TWI742581B - 切換式電源供應器及其控制電路與快速響應方法 - Google Patents
切換式電源供應器及其控制電路與快速響應方法 Download PDFInfo
- Publication number
- TWI742581B TWI742581B TW109109697A TW109109697A TWI742581B TW I742581 B TWI742581 B TW I742581B TW 109109697 A TW109109697 A TW 109109697A TW 109109697 A TW109109697 A TW 109109697A TW I742581 B TWI742581 B TW I742581B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- fast response
- circuit
- output voltage
- power supply
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/565—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
- G05F1/575—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/1566—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
- H02M3/1586—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Dc-Dc Converters (AREA)
Abstract
一種切換式電源供應器,具有負載瞬變響應能力,包含至少一功率級電路以及控制電路。控制電路包括脈寬調變訊號產生電路以及快速響應訊號產生電路。脈寬調變訊號產生電路根據輸出電壓與快速響應訊號,而產生PWM訊號,以操作對應之功率級電路中功率開關,而將輸入電壓轉換為輸出電壓。快速響應訊號產生電路包括微分電路以及比較電路。微分電路用以對相關於輸出電壓之感測訊號,執行微分運算,而產生微分訊號。比較電路用以比較微分訊號與快速響應閾值訊號,以於微分訊號超過快速響應閾值訊號時,決定脈寬調變訊號產生電路執行快速響應程序。
Description
本發明係有關一種切換式電源供應器,特別是指一種具有負載瞬變(load transient)響應能力之切換式電源供應器。本發明也有關於用於切換式電源供應器中之控制電路與快速響應方法。
圖1A顯示一種先前技術切換式電源供應器1,用以將輸入電壓Vin轉換為輸出電壓Vout,以供應電源予中央處理器(Central Processing Unit,CPU)/或圖形處理器(Graphic Processing Unit,GPU)10。如圖1A所示,切換式電源供應器1係一種多相的切換式電源供應器,其包括複數個功率級電路11以及控制電路12。控制電路12根據相關於輸出電壓Vout之電壓感測訊號Vsense與相關於流經各功率級電路11之電感電流的電流感測訊號CS1、CS2與CS3,對應產生脈寬調變(pulse width modulation,PWM)訊號PWM1、PWM2與PWM3以分別操作功率級電路11中的功率開關,而將輸入電壓Vin轉換為輸出電壓Vout。
與一般非供應電源予CPU或GPU的切換式電源供應器相比,切換式電源供應器1要滿足下列特別的需要:CPU/GPU 10操作時為電源需求變化相對快速的負載電路,需要以極高的精度實現動態電壓定位(dynamic voltage
positioning),需要滿足一定的負載線(load line)要求,需要相對快速地在不同的電能消耗狀態之間轉換,需要提供不同的參數測量和監控。在切換式電源供應器1與CPU/GPU 10之間通常以串列匯流排(serial bus)界面進行通訊,CPU/GPU 10會根據其負荷和運行模式提出不同的供電要求。
一般而言,CPU/GPU 10在某些操作模式下,消耗的電流相對較大,因此常常採用多相功率級電路11。在圖1A所示的切換式電源供應器1中,具有3相功率級電路11,分別根據脈寬調變(pulse width modulation,PWM)訊號PWM1、PWM2與PWM3而操作其中的功率開關,以將輸入電壓Vin轉換為輸出電壓Vout。對於切換式電源供應器1來說,精確測量每個相的電流是很重要的,控制電路12根據相關於各相電流的電流感測訊號CS1、CS2與CS3,使各相之間的電流維持平均分配,並實現良好的回路特性控制、設定負載線(load line),以及致能過流保護程序。
請參閱圖1B,顯示切換式電源供應器1的電壓隨載下降(droop)操作模式中,電壓感測訊號Vsense與PWM訊號PWM1、PWM2與PWM3的波形訊號示意圖。輸出電壓Vout在負載增加的時候,會出現下降,如圖所示,在時間點t1之後,由電壓V1下降至電壓V2。並且,在輸出電壓Vout從電壓V1開始下降的初期,會出現下衝(undershoot)。而在負載降低的時候,輸出電壓Vout會出現上升(未示出,例如輸出電壓Vout由電壓V2上升至電壓V1),並且,在輸出電壓Vout從電壓V2開始上升的初期,會出現上衝(overshoot)。因此,電壓隨載下降操作模式利用負載線技術,使輸出電壓Vout在負載電流增加時,將輸出電壓Vout降低,而在負載電流降低時,將輸出電壓Vout提高,以此降低輸出電容Cout,
也就是不需要採用較多或是電容值較高的輸出電容Cout,以降低電路面積與降低電路製造成本。
這種先前技術切換式電源供應器1的缺點,其中之一在於,在負載電流增加的時候,輸出電壓Vout下降的初期所出現的下衝,切換式電源供應器1只能根據電壓感測訊號Vsense的回授控制,產生如圖1B中,PWM訊號PWM1、PWM2與PWM3在時間點t1到時間點t2期間中,出現較為密集的脈波。這種控制方式,負載瞬變響應能力較差,造成輸出電壓Vout的嚴重下衝。另一方面,負載降低的時候,先前技術切換式電源供應器1造成輸出電壓Vout上升的初期所出現的嚴重上衝,也是這種先前技術的缺點。
也就是說,由於這種先前技術切換式電源供應器1對負載瞬變的響應速度受到限制,在切換式電源供應器1操作於固定導通時間(constant ON time)模式下,固定的導通時間只能傳遞有限的電流,因此不能滿足過重負載的需求;且在切換式電源供應器1操作於相間輪流(interleaving)導通的機制中,延遲了動態回應的時間,複數功率級電路11中,沒有同時導通,空閒(idle)相不能為負載增加提供電源。
有鑑於此,本發明即針對上述先前技術之不足,提出一種負載瞬變響應能力之切換式電源供應器。本發明也有關於用於切換式電源供應器中之控制電路與快速響應方法。
就其中一個觀點言,本發明提供了一種切換式電源供應器,包含:至少一功率級電路,其中的每一功率級電路,用以根據對應之一脈寬調變
(pulse width modulation,PWM)訊號,而操作其中一功率開關,以將一輸入電壓轉換為一輸出電壓;以及一控制電路,包括:一脈寬調變訊號產生電路,與該至少一功率級電路耦接,用以根據該輸出電壓與一快速響應訊號,而產生該PWM訊號;以及一快速響應訊號產生電路,與該脈寬調變訊號產生電路耦接,用以根據該輸出電壓,產生該快速響應訊號,該快速響應訊號產生電路包括:一微分電路,用以對相關於該輸出電壓之一電壓感測訊號,執行一微分運算,而產生一微分訊號;以及一比較電路,與該微分電路耦接,用以比較該微分訊號與一快速響應閾值訊號,產生該快速響應訊號,以於該微分訊號超過該快速響應閾值訊號時,決定使該脈寬調變訊號產生電路執行一快速響應程序。
就另一觀點言,本發明提供了一種控制電路,用於一切換式電源供應器中,以將一輸入電壓轉換為一輸出電壓,該控制電路包含:一脈寬調變訊號產生電路,其中的每一脈寬調變訊號產生電路,與對應之至少一功率級電路耦接,用以根據該輸出電壓與一快速響應訊號,而產生一PWM訊號;以及一快速響應訊號產生電路,與該脈寬調變訊號產生電路耦接,用以根據該輸出電壓,產生該快速響應訊號,該快速響應訊號產生電路包括:一微分電路,用以對相關於該輸出電壓之一電壓感測訊號,執行一微分運算,而產生一微分訊號;以及一比較電路,與該微分電路耦接,用以比較該微分訊號與一快速響應閾值訊號,產生該快速響應訊號,以於該微分訊號超過該快速響應閾值訊號時,決定使該脈寬調變訊號產生電路執行一快速響應程序。
在一種較佳的實施型態中,該快速響應訊號產生電路更包括一快速響應脈波產生器,與該比較電路耦接,用以根據該快速響應訊號,產生一快速響應脈波訊號。
在一種較佳的實施型態中,其中該切換式電源供應器包含複數個功率級電路,且於該快速響應程序中,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該PWM訊號,使每一個該功率級電路中對應之該功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段快速響應期間。
在一種較佳的實施型態中,該快速響應閾值訊號根據一電感電流漣波訊號、一輸出電容或/及該至少一功率級電路之相數而決定。
在一種較佳的實施型態中,該切換式電源供應器操作於一固定導通時間(constant ON time)模式。
在一種較佳的實施型態中,該快速響應閾值訊號包括一正快速響應閾值或/及一負快速響應閾值。
在一種較佳的實施型態中,當該切換式電源供應器操作於一電壓隨載下降(droop)操作模式中,於該輸出電壓之位準下降,且該微分訊號超過該快速響應閾值訊號時,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該功率級電路所對應之該PWM訊號,使每一該功率級電路中對應之一上橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段快速響應期間。
在一種較佳的實施型態中,其中當該切換式電源供應器操作於一電壓隨載下降(droop)操作模式中,於該輸出電壓之位準上升,且該微分訊號超過該快速響應閾值訊號時,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該功率級電路所對應之該PWM訊號,使每一該功率級電路中對應之一下橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通
一段快速響應期間,或使每一該功率級電路中對應之一上橋功率開關與該下橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時皆不導通一段快速響應期間。
在一種較佳的實施型態中,該脈寬調變訊號產生電路更根據一電壓定位訊號,而產生該PWM訊號,以下式調節該輸出電壓:Vout=VDAC-Iout*RLL
其中,Vout為輸出電壓,VDAC為相關於該電壓定位訊號之一要求位準,Iout為一輸出電流,RLL為一負載線電阻。
在一種較佳的實施型態中,其中該切換式電源供應器操作於一電壓隨載下降(droop)操作模式,使得該脈寬調變訊號產生電路於一回授迴路(feedback loop)中,根據該輸出電壓與該快速響應訊號,產生該PWM訊號,而將該輸入電壓轉換為該輸出電壓。
就另一觀點言,本發明提供了一種快速響應方法,用於一切換式電源供應器中,以提高負載瞬變響應能力,該快速響應方法包含:對相關於一輸出電壓之一電壓感測訊號,執行一微分運算,而產生一微分訊號;比較該微分訊號與一快速響應閾值訊號,產生一快速響應訊號,以於該微分訊號超過該快速響應閾值訊號時,決定執行一快速響應程序;以及於該快速響應程序中,該切換式電源供應器中之一脈寬調變訊號產生電路根據該快速響應訊號,調整一脈寬調變(pulse width modulation,PWM)訊號,使得該切換式電源供應器中之至少一功率級電路中對應之一功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,導通或不導通一段快速響應期間。
在一種較佳的實施型態中,該至少一功率級電路其中的每一功率級電路,用以根據對應之該PWM訊號,而操作其中該功率開關,以將一輸入電壓轉換為該輸出電壓。
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
1,2,3:切換式電源供應器
10:中央處理器或圖形處理器
11,21,31:功率級電路
12,22,32:控制電路
23,33:PWM訊號產生電路
24,34:QR訊號產生電路
241,341:微分電路
243,343,335:比較電路
331:放大電路
333:總和電路
337:相間輪流電路
345:QR脈波產生器
Ai:總和電流訊號
Comp:比較訊號
Cout:輸出電容
CS1,CS2,CS3:電流感測訊號
EAout:放大輸出訊號
Isense1,Isense2,Isense3:電流感測訊號
Ip,Ip2,Ip3:相電流
LG:下橋功率開關
Prdth:持續期間
PWM1,PWM2,PWM3:PWM訊號
t1,t2:時間點
QRpulse:QR脈波訊號
QRprd1,QRprd2,QRprd3,QRprd4,QRprd5:快速響應期間
QRsig:QR訊號
QRth:QR閾值訊號
UG:上橋功率開關
VDAC:要求位準
Vdiff:微分訊號
Vin:輸入電壓
Vout:輸出電壓
Vsense:電壓感測訊號
圖1A顯示一種先前技術切換式電源供應器1。
圖1B顯示切換式電源供應器1的電壓感測訊號Vsense與PWM訊號PWM1、PWM2與PWM3的波形示意圖。
圖2顯示根據本發明的一種實施例示意圖。
圖3顯示上衝與下衝之訊號波形示意圖。
圖4顯示根據本發明的一種較具體的實施例示意圖。
圖5顯示快速響應期間較短之相關訊號的波形示意圖。
圖6顯示快速響應期間較長之相關訊號的波形示意圖。
圖7顯示快速響應期間根據微分訊號超過QR閾值訊號持續的期間長度適應性調整之訊號波形示意圖。
圖8顯示快速響應期間為一段預設的固定長度之相關訊號的波形示意圖。
圖9顯示PWM訊號之快速響應脈波與相間輪流脈波重疊之訊號波形示意圖。
圖10A-10J顯示同步或非同步之降壓型、升壓型、反壓型、升降壓型、與升反壓型功率級電路。
本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。
圖2顯示一種根據本發明的切換式電源供應器的一種實施例(切換式電源供應器2)。切換式電源供應器2包含功率級電路21以及控制電路22。功率級電路21用以根據對應之脈寬調變(pulse width modulation,PWM)訊號PWM1,而操作其中功率開關(未示出),以將輸入電壓Vin轉換為輸出電壓Vout。控制電路22包括脈寬調變(pulse width modulation,PWM)訊號產生電路23以及快速響應(quick response,QR)訊號產生電路24。PWM訊號產生電路23與功率級電路21耦接,用以根據輸出電壓Vout與快速響應(quick response,QR)訊號QRsig,而產生PWM訊號PWM1。QR訊號產生電路24與PWM訊號產生電路23耦接,用以根據輸出電壓Vout,產生QR訊號QRsig。QR訊號產生電路24包括微分電路241以及比較電路243。微分電路241用以對相關於輸出電壓Vout之電壓感測訊號Vsense,執行微分運算(特別是指相對於時間變化的微分運算),而產生微分訊號Vdiff。比較電路243與微分電路241耦接,用以比較微分訊號Vdiff與快速響應(quick response,QR)閾值訊號QRth,產生QR訊號QRsig,以於微分訊號Vdiff超過QR閾值訊號QRth時,決定使PWM訊號產生電路23執行快速響應(quick response,QR)程序。
根據本發明,功率級電路21可配置為例如但不限於同步或非同步之降壓型、升壓型、反壓型、或升降壓型功率轉換電路,如圖10A-10J所示。功
率級電路21的數量不限於為單數,亦可以為複數,將於後詳述。須說明的是,所謂QR程序,係指當切換式電源供應器2在電壓隨載下降操作模式中,為了改善因為負載瞬變所產生的下衝與上衝,而做出的響應程序。如前所述,輸出電壓Vout由高電位下降至低電位的初期,會出現下衝(undershoot);而在輸出電壓Vout由低電位升高至高電位的初期,會出現上衝(overshoot)。典型的上衝與下衝,如圖3的訊號波形圖所示意。其中,電壓V1示意較高的電位,而電壓V2示意較低的電位。
圖4顯示根據本發明的一種較具體的實施例示意圖。如圖所示,切換式電源供應器3包含複數個功率級電路31以及控制電路32。每一個功率級電路31用以根據對應之PWM訊號PWM1、PWM2或PWM3,而操作其中功率開關(例如可為圖10A-10J所示之功率級電路中的上橋功率開關UG與下橋功率開關LG),以將輸入電壓Vin轉換為輸出電壓Vout。控制電路32包括PWM訊號產生電路33以及QR訊號產生電路34。PWM訊號產生電路33與功率級電路31耦接,用以根據輸出電壓Vout與快速響應(quick response,QR)訊號QRsig,而產生PWM訊號PWM1、PWM2或PWM3。QR訊號產生電路34與PWM訊號產生電路33耦接,用以根據輸出電壓Vout,產生QR訊號QRsig。
其中,QR訊號產生電路34包括微分電路341、比較電路343以及快速響應(quick response,QR)脈波產生器345。微分電路341用以對相關於輸出電壓Vout之電壓感測訊號Vsense,執行微分運算,而產生微分訊號Vdiff。比較電路343與微分電路341耦接,用以比較微分訊號Vdiff與QR閾值訊號QRth,產生QR訊號QRsig,以於微分訊號Vdiff超過QR閾值訊號QRth時,決定PWM訊號產生電路33執行快速響應(quick response,QR)程序。相較於圖2所示的實施例,在本實
施例中,QR訊號產生電路34更包括QR脈波產生器345,與比較電路343耦接,用以根據QR訊號QRsig,產生快速響應(quick response,QR)脈波訊號QRpulse。
切換式電源供應器3為多相切換式電源供應器,包括複數個功率級電路31。切換式電源供應器3於快速響應程序中,PWM訊號產生電路33根據QR訊號QRsig,調整每一PWM訊號PWM1、PWM2與PWM3,使每一個功率級電路31中對應之功率開關,根據相關於QR訊號QRsig之QR脈波訊號QRpulse,同時導通或不導通一段快速響應期間。
如圖所示,PWM訊號產生電路33包括放大電路331、總和電路333、比較電路335以及相間輪流電路337。放大電路331根據相關於輸出電壓Vout之電壓感測訊號Vsense與相關於電壓定位訊號之要求位準VDAC,產生放大輸出訊號EAout。總和電路333根據相關於每一個功率級之相電流Ip1、Ip2與Ip3,產生總和電流訊號Ai。比較電路335比較放大輸出訊號EAout與總和電流訊號Ai,產生比較訊號Comp。相間輪流電路337根據比較訊號Comp、相關於QR訊號QRsig之QR脈波訊號QRpulse與對應相關於各相電流Ip1、Ip2與Ip3之電流感測訊號Isense1、Isense2與Isense3,分別對應產生PWM訊號PWM1、PWM2與PWM3。
舉例而言,切換式電源供應器3操作於一固定導通時間(constant ON time)模式,且以電壓隨載下降(droop)操作模式而操作,並操作於相間輪流(interleaving)導通的機制。PWM訊號產生電路33根據電壓定位(voltage identification,VID)訊號,而產生PWM訊號PWM1、PWM2與PWM3,以下式調節該輸出電壓:Vout=VDAC-Iout*RLL
其中,Vout為輸出電壓Vout,VDAC為相關於電壓定位訊號之要求位準VDAC,Iout為輸出電流Iout,RLL為負載線電阻。
在電壓隨載下降(droop)操作模式,使得PWM訊號產生電路33於回授迴路(feedback loop)中,根據輸出電壓Vout與QR訊號QRsig,產生PWM訊號PWM1、PWM2與PWM3,而將輸入電壓Vin轉換為輸出電壓Vout。
需說明的是,所謂固定導通時間(constant ON time)模式,係指在PWM訊號的每一次切換週期下,因調整輸出電壓Vout的回授機制(而非因QR程序),使功率開關導通的時間是固定的,此種模式稱為固定導通時間模式,其為本領域中,具有通常知識者所熟知,在此不予贅述。
需說明的是,所謂相間輪流(interleaving)導通的機制,係指在切換式電源供應器包含複數個功率級電路狀況下,這些功率級電路中的功率開關,可藉由PWM訊號的控制,而交錯導通或同時導通,以使各功率級電路分擔輸出功率,以滿足消耗功率較大的負載電路之需求,並降低輸入電壓與輸出電壓的漣波,以減少其中的電感之體積與輸出電容的電容值。
在這些操作模式下,QR訊號產生電路34中的微分電路341,對相關於輸出電壓Vout的電壓感測訊號Vsense,執行微分運算。電壓感測訊號Vsense例如但不限於為輸出電壓Vout本身,也可以經過其他轉換而產生。舉例而言,當輸出電壓Vout由較高的電壓V1降到較低的電壓V2,如小圖所示的輸出電壓Vout之訊號波形示意圖;在微分電路341中的電容跨壓Vc,會如小圖所示的電容跨壓Vc之訊號波形示意圖;經過在微分電路341的微分運算,產生如小圖所示的微分訊號Vdiff之訊號波形示意圖。
比較電路343比較微分訊號Vdiff與QR閾值訊號QRth,而產生QR訊號QRsig。QR脈波產生器345根據QR訊號QRsig,產生QR脈波訊號QRpulse。在一種較佳的實施例中,於切換式電源供應器3操作於電壓隨載下降(droop)操作模式中,於輸出電壓Vout自較高之位準(例如電壓V1)下降至較低之位準(例如電壓V2),且微分訊號Vdiff超過QR閾值訊號QRth時,PWM訊號產生電路33根據QR訊號QRsig,調整每一功率級電路31所對應之PWM訊號PWM1、PWM2與PWM3,使每一功率級電路31中對應之上橋功率開關(請參閱圖10A-10J中上橋功率開關UG),根據相關於QR訊號QRsig之QR脈波訊號QRpulse,同時導通一段快速響應期間。
在另一種較佳的實施例中,當切換式電源供應器3操作於電壓隨載下降操作模式中,於輸出電壓Vout自較低之位準(例如電壓V2)上升至較高之位準(例如電壓V1),且微分訊號Vdiff超過QR閾值訊號QRth時,PWM訊號產生電路33根據QR訊號QRsig,調整每一功率級電路31所對應之PWM訊號PWM1、PWM2與PWM3,使每一功率級電路31中對應之下橋功率開關(請參閱圖10A-10J中下橋功率開關LG),根據相關於QR訊號QRsig之QR脈波訊號QRpulse,同時導通一段快速響應期間,或使每一功率級電路31中對應之上橋功率開關與下橋功率開關(請參閱圖10A-10J中上橋功率開關UG與下橋功率開關LG),根據相關於QR訊號QRsig之QR脈波訊號QRpulse,同時皆不導通一段快速響應期間。其中,在上橋功率開關與下橋功率開關(請參閱圖10A-10J中上橋功率開關UG與下橋功率開關LG),根據相關於QR訊號QRsig之QR脈波訊號QRpulse,同時皆不導通一段快速響應期間的實施方式中,係利用上下橋功率開關的三態(tri-state),以導通下橋開關寄生二極體的方式,可更有效地緩和輸出電壓Vout上衝。
本發明優於先前技術的其中一個技術特徵為,對相關於輸出電壓Vout的電壓感測訊號Vsense微分,以計算輸出電壓Vout上升或下降的斜率,並根據計算的結果,同時導通或同時不導通每一個功率級電路31中對應的功率開關,以響應負載瞬變,緩和上衝或下衝。
需說明的是,根據本發明,QR脈波訊號QRpulse的脈波寬度,例如由兩種方式決定,且QR脈波訊號QRpulse的脈波寬度進而決定快速響應期間的長度。一種決定QR脈波訊號QRpulse的脈波寬度,是固定的脈波寬度,也就是說,只要微分訊號Vdiff超過QR閾值訊號QRth時,所產生QR脈波訊號QRpulse的脈波寬度為固定,無論微分訊號Vdiff超過QR閾值訊號QRth持續的期間長度。第二種決定QR脈波訊號QRpulse的脈波寬度的方式,是根據微分訊號Vdiff超過QR閾值訊號QRth持續的期間長度,適應性地調整脈波寬度,也就是說,微分訊號Vdiff超過QR閾值訊號QRth時,所產生QR脈波訊號QRpulse的脈波寬度,是根據微分訊號Vdiff超過QR閾值訊號QRth持續的期間長度而決定。
需說明的是,在一種較佳的實施型態中,QR閾值訊號QRth根據電感電流漣波訊號、輸出電容Cout或/及功率級電路31之相數而決定。所謂電感電流漣波訊號,特別係指在每一功率級電路31中,流經電感的電感電流漣波訊號的上升/下降斜率,其至少相關於輸入電壓Vin、輸出電壓Vout與電感的電感值。
需說明的是,QR閾值訊號QRth包括正快速響應閾值或/及負快速響應閾值。也就是說,QR閾值訊號QRth包括正快速響應閾值或/及負快速響應閾值,可以響應輸出電壓Vout的下衝或/及上衝。
圖5顯示在一種實施方式中,快速響應期間QRprd1相對較短情況下之相關訊號的波形示意圖。在一種實施方式中,舉例而言,當輸出電壓Vout
自較高之位準(例如電壓V1)下降至較低之位準(例如電壓V2),且微分訊號Vdiff超過QR閾值訊號QRth時,PWM訊號產生電路33根據QR訊號QRsig,調整每一功率級電路31所對應之PWM訊號PWM1、PWM2與PWM3,使每一功率級電路31中對應之上橋功率開關(請參閱圖10A-10J中上橋功率開關UG),根據相關於QR訊號QRsig之QR脈波訊號QRpulse,同時導通一段快速響應期間QRprd1。圖5顯示快速響應期間QRprd1相對較短情況,使得下衝補償不足,輸出電壓Vout仍有下衝情況。
圖6顯示在一種實施方式中,快速響應期間QRprd2相對較長情況下之相關訊號的波形示意圖。在一種實施方式中,舉例而言,當輸出電壓Vout自較高之位準(例如電壓V1)下降至較低之位準(例如電壓V2),且微分訊號Vdiff超過QR閾值訊號QRth時,PWM訊號產生電路33根據QR訊號QRsig,調整每一功率級電路31所對應之PWM訊號PWM1、PWM2與PWM3,使每一功率級電路31中對應之上橋功率開關(請參閱圖10A-10J中上橋功率開關UG),根據相關於QR訊號QRsig之QR脈波訊號QRpulse,同時導通一段快速響應期間QRprd2。圖6顯示快速響應期間QRprd2相對較長情況,使得下衝過度補償,輸出電壓Vout產生回鈴(ringback)情況。
圖7顯示在一種實施方式中,快速響應期間QRprd3根據微分訊號Vdiff超過QR閾值訊號QRth持續期間Prdth的長度,適應性地調整每個功率級電路31中的上橋開關導通時間之相關訊號的波形示意圖。在一種實施方式中,舉例而言,當輸出電壓Vout自較高之位準(例如電壓V1)下降至較低之位準(例如電壓V2),且微分訊號Vdiff超過QR閾值訊號QRth時,QR脈波訊號QRpulse的脈波寬度,根據微分訊號Vdiff超過QR閾值訊號QRth持續期間Prdth的長度而決定,並使
PWM訊號產生電路33根據QR脈波訊號QRpulse的脈波寬度,調整每一功率級電路31所對應之PWM訊號PWM1、PWM2與PWM3,使每一功率級電路31中對應之上橋功率開關(請參閱圖10A-10J中上橋功率開關UG),根據QR脈波訊號QRpulse的脈波寬度,同時導通一段快速響應期間QRprd3。
圖8顯示在一種實施方式中,快速響應期間QRprd4為一段預設的固定長度之相關訊號的波形示意圖。在一種實施方式中,舉例而言,當輸出電壓Vout自較高之位準(例如電壓V1)下降至較低之位準(例如電壓V2),且微分訊號Vdiff超過QR閾值訊號QRth時,QR脈波訊號QRpulse的脈波寬度,例如並不根據微分訊號Vdiff超過QR閾值訊號QRth持續期間Prdth的長度而決定,而是在微分訊號Vdiff超過QR閾值訊號QRth時,產生具有固定的預設脈波寬度的QR脈波訊號QRpulse,並使PWM訊號產生電路33根據QR脈波訊號QRpulse的脈波寬度,調整每一功率級電路31所對應之PWM訊號PWM1、PWM2與PWM3,使每一功率級電路31中對應之上橋功率開關(請參閱圖10A-10J中上橋功率開關UG),根據QR脈波訊號QRpulse的脈波寬度,同時導通一段預設長度的快速響應期間QRprd4。
圖9顯示相關PWM訊號之快速響應脈波與相間輪流脈波重疊之訊號波形示意圖。如圖9所示,於快速響應期間QRprd5中,根據QR脈波訊號QRpulse而在各PWM訊號PWM1、PWM2與PWM3中產生快速響應脈波,若與切換式電源供應器在電壓隨載下降操作模式而在各PWM訊號PWM1、PWM2與PWM3中產生的相間輪流脈波(如圖中虛線所示意)重疊時,各PWM訊號PWM1、PWM2與PWM3將保持在高位準的狀態,也就是保持對應的功率開關導通。
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之權利範圍。
所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。
2: 切換式電源供應器
21: 功率級電路
22: 控制電路
23: PWM訊號產生電路
24:QR訊號產生電路
241: 微分電路
243: 比較電路
PWM1: PWM訊號
QRsig: QR訊號
QRth: QR閾值訊號
Vdiff: 微分訊號
Vin: 輸入電壓
Vout: 輸出電壓
Vsense: 電壓感測訊號
Claims (30)
- 一種切換式電源供應器,包含: 至少一功率級電路,其中的每一功率級電路,用以根據對應之一脈寬調變(pulse width modulation, PWM) 訊號,而操作其中一功率開關,以將一輸入電壓轉換為一輸出電壓;以及 一控制電路,包括: 一脈寬調變訊號產生電路,與該至少一功率級電路耦接,用以根據該輸出電壓與一快速響應訊號,而產生該PWM訊號;以及 一快速響應訊號產生電路,與該脈寬調變訊號產生電路耦接,用以根據該輸出電壓,產生該快速響應訊號,該快速響應訊號產生電路包括: 一微分電路,用以對相關於該輸出電壓之一電壓感測訊號,執行一微分運算,而產生一微分訊號;以及 一比較電路,與該微分電路耦接,用以比較該微分訊號與一快速響應閾值訊號,產生該快速響應訊號,以於該微分訊號超過該快速響應閾值訊號時,決定使該脈寬調變訊號產生電路執行一快速響應程序。
- 如請求項1所述之切換式電源供應器,其中該快速響應訊號產生電路更包括一快速響應脈波產生器,與該比較電路耦接,用以根據該快速響應訊號,產生一快速響應脈波訊號。
- 如請求項1所述之切換式電源供應器,其中該切換式電源供應器包含複數個功率級電路,且於該快速響應程序中,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該PWM訊號,使每一個該功率級電路中對應之該功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段快速響應期間。
- 如請求項1所述之切換式電源供應器,其中該快速響應閾值訊號根據一電感電流漣波訊號、一輸出電容或/及該至少一功率級電路之相數而決定。
- 如請求項1所述之切換式電源供應器,其中該切換式電源供應器操作於一固定導通時間(constant ON time)模式。
- 如請求項1所述之切換式電源供應器,其中該快速響應閾值訊號包括一正快速響應閾值或/及一負快速響應閾值。
- 如請求項1所述之切換式電源供應器,其中當該切換式電源供應器操作於一電壓隨載下降(droop )操作模式中,於該輸出電壓之位準下降,且該微分訊號超過該快速響應閾值訊號時,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該功率級電路所對應之該PWM訊號,使每一該功率級電路中對應之一上橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段快速響應期間。
- 如請求項1所述之切換式電源供應器,其中當該切換式電源供應器操作於一電壓隨載下降(droop )操作模式中,於該輸出電壓之位準上升,且該微分訊號超過該快速響應閾值訊號時,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該功率級電路所對應之該PWM訊號,使每一該功率級電路中對應之一下橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段快速響應期間,或使每一該功率級電路中對應之一上橋功率開關與該下橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時皆不導通一段快速響應期間。
- 如請求項1所述之切換式電源供應器,其中該切換式電源供應器操作於一電壓隨載下降(droop) 操作模式,使得該脈寬調變訊號產生電路於一回授迴路(feedback loop)中,根據該輸出電壓與該快速響應訊號,產生該PWM訊號,而將該輸入電壓轉換為該輸出電壓。
- 如請求項9所述之切換式電源供應器,其中該脈寬調變訊號產生電路更根據一電壓定位訊號,而產生該PWM訊號,以下式調節該輸出電壓: Vout=VDAC-Iout*RLL 其中,Vout為輸出電壓,VDAC為相關於該電壓定位訊號之一要求位準,Iout為一輸出電流,RLL為一負載線電阻。
- 一種控制電路,用於一切換式電源供應器中,以將一輸入電壓轉換為一輸出電壓,該控制電路包含: 一脈寬調變訊號產生電路,與至少一功率級電路耦接,用以根據該輸出電壓與一快速響應訊號,而產生一PWM訊號;以及 一快速響應訊號產生電路,與該脈寬調變訊號產生電路耦接,用以根據該輸出電壓,產生該快速響應訊號,該快速響應訊號產生電路包括: 一微分電路,用以對相關於該輸出電壓之一電壓感測訊號,執行一微分運算,而產生一微分訊號;以及 一比較電路,與該微分電路耦接,用以比較該微分訊號與一快速響應閾值訊號,產生該快速響應訊號,以於該微分訊號超過該快速響應閾值訊號時,決定使該脈寬調變訊號產生電路執行一快速響應程序。
- 如請求項11所述之控制電路,其中該快速響應訊號產生電路更包括一快速響應脈波產生器,與該比較電路耦接,用以根據該快速響應訊號,產生一快速響應脈波訊號。
- 如請求項11所述之控制電路,其中該切換式電源供應器包含複數個功率級電路,且於該快速響應程序中,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該PWM訊號,使每一個該功率級電路中對應之一功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段快速響應期間。
- 如請求項11所述之控制電路,其中該快速響應閾值訊號根據一電感電流漣波訊號、一輸出電容或/及該至少一功率級電路之相數而決定。
- 如請求項11所述之控制電路,其中該切換式電源供應器操作於一固定導通時間(constant ON time)模式。
- 如請求項11所述之控制電路,其中該快速響應閾值訊號包括一正快速響應閾值或/及一負快速響應閾值。
- 如請求項11所述之控制電路,其中當該切換式電源供應器操作於一電壓隨載下降(droop )操作模式中,於該輸出電壓之位準下降,且該微分訊號超過該快速響應閾值訊號時,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該功率級電路所對應之該PWM訊號,使每一該功率級電路中對應之一上橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段快速響應期間。
- 如請求項11所述之控制電路,其中當該切換式電源供應器操作於一電壓隨載下降(droop )操作模式中,於該輸出電壓之位準上升,且該微分訊號超過該快速響應閾值訊號時,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該功率級電路所對應之該PWM訊號,使每一該功率級電路中對應之一下橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段快速響應期間,或使每一該功率級電路中對應之一上橋功率開關與該下橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時皆不導通一段快速響應期間。
- 如請求項11所述之控制電路,其中該切換式電源供應器操作於一電壓隨載下降(droop) 操作模式,使得該脈寬調變訊號產生電路於一回授迴路(feedback loop)中,根據該輸出電壓與該快速響應訊號,產生該PWM訊號,而將該輸入電壓轉換為該輸出電壓。
- 如請求項19所述之控制電路,其中該脈寬調變訊號產生電路更根據一電壓定位訊號,而產生該PWM訊號,以下式調節該輸出電壓: Vout=VDAC-Iout*RLL 其中,Vout為輸出電壓,VDAC為相關於該電壓定位訊號之一要求位準,Iout為一輸出電流,RLL為一負載線電阻。
- 一種快速響應方法,用於一切換式電源供應器中,以提高負載瞬變響應能力,該快速響應方法包含: 對相關於一輸出電壓之一電壓感測訊號,執行一微分運算,而產生一微分訊號; 比較該微分訊號與一快速響應閾值訊號,產生一快速響應訊號,以於該微分訊號超過該快速響應閾值訊號時,決定執行一快速響應程序;以及 於該快速響應程序中,該切換式電源供應器中之一脈寬調變訊號產生電路根據該快速響應訊號,調整一脈寬調變(pulse width modulation, PWM) 訊號,使得該切換式電源供應器中之至少一功率級電路中對應之一功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,導通或不導通一段快速響應期間。
- 如請求項21所述之快速響應方法,其中該至少一功率級電路其中的每一功率級電路,用以根據對應之該PWM 訊號,而操作其中該功率開關,以將一輸入電壓轉換為該輸出電壓。
- 如請求項21所述之快速響應方法,其中該切換式電源供應器包含複數個功率級電路,且於該快速響應程序中,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該PWM訊號,使每一個該功率級電路中對應之該功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段該快速響應期間。
- 如請求項21所述之快速響應方法,其中該快速響應閾值訊號根據一電感電流漣波訊號、一輸出電容或/及該至少一功率級電路之相數而決定。
- 如請求項21所述之快速響應方法,其中該切換式電源供應器操作於一固定導通時間(constant ON time)模式。
- 如請求項21所述之快速響應方法,其中該快速響應閾值訊號包括一正快速響應閾值或/及一負快速響應閾值。
- 如請求項21所述之快速響應方法,其中當該切換式電源供應器操作於一電壓隨載下降(droop )操作模式中,於該輸出電壓之位準下降,且該微分訊號超過該快速響應閾值訊號時,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該功率級電路所對應之該PWM訊號,使每一該功率級電路中對應之一上橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段該快速響應期間。
- 如請求項21所述之快速響應方法,其中當該切換式電源供應器操作於一電壓隨載下降(droop )操作模式中,於該輸出電壓之位準上升,且該微分訊號超過該快速響應閾值訊號時,該脈寬調變訊號產生電路根據該快速響應訊號,調整每一該功率級電路所對應之該PWM訊號,使每一該功率級電路中對應之一下橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時導通一段該快速響應期間,或使每一該功率級電路中對應之一上橋功率開關與該下橋功率開關,根據相關於該快速響應訊號之一快速響應脈波訊號,同時皆不導通一段該快速響應期間。
- 如請求項21所述之快速響應方法,其中該切換式電源供應器操作於一電壓隨載下降(droop) 操作模式,使得該脈寬調變訊號產生電路於一回授迴路(feedback loop)中,根據該輸出電壓與該快速響應訊號,產生該PWM訊號,而將該輸入電壓轉換為該輸出電壓。
- 如請求項29所述之快速響應方法,其中該脈寬調變訊號產生電路更根據一電壓定位訊號,而產生該PWM訊號,以下式調節該輸出電壓: Vout=VDAC-Iout*RLL 其中,Vout為輸出電壓,VDAC為相關於該電壓定位訊號之一要求位準,Iout為一輸出電流,RLL為一負載線電阻。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109109697A TWI742581B (zh) | 2020-03-23 | 2020-03-23 | 切換式電源供應器及其控制電路與快速響應方法 |
US17/145,402 US11381173B2 (en) | 2020-03-23 | 2021-01-11 | Switching regulator and control circuit thereof and quick response method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109109697A TWI742581B (zh) | 2020-03-23 | 2020-03-23 | 切換式電源供應器及其控制電路與快速響應方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202137685A TW202137685A (zh) | 2021-10-01 |
TWI742581B true TWI742581B (zh) | 2021-10-11 |
Family
ID=77746794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109109697A TWI742581B (zh) | 2020-03-23 | 2020-03-23 | 切換式電源供應器及其控制電路與快速響應方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11381173B2 (zh) |
TW (1) | TWI742581B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11233679B2 (en) * | 2020-06-01 | 2022-01-25 | Hewlett Packard Enterprise Development Lp | Phase adjustments for computer nodes |
CN114204811B (zh) * | 2022-01-10 | 2022-09-30 | 艾科微电子(深圳)有限公司 | 具电感值与电压调变锯齿波的固定导通时间电源转换器 |
TWI831689B (zh) * | 2023-05-04 | 2024-02-01 | 立錡科技股份有限公司 | 切換式電源供應器及其控制電路與快速響應方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200803130A (en) * | 2006-06-23 | 2008-01-01 | Mediatek Inc | Switching regulators and slope compensation method thereof |
CN101689073A (zh) * | 2007-05-03 | 2010-03-31 | 密克罗奇普技术公司 | 当检测到传感器或频率源激活的频率改变时对处于低功率休眠模式中的电子装置的中断/唤醒 |
US10177654B1 (en) * | 2017-10-23 | 2019-01-08 | Dialog Semiconductor (Uk) Limited | Dual-edge pulse width modulation for multiphase switching power converters with current balancing |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160020475A (ko) * | 2013-06-13 | 2016-02-23 | 첸트룸 미크로엘렉트로닉 드레스덴 악치엔게젤샤프트 | 전류 감지를 이용한 파워 컨버터 |
US10454369B2 (en) * | 2016-11-28 | 2019-10-22 | Texas Instruments Incorporated | Switched converter control using adaptive load current sensing and feedforward technique |
IT202000013627A1 (it) * | 2020-06-08 | 2021-12-08 | St Microelectronics Srl | Un circuito di controllo per un convertitore elettronico, relativo circuito integrato, convertitore elettronico e procedimento |
-
2020
- 2020-03-23 TW TW109109697A patent/TWI742581B/zh active
-
2021
- 2021-01-11 US US17/145,402 patent/US11381173B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200803130A (en) * | 2006-06-23 | 2008-01-01 | Mediatek Inc | Switching regulators and slope compensation method thereof |
CN101689073A (zh) * | 2007-05-03 | 2010-03-31 | 密克罗奇普技术公司 | 当检测到传感器或频率源激活的频率改变时对处于低功率休眠模式中的电子装置的中断/唤醒 |
US10177654B1 (en) * | 2017-10-23 | 2019-01-08 | Dialog Semiconductor (Uk) Limited | Dual-edge pulse width modulation for multiphase switching power converters with current balancing |
Also Published As
Publication number | Publication date |
---|---|
TW202137685A (zh) | 2021-10-01 |
US11381173B2 (en) | 2022-07-05 |
US20210296989A1 (en) | 2021-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10892686B2 (en) | Hysteretic control for transformer based power converters | |
TWI742581B (zh) | 切換式電源供應器及其控制電路與快速響應方法 | |
Su et al. | A novel phase-shedding control scheme for improved light load efficiency of multiphase interleaved DC–DC converters | |
USRE45773E1 (en) | Varying operation of a voltage regulator, and components thereof, based upon load conditions | |
Li et al. | Four-switch buck–boost converter based on model predictive control with smooth mode transition capability | |
TW201644170A (zh) | 具有分離的高頻及低頻路徑信號的快速暫態電力供應器 | |
US9735661B2 (en) | Mixed-mode power factor correction | |
TWI694666B (zh) | 轉換器及其驅動及控制方法 | |
WO2016038601A1 (en) | A voltage regulator module using a load-side auxiliary gyrator circuit | |
TWI535171B (zh) | 多輸出降壓式交換電容直流對直流電壓轉換器 | |
Abu-Qahouq et al. | Multiphase voltage-mode hysteretic controlled VRM with DSP control and novel current sharing | |
Tattiwong et al. | Analysis design and experimental verification of a quadratic boost converter | |
Erickson et al. | The discontinuous conduction mode | |
Wang et al. | A reconfigurable transient optimizer applied to a four-phase buck converter for optimizing both DVS and load transient responses | |
TW200425618A (en) | Alternative control method for application to boost converter | |
CN115987093A (zh) | 基于电容电荷平衡的SC-Buck变换器动态响应控制方法及装置 | |
Yerra et al. | Single stage three-level interleaved buck converter with current self-balancing for improved point-of-load performance | |
Zeng et al. | 11.10 A 12V-lnput 1V-1.8 V-output 93.7% peak efficiency dual-inductor quad-path hybrid DC-DC converter | |
Lin et al. | Digital multiphase buck converter with current balance/phase shedding control | |
CN113497544B (zh) | 切换式电源供应器及其控制电路与快速响应方法 | |
US11777405B2 (en) | Boost off time adaptive adjustment unit and power converter comprising the same | |
CN111464002A (zh) | 一种电压调节装置 | |
Zhang et al. | An integrated SIDO boost power converter with adaptive freewheel switching technique | |
Tang et al. | A 2MHz Constant-Frequency AOT V 2 Buck Converter with Adaptive Dead Time Control for Data Centers | |
Jiang et al. | A 1A, 20MHz/100MHz dual-inductor 4-output buck converter with fully-integrated bond-wire-based output filters for ripple reduction |