredge Technologies Ltd. Switch mode converter including active clamp for achieving zero voltage switching
EP2294669B8 (en) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Direct current power combiner
US7902807B2 (en) * 2008-07-22 2011-03-08 Texas Instruments Incorporated Multiple switch node power converter control scheme that avoids switching sub-harmonics
EP2348622B1 (en) * 2008-09-19 2017-10-25 Mitsubishi Electric Corporation Dc-dc converter
US8193799B2 (en) * 2008-09-23 2012-06-05 Globalfoundries Inc. Interposer including voltage regulator and method therefor
JP5212149B2 (ja) * 2009-02-04 2013-06-19 富士電機株式会社 スイッチング電源装置
US9143036B2 (en) * 2009-09-02 2015-09-22 Tigo Energy, Inc. Systems and methods for enhanced efficiency auxiliary power supply module
WO2011039794A1 (ja) * 2009-09-29 2011-04-07 三菱電機株式会社 電力変換装置
CN101807854A (zh) * 2010-04-23 2010-08-18 张伟 一种缓冲交换式降压斩波系统
GB2480614B (en) * 2010-05-24 2017-04-12 Snaptrack Inc Switched arrangement for switched mode supply
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
CN102545390B (zh) * 2010-12-28 2014-12-17 通用电气公司 充电或者放电系统及方法
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
EP2592741A1 (en) 2011-11-09 2013-05-15 ST-Ericsson SA Integrated circuit adapted to perform power path control in a mobile equipment
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
WO2016038601A1 (en) * 2014-09-10 2016-03-17 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University A voltage regulator module using a load-side auxiliary gyrator circuit
DE102015200716A1 (de) 2015-01-19 2016-07-21 Efficient Energy Gmbh Schaltnetzteil
US10193442B2 (en) 2016-02-09 2019-01-29 Faraday Semi, LLC Chip embedded power converters
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
CN107306087B (zh) 2016-04-20 2019-07-02 台达电子企业管理(上海)有限公司 一种双级转换器及其控制方法
CN109088541A (zh) * 2018-09-29 2018-12-25 天津大学 一种电压滞环准定频控制的开关模式电源
CN111464002A (zh) * 2019-01-18 2020-07-28 南京博兰得电子科技有限公司 一种电压调节装置
US10504848B1 (en) 2019-02-19 2019-12-10 Faraday Semi, Inc. Chip embedded integrated voltage regulator
WO2020214857A1 (en) 2019-04-17 2020-10-22 Faraday Semi, Inc. Electrical devices and methods of manufacture
JP2020202657A (ja) * 2019-06-10 2020-12-17 株式会社デンソー 電源駆動回路
KR102715435B1 (ko) 2019-10-23 2024-10-10 삼성전자주식회사 벅 컨버터들 간의 연결을 포함하는 전자 장치
US11063516B1 (en) 2020-07-29 2021-07-13 Faraday Semi, Inc. Power converters with bootstrap
US20230318456A1 (en) * 2022-04-04 2023-10-05 Google Llc Predictive Load Transient Based Voltage Regulator Turbo for Voltage Droop Minimization
US11990839B2 (en) 2022-06-21 2024-05-21 Faraday Semi, Inc. Power converters with large duty cycles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006782A (en) * 1989-06-15 1991-04-09 International Rectifier Corporation Cascaded buck converter circuit with reduced power loss
KR100238618B1 (ko) * 1997-04-09 2000-03-02 오상수 차량의 전장제어를 위한 전원공급장치
US5886508A (en) * 1997-08-29 1999-03-23 Computer Products, Inc. Multiple output voltages from a cascaded buck converter topology
US6246592B1 (en) * 1999-08-10 2001-06-12 Texas Instruments Incorporated Unique power supply architecture with cascaded converters for large input-to-output step-down ratio
US6348781B1 (en) * 2000-12-11 2002-02-19 Motorola, Inc. Buck or boost power converter
US7023187B2 (en) * 2001-08-16 2006-04-04 Intersil Americas Inc. Integrated circuit for generating a plurality of direct current (DC) output voltages
AU2002343624A1 (en) * 2001-11-05 2003-05-19 Shakti Systems, Inc. Monolithic battery charging device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846659A (zh) * 2015-02-03 2016-08-10 通用电气公司 用于改进功率变换系统中的负载瞬态响应的方法及系统
CN105846659B (zh) * 2015-02-03 2020-08-18 Abb瑞士股份有限公司 用于改进功率变换系统中的负载瞬态响应的方法及系统
CN106787734A (zh) * 2017-02-21 2017-05-31 哈尔滨工业大学深圳研究生院 一种适用于提高级联变换器系统稳定性的控制电路
CN106787734B (zh) * 2017-02-21 2019-05-24 哈尔滨工业大学深圳研究生院 一种适用于提高级联变换器系统稳定性的控制电路

Also Published As

Publication number Publication date
US20070001653A1 (en) 2007-01-04
EP1661234B1 (en) 2010-04-28
EP1661234A1 (en) 2006-05-31
US7479769B2 (en) 2009-01-20
WO2005022737A1 (en) 2005-03-10
JP2007504792A (ja) 2007-03-01
CN1842958A (zh) 2006-10-04
KR20060121854A (ko) 2006-11-29
ATE466398T1 (de) 2010-05-15
DE602004026886D1 (de) 2010-06-10

Similar Documents

Publication Publication Date Title
CN100479313C (zh) 具有级联降压级的电源传输系统
US10756623B1 (en) Low loss power converter
US9641080B2 (en) Multi-output boost regulator with single control loop
US20050040796A1 (en) Voltage regulator
US7911192B2 (en) High voltage power regulation using two power switches with low voltage transistors
CN1893246A (zh) 多输出降压转换器
CN108028604B (zh) 开关调节器电路和方法
JP2008072850A (ja) 昇降圧dc−dcコンバータ
CN101507090B (zh) 多输出多拓扑结构电压变换器
CN109309448A (zh) 一种宽输入宽输出Cuk DC-DC变换器
US20170133934A1 (en) Methods and Apparatus for Power Supply
US20070171100A1 (en) Control circuit for 2 stage converter
TWI710202B (zh) 開關調節器
CN215528874U (zh) 用于将直流输入电压转换为直流输出电压的开关转换器和系统
CN100517929C (zh) 具有扩充电路的多相直流至直流电源转换器
CN110098736B (zh) 一种自适应宽范围输入的恒流输出电路
CN101001045A (zh) 直流降压转换器
CN110663164A (zh) 具有多个功率模式的功率转换器预驱动器系统
CN104702104A (zh) Dcdc转换装置
JP2006149125A (ja) Dc−dcコンバータ
EP1808952B1 (en) Voltage regulator
CN112398210B (zh) 具有电流平衡的双电源供应系统及双电源平衡控制器
US20230344344A1 (en) Multi-path converter and control method therefor
KR101356385B1 (ko) 전력변환장치 및 전력변환장치 제어 방법
CN113965080A (zh) 一种单输入高可靠性Cuk DC-DC变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NXP CO., LTD.

Free format text: FORMER OWNER: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Effective date: 20070810

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20070810

Address after: Holland Ian Deho Finn

Applicant after: Koninkl Philips Electronics NV

Address before: Holland Ian Deho Finn

Applicant before: Koninklijke Philips Electronics N.V.

C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090415

Termination date: 20110823