CN111459218A - 温度流量控制装置及其控制方法 - Google Patents

温度流量控制装置及其控制方法 Download PDF

Info

Publication number
CN111459218A
CN111459218A CN202010439980.0A CN202010439980A CN111459218A CN 111459218 A CN111459218 A CN 111459218A CN 202010439980 A CN202010439980 A CN 202010439980A CN 111459218 A CN111459218 A CN 111459218A
Authority
CN
China
Prior art keywords
heating
pipeline
water
temperature
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010439980.0A
Other languages
English (en)
Inventor
黎微明
李翔
王新征
许所昌
李勇
左敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Leadmicro Nano Technology Co Ltd
Original Assignee
Jiangsu Leadmicro Nano Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Leadmicro Nano Technology Co Ltd filed Critical Jiangsu Leadmicro Nano Technology Co Ltd
Priority to CN202010439980.0A priority Critical patent/CN111459218A/zh
Publication of CN111459218A publication Critical patent/CN111459218A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

一种温度流量控制装置,其包括加热管道、与加热管道并联设置的冷水管道、用以输送水的动力元件以及混合器。加热管道包括并联设置的第一加热管道与第二加热管道,第一加热管道中设有第一加热元件以及第一流量控制阀;第二加热管道中设有第二加热元件以及第二流量控制阀。冷水管道中设有第三流量控制阀。混合器设有第一管道、第二管道、混合腔以及第三管道,第一加热管道的出口与第二加热管道的出口先混合后再与第一管道连通,冷水管道的出口与第二管道连通。本发明能够实现对水的温度和流量的精细控制。本发明还涉及一种温度流量控制装置的控制方法。

Description

温度流量控制装置及其控制方法
技术领域
本发明涉及一种温度流量控制装置及其控制方法,能够应用于半导体技术领域。
背景技术
一般而言,半导体湿法工艺中的晶圆需要清洗,且不同的工艺需要在不同温度的去离子水下进行,以达到需要的清洗及反应条件。清洗的主要目的在于提高去除化学品残留及颗粒物的能力。
相关技术中主要是采用在线式去离子水加热器,来实现半导体湿法工艺对于去离子水的温度控制的需求。然而,半导体行业中在线式去离子水加热控制系统对温度控制以及流量控制的要求较高(例如,温度需控制在±0.5℃,流量误差±1%,温度响应速度300s以内到达稳态等),相关技术中的加热器及其控制系统无法满足要求。具体体现在,相关技术中的加热器加热效率较低,一般小于75%,控制流量较大情况下,加热效率更低。相关技术中的加热器加热响应速度较慢,在加热控制过程中,导致系统控制有严重滞后性,对系统温度控制精度有较大影响。另外,加热器的加热温度不均匀且无法实现高精度大流量控制,导致出口温度波动较大,控制不稳定。
发明内容
本发明的目的在于提供一种能够实现精细控制的温度流量控制装置及其控制方法。
为实现上述目的,本发明采用如下技术方案:一种温度流量控制装置,其包括用以对水进行加热的加热管道、与所述加热管道并联设置的冷水管道、用以将水输送至所述加热管道和/或所述冷水管道的动力元件、以及与所述加热管道的出口与所述冷水管道的出口均相连的混合器;其中所述加热管道包括并联设置的第一加热管道与第二加热管道,所述第一加热管道中设有用以对水进行加热的第一加热元件以及用以调节水的流量的第一流量控制阀,所述第二加热管道中设有用以对水进行加热的第二加热元件以及用以调节水的流量的第二流量控制阀;所述冷水管道中设有用以调节水的流量的第三流量控制阀;所述混合器设有第一管道、第二管道、混合腔以及第三管道,其中所述第一管道、所述第二管道、所述第三管道均与所述混合腔连通,所述第一管道与所述第二管道为入口管道,所述第三管道为出口管道;所述第一加热管道的出口与所述第二加热管道的出口先混合后再与所述第一管道连通,所述冷水管道的出口与所述第二管道连通。
作为本发明进一步改进的技术方案,所述第一加热元件与所述第二加热元件分别为一个加热器;或者
所述第一加热元件与所述第二加热元件分别为一个加热器的两个部分。
作为本发明进一步改进的技术方案,所述加热器至少包括第一加热段以及第二加热段,其中所述第一加热段与所述第二加热段能够被独立控制以对水进行加热。
作为本发明进一步改进的技术方案,所述第一管道和所述第二管道位于所述混合腔的两侧,所述第三管道位于所述混合腔的顶部;所述混合器还设有位于所述混合腔内的锥状体,所述锥状体从下向上逐渐变小。
作为本发明进一步改进的技术方案,所述第一加热管道中还设有第一流量计,所述第一流量控制阀连接在所述第一加热元件与所述第一流量计之间;所述第二加热管道中还设有第二流量计,所述第二流量控制阀连接在所述第二加热元件与所述第二流量计之间。
作为本发明进一步改进的技术方案,所述冷水管道中还设有连接在所述第三流量控制阀的下游的第三流量计。
作为本发明进一步改进的技术方案,所述温度流量控制装置还包括连接在所述混合器的下游的第四流量计。
作为本发明进一步改进的技术方案,所述温度流量控制装置包括与所述动力元件的出口相连的第一压力传感器、与所述混合器的第一管道相连的第一温度传感器、与所述混合器的出口相连的第二温度传感器以及连接在所述第四流量计的下游的第二压力传感器,其中所述第一压力传感器用以检测水的进口压力,所述第一温度传感器用以检测流出所述第一加热管道与流出所述第二加热管道且相混合后的水的混合温度,所述第二温度传感器用以检测水的出口温度,所述第二压力传感器用以检测水的出口压力。
本发明还涉及前述温度流量控制装置的控制方法,其包括如下步骤:
S1:当所述混合器的第三管道的出口温度低于第一温度设定值时,关闭所述冷水管道,开启所述第一加热管道与所述第二加热管道,利用所述第一加热元件与所述第二加热元件的全功率对水进行加热;
S2:当所述混合器的第三管道的出口温度到达所述第一温度设定值时,使所述第一加热元件与所述第二加热元件在限定输出功率范围内进行PID调节,以调整对水的加热温度;
S3:当所述温度流量控制装置到达稳态后,解除步骤S2中所述第一加热元件与所述第二加热元件的限定输出功率范围,进行PID自动调节,以将水的温度控制在需要的范围内;
S4:当所述混合器的第三管道的出口温度高于第二温度设定值时,打开所述冷水管道,对水的温度进行调节。
作为本发明进一步改进的技术方案,在步骤S4中,当打开所述冷水管道时,同时减少所述第一加热管道的出口和/或所述第二加热管道的出口的流量,使减少的流量和增加的流量一致。
相较于现有技术,本发明通过设置第一加热元件与第二加热元件,有利于更好地调节其对水的加热功率;通过将第一加热管道的出口与第二加热管道的出口先混合后再与第一管道连通,使得热水的温度均匀性更好,能够实现对温度的精细控制;通过设置混合器,使第一管道中的热水与第二管道中的冷水能够在混合腔中实现均匀混合,提高了混合后水温的精确性。另外,通过设置流量控制阀来调节相应管道的流量,能够实现更好的流量调节,实现对流量的精细控制。通过对温度和流量的控制,实现了对出口处水的精细控制。
附图说明
图1是本发明温度流量控制装置的原理图。
图2是图1中加热器的部分立体示意图。
图3是图2的右视图。
图4是沿图2中A-A线的剖面示意图。
图5是图2的俯视图。
图6是沿图3中B-B线的剖面示意图。
图7是图6中画图部分C的局部放大图。
图8是图1中混合器的立体示意图。
图9是图8的剖视图。
图10是混合器的罐体和锥状体的剖视图。
图11是混合器去除第三管道和盖体后的剖视图。
图12是根据本发明的控制方法所得到的出口温度的曲线图。
图13是热水采用两路控制时的流量控制曲线图。
具体实施方式
下面将结合附图详细地对本发明示例性具体实施方式进行说明。如果存在若干具体实施方式,在不冲突的情况下,这些实施方式中的特征可以相互组合。当描述涉及附图时,除非另有说明,不同附图中相同的数字表示相同或相似的要素。以下示例性具体实施方式中所描述的内容并不代表与本发明相一致的所有实施方式;相反,它们仅是与本发明的权利要求书中所记载的、与本发明的一些方面相一致的装置、产品和/或方法的例子。
在本发明中使用的术语是仅仅出于描述具体实施方式的目的,而非旨在限制本发明的保护范围。在本发明的说明书和权利要求书中所使用的单数形式的“一种”、“所述”或“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。
应当理解,本发明的说明书以及权利要求书中所使用的,例如“第一”、“第二”以及类似的词语,并不表示任何顺序、数量或者重要性,而只是用来区分特征的命名。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。除非另行指出,本发明中出现的“上”、“下”等类似词语只是为了便于说明,而并非限于某一特定位置或者一种空间定向。“包括”或者“包含”等类似词语是一种开放式的表述方式,意指出现在“包括”或者“包含”前面的元件涵盖出现在“包括”或者“包含”后面的元件及其等同物,这并不排除出现在“包括”或者“包含”前面的元件还可以包含其它元件。本发明中如果出现“若干”,其含义是指两个以及两个以上。
请参图1所示,本发明揭示了一种温度流量控制装置,其能够应用于半导体技术领域,用以对晶圆进行清洗。所述温度流量控制装置包括用以对水进行加热的加热管道6、与所述加热管道6并联设置的冷水管道7、用以将水输送至所述加热管道6和/或所述冷水管道7的动力元件8、与所述加热管道6的出口610与所述冷水管道7的出口710均相连的混合器4、以及用以控制所述温度流量控制装置的控制器(未图示)。在本发明的一种实施方式中,所述水为“超纯水”,其含义是指几乎去除氧和氢以外所有原子的水。超纯水(UPW)因其纯度较高,因而具有一定的“腐蚀性”,各种离子、分子、有机物分子在水中有一定的溶解度。为了避免对超纯水产生污染,超纯水的储存与运输多以氟塑料(例如PFA、PVDF、PTFE等)或石英材质为主。
在本发明的一种实施方式中,所述动力元件8为水泵。优选地,所述水泵为循环水泵,以对水进行输送。
所述加热管道6包括并联设置的第一加热管道61与第二加热管道62。所述第一加热管道61中设有用以对水进行加热的第一加热元件611、用以调节水的流量的第一流量控制阀612以及位于所述第一流量控制阀612的下游的第一流量计613。所述第一流量控制阀612连接在所述第一加热元件611与所述第一流量计613之间。在本发明的一种实施方式中,所述第一流量控制阀612为隔膜阀。所述第一流量计613用以测量水的流量。所述第一流量控制阀612用以控制自所述第一加热管道61流出的水的流量。
所述第二加热管道62中设有用以对水进行加热的第二加热元件621、用以调节水的流量的第二流量控制阀622以及位于所述第二流量控制阀622的下游的第二流量计623。所述第二流量控制阀622连接在所述第二加热元件621与所述第二流量计623之间。在本发明的一种实施方式中,所述第二流量控制阀622为隔膜阀。所述第二流量计623用以测量水的流量。所述第二流量控制阀622用以控制自所述第二加热管道62流出的水的流量。
所述冷水管道7中设有用以调节水的流量的第三流量控制阀71以及连接在所述第三流量控制阀71的下游的第三流量计72。所述第三流量计72用以测量水的流量。所述第三流量控制阀71用以控制自所述冷水管道2流出的水的流量。
所述第一加热元件611与所述第二加热元件621分别为单独的加热器5;或者所述第一加热元件611与所述第二加热元件621分别为一个加热器5的两个部分,例如第一加热元件611为加热器5的下半部分,第二加热元件621为加热器5的上半部分。当然,在其它实施方式中,所述第一加热元件611也可以为加热器5的上半部分,所述第二加热元件621为加热器5的下半部分。
请参照图2所示,在本发明的一种实施方式中,所述加热器5具有筒式加热器结构,从上部进水,上部出水。优选地,所述加热器5为一种即热式超纯水加热器;当然,本发明中所使用的术语“即热式”旨在表明本发明的加热器5能够高效地对水进行加热,实现冷水进、热水出的功能,即冷水能够在很短的时间内被加热成热水。
具体而言,请参照图2至图7所示,在本发明图示的实施方式中,所述加热器5包括壳体10、固定在所述壳体10上的支架20、位于所述壳体10内的若干加热组件30以及安装在所述壳体10上的入水接头40、出水接头50、泄压阀60与电极引出接头70。
请参照图4所示,在本发明图示的实施方式中,所述壳体10大致呈圆柱形,其包括内壳体1、外壳体2以及位于所述内壳体1与所述外壳体2之间的保温层3。所述内壳体1是由氟塑料(例如PFA、PVDF、PTFE中的至少一种)或石英制成,没有金属离子,以免污染超纯水。从结构上看,所述内壳体1设有顶壁11、底壁12、与所述顶壁11与所述底壁12均相连的筒体13、以及位于所述顶壁11与所述底壁12之间且用以容纳水的内部空间14。在本发明图示的实施方式中,所述内部空间14是由所述顶壁11、所述底壁12以及所述筒体13共同围成,所述内部空间14呈圆柱状。所述顶壁11、所述底壁12以及所述筒体13可以是分开制作的元件,然后这些元件通过例如焊接等方式连成一个整体。
所述保温层3包裹在整个所述内壳体1的外侧。如此设置,一方面,可以起到较高的保温功能;一方面,可以避免操作人员接触所述加热器5时被烫伤。
所述外壳体2是由金属材料制成,其包裹在整个所述保温层3的外侧,以作为压力容器的保护壳。如此设置,能够使所述加热器5承受相对较大的压力,避免加热器5中的水因加热膨胀、爆裂而破坏设备以及造成人身风险。
在本发明图示的实施方式中,所述支架20包括上、下间隔布置的两个,其中每一个支架20均包括套接在所述外壳体2上的圆圈部201以及与所述圆圈部201一体延伸的安装部202。所述圆圈部201的周壁是封闭式的,以能够进一步提高所述外壳体2的承压能力,降低壳体10的爆破风险。所述安装部202设有用以将所述加热器5安装到其它部件上的安装孔203。
请参照图4所示,在本发明图示的实施方式中,所述若干加热组件30位于所述内部空间14内且间隔布置,其中每一个加热组件30包括支撑杆301以及固定在所述支撑杆301上的加热元件302。本发明通过设置若干加热组件30,能够对不同区域的水同时进行加热,提高了加热的效率。
在本发明图示的实施方式中,所述入水接头40、所述出水接头50、所述泄压阀60与所述电极引出接头70均安装在所述加热器5的顶部,即所述外壳体2的顶面。所述入水接头40与所述出水接头50水接头均可采用入珠式PFA焊接接头,其中所述入水接头40设有与所述内部空间14相连通的入水口401,所述出水接头50设有与所述内部空间14相连通的出水口501。当超纯水温度失控气化后、体积膨胀时,通过打开所述泄压阀60能够泄压,以保护设备及人身安全。所述电极引出接头70与加热元件302相连,以提供所述加热元件302工作时所需要的电源。所述电极引出接头70与所述外壳体2绝缘且密封设置。
具体地,请参照图4所示,本发明的所述加热器5还包括位于所述内部空间14的底部的第一隔板15、位于所述内部空间14的顶部的第二隔板16以及位于所述内部空间14的轴线上的入水管17。其中,所述第一隔板15高于所述底壁12,所述第二隔板16低于所述顶壁11;所述内部空间14包括位于所述第一隔板15与所述底壁12之间且与所述入水口401相连通的入口腔体141、位于所述第二隔板16与所述顶壁11之间且与所述出水口501相连通的出口腔体142、以及位于所述第一隔板15与所述第二隔板16之间的加热腔体143。所述第一隔板15设有连通所述入口腔体141与所述加热腔体143的若干第一分流孔151。优选地,所述若干第一分流孔151均匀分布在所述第一隔板15上。所述第二隔板16设有连通所述加热腔体143与所述出口腔体142的若干第二分流孔161。优选地,所述若干第二分流孔161均匀分布在所述第二隔板16上。
所述入水管17设有入水通道171。所述入水通道171的顶部与所述入水口401相连通,所述入水通道171的底部与所述入口腔体141相连通。所述入水管17还设有与所述入口腔体141相连通的若干第一壁孔172。优选地,所述若干第一壁孔172均匀分布在所述入水管17的管壁上,以便于将入水通道171中的水均匀分散到入口腔体141中。所述入水管17是由氟塑料制成,所述入水管17的底面焊接固定在所述底壁12上,所述入水管17的顶部贯穿所述出口腔体142以与入水接头40相连。在本发明图示的实施方式中,所述泄压阀60与所述出口腔体142相连通,以在必要的时候通过打开泄压阀60进行泄压。
请参照图6所示,所述支撑杆301沿所述内部空间14的两个圆周C1、C2均匀分布。如此设置,提高了加热元件302在加热水时的温度均匀性。请参照图4所示,所述支撑杆301呈中空状,其包括上下贯穿的中间通道3011,所述中间通道3011与所述内部空间14相连通。优选地,所述支撑杆301是由氟塑料制成,没有金属离子污染。所述支撑杆301的底面焊接固定在所述底壁12上,所述支撑杆301的顶面焊接固定在所述第二隔板16上。所述支撑杆301设有与所述入口腔体141相连通的若干第二壁孔3012,使入口腔体141中的水能够穿过第二壁孔3012进入到中间通道3011中。
在本发明图示的实施方式中,所述加热元件302为缠绕在相应支撑杆301上的加热丝。所述加热丝设有用以连接电源的加热引线3021,所述加热引线3021穿过所述支撑杆301且自下而上穿过所述中间通道3011以连接到所述电极引出接头70上。
所述加热丝与水接触的表面具有以下材料中的至少一种:PFA、PVDF、PTFE、石英。如此设计,使所述加热丝对水没有金属离子污染。此外,所述加热器5还包括位于所述内部空间14内且与所述加热元件302相连的热电偶(未图示),所述热电偶能够与外部设备的PID系统连接,用以调节所述加热元件302的温度,从而调节所需的水温。当然,在其它实施方式中,所述加热丝也可以采用石英电阻薄膜加热,即在半导体级石英管外面覆盖电阻金属膜,通过热传导将石英管内的水加热,加热效率更高,响应速度更快,控制精度更高。在本发明的一种实施方式中,所述支撑杆301为石英管,所述加热元件302为缠绕在石英管上的加热丝。所述加热器5中与水接触的元件主要是石英管和接头。在本发明的一种实施方式中,石英管是一节一节串联形成的,如此设计能够降低加热器5的整体高度。
本发明图示实施方式中的加热器5的工作原理如下:首先,温度较低的水自位于顶部的入水口401流入,并沿着入水管17的入水通道171向下流动;然后,水穿过入水管17的第一壁孔172分流到入口腔体141中;然后,一部分水穿过第二壁孔3012进入到支撑杆301的中间通道3011中;另一部分水穿过第一隔板15的第一分流孔151进入加热腔体143;然后,这两部分水进一步向上流动,在此过程中,加热元件302释放热量以对水进行加热;然后,加热过后的水分别自第二隔板16的第二分流孔161以及中间通道3011的顶部进入到出口腔体142中;最后,温度较高的水自出水口501流出加热器5,流向所述混合器4。
在本发明图示的实施方式中,所述入水口401位于所述加热器5的顶部,并通过所述入水管17将水引向位于底部的入口腔体141。当然,在其它实施方式中,所述入水口401也可以位于所述加热器5的底部,此时可以省略入水管17或者减少入水管17的长度。
在本发明图示的实施方式中,隔板的数量(所述第一隔板15与所述第二隔板16)为两个。当然,在其它实施方式中,所述隔板的数量也可以为三个以及三个以上且沿着竖直方向间隔布置,以进一步提高水温的均匀性。
在本发明的其它实施方式中,所述加热器5也可以为分段式的加热器,即所述加热器5至少包括第一加热段以及第二加热段,其中所述第一加热段与所述第二加热段能够被独立控制以对水进行加热。当然,在一些实施方式中,所述加热器5也可以包括上、中、下三段加热部,分别对上、中、下区域进行温度控制,实现温度逐级调控,提高温度控制的精度。当水进入到加热器5的底部时,开启下段的加热部;水从底部到顶部过程中,分别控制中段与上段的加热部,实现温度从底部到顶部逐级增加。在水温基本稳定时,只轻微调控顶段的加热部,以实现温度微量调控。相较于整体式的加热器5,在大功率的加热调节下,分段式的加热器对温度的波动范围较小,能更好地提高温度控制的稳定性与精度,避免出口温度忽大忽小。在本发明的一种实施方式中,所述加热元件302也可以为螺旋盘状的加热丝。加热丝可以为多组,以提高加热功率以及温度控制的稳定性。在本发明的一种实施方式中,所述出水口501也可以为两个,且分别位于所述入水管17的两侧;此时,所述加热器5还包括将这两个出水口501进行混合的混合管(未图示),以提高水温的均匀性。
请参照图8至图11所示,本发明的实施方式揭示了一种混合器4,其用于精准地调节从所述加热管道6和/或所述冷水管道7排出的水的温度。所述混合器4包括具有混合腔400的罐体401、连接在所述加热管道6和所述罐体401之间以将从所述加热管道6排出的热水输送到所述混合腔400内的第一管道41、用于向所述罐体401的所述混合腔400内输送冷水的第二管道42、将在所述混合腔400内的水排出所述罐体401的第三管道43、对所述第一管道41内的水进行温度检测的第一检测件(未图示)、以及对所述第三管道43内的水进行温度检测的第二检测件(未图示)。所述第一管道41和所述第二管道42为入口管道且设置于所述罐体401的下部,所述第三管道43为出口管道且设置于所述罐体401的顶部。
结合图9和图10所示,所述罐体401还具有安装所述第一管道41的第一开孔411、安装所述第二管道42的第二开孔421及安装所述第三管道43的第三开孔431,所述第一开孔411、所述第二开孔421和所述第三开孔431均与所述混合腔400连通,所述第一开孔411、所述第二开孔421位于所述罐体401的下部,所述第三开孔431位于所述罐体401的顶部。从所述加热管道6排出的热水经所述第一管道41输送到所述罐体401的所述混合腔400内,从所述冷水管道7排出的冷水经所述第二管道42输送到所述混合腔400内,冷水和热水在所述混合腔400内混合之后从所述第三管道43排出。为保证从所述第三管道43排出的水的温度在预设范围内,所述第一检测件和所述第二检测件分别实时检测所述第一管道41和所述第三管道43内的水的温度。在所述第三管道43内的水的温度超出预设值时,所述控制器根据所述第一检测件和所述第二检测件检测到的水的温度调整所述第二管道42内的水的流量,直到所述第二检测件检测到的所述第三管道43内的水的温度在预设范围内。所述第一检测件和所述第二检测件为温度传感器。
参照图9所示,所述罐体401包括本体部44和盖体45,所述混合腔400由所述本体部44和所述盖体45围设而成。所述本体部44和所述盖体45由氟材料或者石英制成,以避免金属离子污染。二者成型之后通过焊接工艺组装在一起,例如,选用氟树脂接头进行焊接。其中,所述第一开孔411和所述第二开孔421设置在所述本体部44的下部,所述第三开孔431设置在所述盖体45上。
继续参照图9所示,定义与所述第一管道41的中心线平行的方向为左右方向、与所述第三管道43的中心线平行的方向为上下方向、与左右方向和上下方向均正交的方向为前后方向。在下文描述中,上、下、左、右、前、后被用来描述相关元件之间的位置关系,使描述一个元件与另一个元件的位置关系的说明变得简单,但该些方位上的描述对技术本身不产生任何限定意义。
结合图11所示,在本发明图示的实施方式中,所述罐体401整体呈正方体状,所述混合腔400呈圆柱体状。所述混合腔400的中心线平行于上下方向,所述第一管道41的中心线和所述第二管道42的中心线相互平行且平行于左右方向,所述第三管道43的中心线平行于上下方向,即所述混合腔400的中心线与所述第一管道41的中心线和所述第二管道42的中心线均垂直,所述混合腔400的中心线与所述第三管道43的中心线平行。在前后方向上,所述第一管道41的中心线和所述第二管道42的中心线之间存在一定距离。所述第一管道41的中心线和所述第二管道42的中心线与所述混合腔400的中心线均不相交,并且所述第一管道41的中心线和所述第二管道42的中心线分别位于所述混合腔400的中心线的两侧,从而使得从所述第一管道41和所述第二管道42进入所述混合腔400的水更好地混合在一起。
在其它实施方式中,所述第一管道41的中心线和所述第二管道42的中心线可以不相互平行,只要二者不重合即可。如此设计,使得从所述第一管道41和所述第二管道42进入所述混合腔400的水能更快、更均匀的混合在一起。
参照图9所示,进一步地,在所述混合腔400内设有锥状体46,所述锥状体46位于所述第一开孔411和所述第二开孔421之间。所谓所述锥状体46就是沿某一方向其外轮廓逐渐变小的结构,外轮廓的平行于该方向的轮廓线可以是线段,如圆锥状体对应的轮廓线,也可以是圆弧,如球面体的对应的轮廓线,外轮廓的整个表面可以是圆滑过渡的,也可以是非圆滑过渡的,如在圆锥状体或球面体的表面做了多个凸起和凹槽。
在本发明揭示的实施方式中,所述锥状体46为圆锥状体,且所述锥状体46的整体轮廓在靠近所述第三管道43的方向上逐渐变小,即所述锥状体46的直径在靠近所述第三管道43的方向上逐渐变小。并且,所述锥状体46的中心线、所述混合腔400的中心线和所述第三管道43的中心线相互重合。
由于所述混合腔400的中部设有在靠近所述第三管道43的方向上直径逐渐变小的所述锥状体46,并且所述第一管道41的中心线和所述第二管道42的中心线在前后方向上分别位于所述混合腔400的中心线的两侧,因此,从所述第一管道41和所述第二管道42流入所述混合腔400的两股水流均匀混合之后旋转上升,进而从所述第三管道43排出。在本发明图示的实施方式中,所述锥状体46和所述罐体401是分开成型之后通过焊接组装在一起。当然,在其它实施方式中,也可以将二者一体成型。
本发明的混合器4设置所述第一管道41和所述第二管道42向所述罐体401的所述混合腔400内输入冷水和热水,且所述第一管道41的中心线和所述第二管道42的中心线不重合,使得从所述第一管道41和所述第二管道42进入所述混合腔400的水能更快、更均匀的混合在一起;在所述混合腔400内设有锥状体46,使得从所述第一管道41和所述第二管道42流入所述混合腔400的两股水流形成漩涡之后旋转上升,进而从所述第三管道43排出,由于水流在混合腔400内形成漩涡,因而在短暂的时间内即迅速混合均匀,提高了混合后水温的精确性;所述本体部44和所述盖体45由氟材料或者石英制成,以避免金属离子污染;另外,设置所述第一检测件和所述第二检测件分别实时监控所述第一管道41和所述第三管道43内的水的温度,并且设置所述控制件结合所述第一检测件和所述第二检测件检测到的水的温度调整所述第二管道42内的水的流量,从而精确地将从所述第三管道43流出的水的温度控制在预设范围内。本发明混合器4结构简单、生产、制造成本较低且温度控制精度较高;同时,通过所述混合器4对最终排出的水的温度进行调节,降低了对所述加热器的温度控制的精度的要求、降低了研发、制造成本。
请参照图1所示,本发明图示的实施方式中的温度流量控制装置还包括与所述动力元件8的出口相连的第一压力传感器81、与所述混合器4的第一管道41相连的第一温度传感器82、与所述混合器4的出口相连的第二温度传感器83、连接在所述混合器4的下游的第四流量计84以及连接在所述第四流量计84的下游的第二压力传感器85,其中所述第一压力传感器81用以检测水的进口压力,所述第一温度传感器82用以检测流出所述第一加热管道61与流出所述第二加热管道62且相混合后的水的混合温度,所述第二温度传感器83用以检测水的出口温度,所述第二压力传感器85用以检测水的出口压力。
本发明的温度流量控制装置的工作原理如下:
首先,水通过动力元件8被泵送到第一加热元件611与第二加热元件621中;然后,根据工艺设定的温度,第一加热元件611与第二加热元件621对水进行加热;最后,被加热后的水经混合器4混合后流出,进入到下一工序。由于加热元件分两路进行同时加热,可以大大提高设备的加热速度及设备大流量处理能力。所述冷水管道7进冷水,根据出口温度及流量,选择性地打开或者关闭。例如,当出口温度较高时,关闭第一加热管道61与第二加热管道62,可以快速对出口的水进行降温控制,提高系统温度响应的速度。
本发明还涉及上述温度流量控制装置的控制方法,其包括如下步骤:
S1:当所述混合器4的第三管道43的出口温度低于第一温度设定值T1时,关闭所述冷水管道7,开启所述第一加热管道61与所述第二加热管道62,利用所述第一加热元件611与所述第二加热元件621的全功率对水进行加热;
S2:当所述混合器4的第三管道43的出口温度到达所述第一温度设定值T1时,使所述第一加热元件611与所述第二加热元件621在限定输出功率范围内进行PID调节,以调整对水的加热温度;
S3:当所述温度流量控制装置到达稳态后,解除步骤S2中所述第一加热元件611与所述第二加热元件621的限定输出功率范围,进行PID自动调节,以将水的温度控制在需要的范围内;
S4:当所述混合器4的第三管道43的出口温度高于第二温度设定值T2时,打开所述冷水管道7,对水的温度进行调节。
在步骤S4中,当打开所述冷水管道7时,同时减少所述第一加热管道61的出口614和/或所述第二加热管道62的出口624的流量,使减少的流量和增加的流量一致。在本发明的一种实施方式中,该冷水管道7直接采用不加热的冷水和所述第一加热管道61与所述第二加热管道62中的热水在混合器4的内部进行热量交互。该控制阶段需要同时减少所述第一加热管道61与所述第二加热管道62的出水流量,使得加热支路减少的流量和冷水管道7增加的流量一致,保证出口流量稳定,热量交换后能实现出口温度的快速降低。
传统的PID控制会根据设定温度,PID输出会从零开始慢慢增加。相应地,加热器5的加热输出功率慢慢输出。然而,由于加热的滞后性,这会导致加热器5全功率加热后出现温度超调及延长系统稳态时间的问题。请参照图12所示,本发明的温度控制方法采用改进型PID控制,相对于传统的PID控制,响应速度及到达稳态时间会被缩短。具体而言,本发明的温度控制方法采用快速PID控制方案,前期加热器采用全功率加热,当出口温度达到第一温度设定值T1(根据系统出口温度升温曲线来实际调节并设置),切换至PID输出限制功率范围内进行调节(PID死区控制),可以避免PID输出波动较大。待系统趋于稳定后再切换到PID稳态加热控制,实现对温度的快速稳定。相较于传统的PID控制方法,本发明的温度控制方法能够提高系统温度快速响应、缩短稳定时间、减少系统温度的波动性。
所谓PID死区控制,是指控制加热器5的加热输出功率的输出范围的PID调节。根据进水温度t0(℃)、出水温度t(℃)、水流量(L/min),加热器5的功率(Kw),水的比热容c,加热器5的效率n(%),且根据Q=cmΔt,可以通过PLC控制器来实时计算出当前需要加热器5的功率。其中:Q表示热量、c表示比热容、m表示物体的质量、Δt:表示物体的变化温度,即t-t0。在理论控制输出范围内设置余量(例如10%,可以根据实际情况灵活调整),最终可以控制PID一个输出范围。当系统最终稳态后,切换到PID自动控制。
本发明图示的实施方式中的流量控制方法采用两路去离子水控制方法,图13为当单路设定20L/min时所得到的流量控制曲线图,从图中可以看出其流量的稳定性及精度较好。
相较于现有技术,本发明通过设置第一加热元件611与第二加热元件621,有利于更好地调节其对水的加热功率;通过将第一加热管道61的出口614与第二加热管道621的出口624先混合后再与混合器4连通,使得热水的温度均匀性更好,能够实现对温度的精细控制;另外,通过设置流量控制阀来调节相应管道中水的流量,能够实现更好的流量调节,实现对水流量的精细控制。
以上实施方式仅用于说明本发明而并非限制本发明所描述的技术方案,对本发明的理解应该以所属技术领域的技术人员为基础,尽管本说明书参照上述的实施方式对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (10)

1.一种温度流量控制装置,其特征在于:包括用以对水进行加热的加热管道(6)、与所述加热管道(6)并联设置的冷水管道(7)、用以将水输送至所述加热管道(6)和/或所述冷水管道(7)的动力元件(8)、以及与所述加热管道(6)的出口与所述冷水管道(7)的出口均相连的混合器(4);其中所述加热管道(6)包括并联设置的第一加热管道(61)与第二加热管道(62),所述第一加热管道(61)中设有用以对水进行加热的第一加热元件(611)以及用以调节水的流量的第一流量控制阀(612),所述第二加热管道(62)中设有用以对水进行加热的第二加热元件(621)以及用以调节水的流量的第二流量控制阀(622);所述冷水管道(7)中设有用以调节水的流量的第三流量控制阀(71);所述混合器(4)设有第一管道(41)、第二管道(42)、混合腔(400)以及第三管道(43),其中所述第一管道(41)、所述第二管道(42)、所述第三管道(43)均与所述混合腔(400)连通,所述第一管道(41)与所述第二管道(42)为入口管道,所述第三管道(43)为出口管道;所述第一加热管道(61)的出口(614)与所述第二加热管道(62)的出口(624)先混合后再与所述第一管道(41)连通,所述冷水管道(7)的出口与所述第二管道(42)连通。
2.如权利要求1所述的温度流量控制装置,其特征在于:所述第一加热元件(611)与所述第二加热元件(621)分别为单独的加热器(5);或者
所述第一加热元件(611)与所述第二加热元件(621)分别为一个加热器(5)的两个部分。
3.如权利要求2所述的温度流量控制装置,其特征在于:所述加热器(5)至少包括第一加热段以及第二加热段,其中所述第一加热段与所述第二加热段能够被独立控制以对水进行加热。
4.如权利要求1所述的温度流量控制装置,其特征在于:所述第一管道(41)和所述第二管道(42)位于所述混合腔(400)的两侧,所述第三管道(43)位于所述混合腔(400)的顶部;所述混合器(4)还设有位于所述混合腔(400)内的锥状体(46),所述锥状体(46)从下向上逐渐变小。
5.如权利要求1所述的温度流量控制装置,其特征在于:所述第一加热管道(61)中还设有第一流量计(613),所述第一流量控制阀(612)连接在所述第一加热元件(611)与所述第一流量计(613)之间;所述第二加热管道(62)中还设有第二流量计(623),所述第二流量控制阀(622)连接在所述第二加热元件(621)与所述第二流量计(623)之间。
6.如权利要求5所述的温度流量控制装置,其特征在于:所述冷水管道(7)中还设有连接在所述第三流量控制阀(71)的下游的第三流量计(72)。
7.如权利要求6所述的温度流量控制装置,其特征在于:所述温度流量控制装置还包括连接在所述混合器(4)的下游的第四流量计(84)。
8.如权利要求7所述的温度流量控制装置,其特征在于:所述温度流量控制装置包括与所述动力元件(8)的出口相连的第一压力传感器(81)、与所述混合器(4)的第一管道(41)相连的第一温度传感器(82)、与所述混合器(4)的出口相连的第二温度传感器(83)以及连接在所述第四流量计(84)的下游的第二压力传感器(85),其中所述第一压力传感器(81)用以检测水的进口压力,所述第一温度传感器(82)用以检测流出所述第一加热管道(61)与流出所述第二加热管道(62)且相混合后的水的混合温度,所述第二温度传感器(83)用以检测水的出口温度,所述第二压力传感器(85)用以检测水的出口压力。
9.一种如权利要求1至8项中任意一项所述的温度流量控制装置的控制方法,其包括如下步骤:
S1:当所述混合器(4)的第三管道(43)的出口温度低于第一温度设定值(T1)时,关闭所述冷水管道(7),开启所述第一加热管道(61)与所述第二加热管道(62),利用所述第一加热元件(611)与所述第二加热元件(621)的全功率对水进行加热;
S2:当所述混合器(4)的第三管道(43)的出口温度到达所述第一温度设定值(T1)时,使所述第一加热元件(611)与所述第二加热元件(621)在限定输出功率范围内进行PID调节,以调整对水的加热温度;
S3:当所述温度流量控制装置到达稳态后,解除步骤S2中所述第一加热元件(611)与所述第二加热元件(621)的限定输出功率范围,进行PID自动调节,以将水的温度控制在需要的范围内;
S4:当所述混合器(4)的第三管道(43)的出口温度高于第二温度设定值时,打开所述冷水管道(7),对水的温度进行调节。
10.如权利要求9所述的控制方法,其特征在于:在步骤S4中,当打开所述冷水管道(7)时,同时减少所述第一加热管道(61)的出口和/或所述第二加热管道(62)的出口的流量,使减少的流量和增加的流量一致。
CN202010439980.0A 2020-05-23 2020-05-23 温度流量控制装置及其控制方法 Pending CN111459218A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010439980.0A CN111459218A (zh) 2020-05-23 2020-05-23 温度流量控制装置及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010439980.0A CN111459218A (zh) 2020-05-23 2020-05-23 温度流量控制装置及其控制方法

Publications (1)

Publication Number Publication Date
CN111459218A true CN111459218A (zh) 2020-07-28

Family

ID=71685419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010439980.0A Pending CN111459218A (zh) 2020-05-23 2020-05-23 温度流量控制装置及其控制方法

Country Status (1)

Country Link
CN (1) CN111459218A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268538A (zh) * 2022-07-11 2022-11-01 宁波新芝生物科技股份有限公司 一种水温及流量的同步pid控制装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268538A (zh) * 2022-07-11 2022-11-01 宁波新芝生物科技股份有限公司 一种水温及流量的同步pid控制装置和方法
CN115268538B (zh) * 2022-07-11 2024-04-05 宁波新芝生物科技股份有限公司 一种水温及流量的同步pid控制装置和方法

Similar Documents

Publication Publication Date Title
TW546465B (en) Apparatus for conditioning the temperature of a fluid
US6453992B1 (en) Temperature controllable gas distributor
JP5000842B2 (ja) サセプタの駆動温度制御のための方法並びに装置
US10312062B2 (en) Temperature control system and temperature control method
US20070289732A1 (en) Apparatus for conditioning the temperature of a fluid
CN111459218A (zh) 温度流量控制装置及其控制方法
RU2018132167A (ru) Способ получения тепловой энергии, устройства для его осуществления и системы теплогенерации
CN212694304U (zh) 温度流量控制装置
US5440887A (en) Liquid vaporizer-feeder
JPH10209125A (ja) 流体温度の制御装置及びその方法
JP2019064701A (ja) 貯蔵タンク及び温度制御装置
CN109423631B (zh) 气相沉积均匀加热装置及气相沉积炉
CN220132411U (zh) 一种硅棒冷却装置
KR100485403B1 (ko) 교체가능한 소형 온도 제어 모듈
CN212426165U (zh) 基座温控系统及半导体设备
JPH09280756A (ja) マルチ温度制御システム及び同システムが適用された反応処理装置
KR101605082B1 (ko) 유체 온도 조절장치
CN219868553U (zh) 一种串联管路加热装置
CN212680673U (zh) 混液装置
WO2022142942A1 (zh) 加热组件及热水器
TWI797509B (zh) 用於半導體製造的化學品加熱裝置
CN111312628B (zh) 在显示面板制程中应用的烘烤设备
CN215892302U (zh) 一种利用余热产生水蒸汽的蒸发组件
CN214271020U (zh) 一种汽化器
CN209752929U (zh) 一种特种冷热全效恒温机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No. 27 Changjiang South Road, Xinwu District, Wuxi City, Jiangsu Province, China

Applicant after: Jiangsu micro nano technology Co.,Ltd.

Address before: 9-6-2 Xinshuo Road, Xinwu District, Wuxi City, Jiangsu Province

Applicant before: Jiangsu micro nano technology Co.,Ltd.