CN111458648A - 锂离子电池健康状态的在线检测方法 - Google Patents

锂离子电池健康状态的在线检测方法 Download PDF

Info

Publication number
CN111458648A
CN111458648A CN202010298861.8A CN202010298861A CN111458648A CN 111458648 A CN111458648 A CN 111458648A CN 202010298861 A CN202010298861 A CN 202010298861A CN 111458648 A CN111458648 A CN 111458648A
Authority
CN
China
Prior art keywords
battery
polarization voltage
increase rate
cycle
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010298861.8A
Other languages
English (en)
Other versions
CN111458648B (zh
Inventor
李慧芳
赵培
李飞
伍绍中
周江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Juyuan New Energy Technology Co ltd
Tianjin Lishen Battery JSCL
Original Assignee
Tianjin Lishen Battery JSCL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Lishen Battery JSCL filed Critical Tianjin Lishen Battery JSCL
Priority to CN202010298861.8A priority Critical patent/CN111458648B/zh
Publication of CN111458648A publication Critical patent/CN111458648A/zh
Application granted granted Critical
Publication of CN111458648B publication Critical patent/CN111458648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种锂离子电池健康状态的在线检测方法,其特征是:根据测试样本电池在历次充放电过程中的容量及能量数据实时计算电池的极化电压增长率,并通过与标准数据库中的实验电池极化电压增长率的阈值比对,快速实现对测试样本电池健康状态的在线检测。有益效果:本发明基于电池在工作运行过程中的充放电数据进行电池健康状态在线检测,该方法所需参数易获取,因此具有极高的普适性和经济性。尤其易于整合到电池管理系统中,该方法在电池管理系统中不需增加其他的检测部件及高精度的检测需求,即可实现对电池健康状态的在线检测。在动力及储能应用领域中具有实时在线检测及提前预警的优势。

Description

锂离子电池健康状态的在线检测方法
技术领域
本发明属于锂电池领域,尤其涉及一种锂离子电池健康状态的在线检测方法。
背景技术
锂离子电池因具有能量密度高、循环寿命长、无记忆效应等优点被广泛应用于手机、笔记本电脑、移动电源、电动汽车及储能领域。而电池作为一种电化学能源,在使用过程中会发生性能劣化,甚至由于使用不当或恶劣环境等因素导致电池发生热失控等安全事故,因此在实际使用过程中,必须对电池的健康状态进行实时的检测,以确保在使用过程中的安全性。
目前对电池健康状态的检测方式基本都是离线的,将电池从终端产品如电脑、电动汽车或储能系统中取出,通过高精度的充放电测试仪、内阻仪、电化学工作站等设备测量电池的各个参数,以此来判断电池的健康状态。例如专利公告号CN107015156B的专利文献公开了一种电池健康状态检测方法,其特征在于包括以下步骤:确定电池当前状态的步骤;选取合适的电流倍率与充放电区间的步骤,依据电池的基本参数,选取充放电电流大小和充放电截止条件;按照选取的充放电区间对电池进行充放电实验,电压测量模块记录充放电过程中的电压值,电流测量模块记录电流值,以及进行充放电实验的时间;控制充放电电流相等,计算出充放电过程中充入的能量和放出的能量的能量损耗的表征内阻,得到电池健康状态阶段。本发明的检测方法和装置建立了直接以微循环表征内阻表征锂离子电池SOH的方法与体系,使得检测时间缩短,检测方式简化,能够极大的推动电池的检测和维护的效率。专利公告号CN103344920A的专利文献公开了一种检测电池健康状态的方法,包括:检测电池的电池内压;依据所述电池内压从预先生成的对应关系中获得电池的电池健康状态SOH;所述对应关系为电池的SOH与电池内压的对应关系。现有技术尚不能根据电池工作运行过程中采集的参数进行在线分析,实现对电池健康状态的在线检测,因此所述离线检测方法不能及时的反映电池运行过程中的健康状态。
发明内容
本发明的目的在于克服上述技术的不足,而提供一种锂离子电池健康状态的在线检测方法,通过对电池在工作运行过程中的充放电数据(容量、能量)等参数的简单处理,得到极化电压增长率来表征电池的健康状态。
本发明为实现上述目的,采用以下技术方案:一种锂离子电池健康状态的在线检测方法,其特征是:根据测试样本电池在历次充放电过程中的容量及能量数据实时计算电池的极化电压增长率,并通过与标准数据库中的实验电池极化电压增长率的阈值比对,快速实现对测试样本电池健康状态的在线检测,具体步骤如下:
第一步:测试样本电池在历次充放电过程中的容量及能量数据,以充
-
电总能量除以充电总容量计算得到电池在充电过程中的平均电压Vc,以
-
放电总能量除以放电总容量计算得到电池在放电过程中的平均电压Vd
--
然后据此计算电池在每次循环过程中的极化电压VP=1/2(Vc-Vd);
第二步:计算测试样本电池在第n次循环中的极化电压VP,n相对于初次循环时的极化电压Vp,0的极化电压增长率ΔVP,n=(VP,n-VP,0)/VP,0
第三步:将在线实时检测的电池极化电压增长率ΔVP,n与标准数据库中实验电池在对应工作条件下测得的极化电压增长率的阈值ΔVP,lim进行比对,来确定测试样本电池的健康状态:当ΔVP,n<ΔVP,lim时,判定电池健康状态良好;而当ΔVP,n≥ΔVP,lim时,即判定电池发生或即将发生失效;所述标准数据库中不同体系或不同型号的实验电池在不同工作条件下的极化电压增长率的阈值ΔVP,lim通过实验测试或模拟计算获得。
所述实验电池的不同体系根据电池的配方组分进行区分,不同型号包括方型、圆型或软包装各个类型电池的各种尺寸产品,不同工作条件包括充放电电流、电压、温度及湿度影响电池性能发挥的因素。
所述实验电池在不同工作条件下的循环测试数据处理方法:以实验电池循环次数为横坐标,以循环过程中的极化电压增长率为纵坐标作图,得到极化电压随循环过程的变化曲线,当极化电压增长率发生突然增大时,且对应的实验电池循环性能发生快速衰减,将此时的极化电压增长率设为阈值ΔVP,lim
有益效果:与现有技术相比,本发明基于电池在工作运行过程中的充放电数据(容量、能量)进行电池健康状态在线检测,该方法所需参数易获取,因此具有极高的普适性和经济性。尤其易于整合到电池管理系统中,该方法在电池管理系统中不需增加其他的检测部件及高精度的检测需求,即可实现对电池健康状态的在线检测。因此该检测方法在各种应用环境中具有普遍的适用性和可行性,实用价值高。因此在动力及储能应用领域中具有实时在线检测及提前预警的优势。
附图说明
图1是实施例1中测试样本电池循环1000次时的极化电压增长率随循环过程的变化曲线;
图2a是实施例1中测试样本电池循环1000次时的容量保持率随循环次数的变化曲线;
图2b是实施例1中测试样本电池循环1057次时的容量保持率随循环次数的变化曲线;
图3是实施例1中标准数据库中电池的极化电压增长率随循环次数的变化曲线;
图4是实施例1中标准数据库中电池的容量保持率随循环次数的变化曲线。图5是实施例2中测试样本电池循环945次时的极化电压增长率随循环过程的变化曲线;
图6a是实施例2中测试样本电池循环945次时的容量保持率随循环次数的变化曲线;
图6b是实施例2中测试样本电池循环1037次时的容量保持率随循环次数的变化曲线;
图7是实施例2中标准数据库中电池的极化电压增长率随循环次数的变化曲线;
图8是实施例2中标准数据库中电池的容量保持率随循环次数的变化曲线。
具体实施方式
需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。下面以商业化圆柱型锂离子电池的测试为例,结合附图详细说明本发明的具体实施方式。
众所周知,电池在实际的充放电使用过程中是存在极化的,且电池在充电过程中由于极化现象导致电池电压偏高,即充电电压=理论电压+极化电压,而放电过程中同样由于极化现象导致电池放电过程电压偏低,即放电电压=理论电压-极化电压。将充放电过程综合起来考虑,则充电电压-放电电压=(理论电压+极化电压)+(理论电压-极化电压)=2极化电压,因此可由此计算电池的极化电压=1/2(充电电压-放电电压),以充放电过程的平均电压来简化计算电池在充放电过程中的平均极化电压=1/2(充电平均电压-放电平均电压)。
本发明基于以上分析,通过对电池充放电过程的常规数据采集,提出一种锂离子电池健康状态的在线检测方法。
实施例1
本实施例提供了一种锂离子电池健康状态的在线检测方法,根据测试样本电池在历次充放电过程中的容量及能量数据实时计算电池的极化电压增长率,并通过与标准数据库中的实验电池极化电压增长率的阈值比对,快速实现对测试样本电池健康状态的在线检测。具体步骤如下:
第一步:测试样本电池在历次充放电过程中的容量及能量数据,以充
电总能量除以充电总容量计算得到电池在充电过程中的平均电压
Figure BDA0002453234050000041
放电总能量除以放电总容量计算得到电池在放电过程中的平均电压
Figure BDA0002453234050000042
然后据此计算电池在每次循环过程中的极化电压
Figure BDA0002453234050000043
第二步:计算测试样本电池在第n次循环中的极化电压VP,n相对于初次循环时的极化电压Vp,0的极化电压增长率ΔVP,n=(VP,n-VP,0)/VP,0
第三步:将在线实时检测的电池极化电压增长率ΔVP,n与标准数据库中实验电池在对应工作条件下测得的极化电压增长率的阈值ΔVP,lim进行比对,来确定测试样本电池的健康状态:当ΔVP,n<ΔVP,lim时,判定电池健康状态良好;而当ΔVP,n≥ΔVP,lim时,即判定电池发生或即将发生失效;所述标准数据库中不同体系或不同型号的实验电池在不同工作条件下的极化电压增长率的阈值ΔVP,lim通过实验测试或模拟计算获得。
所述实验电池的不同体系根据电池的配方组分进行区分,不同型号包括方型、圆型或软包装各个类型电池的各种尺寸产品,不同工作条件包括充放电电流、电压、温度及湿度影响电池性能发挥的因素。
所述实验电池在不同工作条件下的循环测试数据处理方法:以实验电池循环次数为横坐标,以循环过程中的极化电压增长率为纵坐标作图,得到极化电压随循环过程的变化曲线,当极化电压增长率发生突然增大时,且对应的实验电池循环性能发生快速衰减,将此时的极化电压增长率设为阈值ΔVP,lim
在本实施例中,测试样本以商业化的21700圆柱型锂离子电池为例,其容量为4.8Ah。该电池循环测试环境为常温,循环制式为恒流恒压充电,恒流放电。恒流充电电流为3.36A,充电截止电压为4.2V,恒压充电截止电流为0.24A;恒流放电电流为4.8A,截止电压为2.7V。
电池测试设备为常规的充放电仪,本实施例中采用设备为Arbin BT2000充放电测试系统。
第一步:在线检测测试样本电池在历次充放电过程中的容量及能量数据,以充电总能量除以充电总容量计算得到电池在充电过程中的平均电压
Figure BDA0002453234050000051
以放电总能量除以放电总容量计算得到电池在放电过程中的平均电压
Figure BDA0002453234050000052
然后据此计算电池在每次循环过程中的极化电压
Figure BDA0002453234050000053
表1样品电池循环过程中采集的容量及能量数据及计算
Figure BDA0002453234050000054
第二步:计算测试样本电池在第n次循环中的极化电压VP,n相对于初次循环时的极化电压Vp,0的极化电压增长率ΔVP,n=(VP,n-VP,0)/VP,0
如表1,每次循环对应的充电和放电的容量和能量数据为充放电仪所采集的数据。如第1次循环,电池充电能量为18.296Wh,充电容量为4.766Ah,以充电能量除以充电容量,计算电池第1次循环时的充电平均电压
Figure BDA0002453234050000055
电池放电能量为16.636Wh,放电容量为4.762Ah,以放电能量除以放电容量,计算电池第1次循环时的放电平均电压
Figure BDA0002453234050000056
则第1次循环中,电池的极化电压为
Figure BDA0002453234050000057
第1次循环时的极化电压Vp,1作为初次循环的极化电压Vp,0=0.173V,因此第1次循环的极化电压增长率为ΔVP,1=(Vp,1-Vp,0)/Vp,0=(0.173-0.173)/0.173=0%。
如第2次循环,电池充电能量为18.291Wh,充电容量为4.766Ah,以充电能量除以充电容量,计算电池第2次循环时的充电平均电压
Figure BDA0002453234050000058
电池放电能量为16.636Wh,放电容量为4.762Ah,以放电能量除以放电容量,计算电池第2次循环时的放电平均电压
Figure BDA0002453234050000061
则第2次循环中,电池的极化电压为
Figure BDA0002453234050000062
以第2次循环时的极化电压Vp,2=0.173V相对初次循环的极化电压Vp,0=0.173V,计算第2次循环的极化电压增长率为ΔVP,2=(Vp,2-Vp,0)/Vp,0=(0.171-0.173)/0.173=-1.1%。
当然,对于数据处理,可以在Excel软件中直接设置相应的公式进行计算,即可得到每次循环过程中的极化电压增长率ΔVP,n
第三步:将在线实时监测测试样本电池的极化电压增长率ΔVP,n与标准数据库中电池在对应工作条件下正常衰减时测得的极化电压增长率的阈值ΔVP,lim进行比对,来确定电池的健康状态:当ΔVP,n<ΔVP,lim时,判定电池健康状态良好;而当ΔVP,n≥ΔVP,lim时,即判定电池发生或即将发生失效。
当电池循环至1000次时,电池充电能量为15.906Wh,充电容量为4.102Ah,以充电能量除以充电容量,计算电池第1000次循环时的充电平均电压
Figure BDA0002453234050000063
电池放电能量为14.248Wh,放电容量为4.098Ah,以放电能量除以放电容量,计算电池第1000次循环时的放电平均电压
Figure BDA0002453234050000064
则第1000次循环中,电池的极化电压为
Figure BDA0002453234050000065
以第1000次循环时的极化电压Vp,2=0.201V相对初次循环的极化电压Vp,0=0.173V,计算第1000次循环的极化电压增长率为ΔVP,1000=(Vp,1000-Vp,0)/Vp,0=(0.201-0.173)/0.173=16.2%。
对电池在整个循环过程中的数据进行绘图分析,如附图1,以循环次数为横坐标,以极化电压增长率为做纵坐标作图,当电池循环至1000次时,由上计算可知其极化电压增长率为16.2%,高于标准数据库中13.0%的阈值(详见附图3-4),因此判断该电池即将发生失效。
虽然从附图2a电池在1000次循环时的容量保持率及循环趋势并不能看出电池性能的显著衰减,但是通过继续循环测试发现,如附图2b该电池在1000次循环后很快发生容量的快速衰减而失效。因此在线检测的极化电压增长率对电池健康状态诊断具有一定的提前警示性,当极化电压增长率超出阈值后,电池将在短时间内发生失效。
标准数据库中实验电池在常温模式相同循环制式下极化电压增长率阈值ΔVP,lim的获得过程如下:
采集实验电池在循环过程中充电和放电的容量及能量数据,与样品电池相同的方法计算出各个循环下的电池极化电压增长率数据,如表2所示。
以此数据绘图分析,如附图3,以实验电池循环次数为横坐标,以循环过程中的极化电压增长率为纵坐标作图,得到极化电压随循环过程的变化曲线;
表2实验电池循环过程中采集的容量及能量数据及计算
Figure BDA0002453234050000071
结合表2数据及附图3分析,当电池循环至1186次时,其极化电压增长率为13.0%,当电池再继续循环时,其极化电压增长率快速升高,1190次时极化电压增长率已快速增长至17.0%,从附图4可以发现当极化电压增长率发生突然增大后,电池循环性能也在随后发生快速衰减,因此,将此循环制式下的电池极化电压增长率阈值设置为13.0%,即ΔVP,lim=13.0%。
实施例2
在本实施例中,测试样本以商业化的21700圆柱型锂离子电池为例,其容量为4.8Ah。该电池循环测试环境为45℃,循环制式为恒流恒压充电,恒流放电。恒流充电电流为3.36A,充电截止电压为4.2V,恒压充电截止电流为0.24A;恒流放电电流为4.8A,截止电压为2.7V。
电池测试设备为常规的充放电仪,本实施例中采用设备为Arbin BT2000充放电测试系统。电池放在设置于45℃的爱斯佩克PH101高温试验箱中,以保持45℃±2℃环境下的恒温测试。
第一步:在线检测测试样本电池在历次充放电过程中的容量及能量数据,以充电总能量除以充电总容量计算得到电池在充电过程中的平均电压
Figure BDA0002453234050000081
以放电总能量除以放电总容量计算得到电池在放电过程中的平均电压
Figure BDA0002453234050000082
然后据此计算电池在每次循环过程中的极化电压
Figure BDA0002453234050000083
表3样品电池循环过程采集数据及计算
Figure BDA0002453234050000084
第二步:计算测试样本电池在第n次循环中的极化电压VP,n相对于初次循环时的极化电压Vp,0的极化电压增长率ΔVP,n=(VP,n-VP,0)/VP,0。
如表3,每次循环对应的充电和放电的容量和能量数据为充放电仪所采集的数据。如第1次循环,电池充电能量为18.423Wh,充电容量为4.774Ah,以充电能量除以充电容量,计算电池第1次循环时的充电平均电压
Figure BDA0002453234050000091
电池放电能量为16.725Wh,放电容量为4.750Ah,以放电能量除以放电容量,计算电池第1次循环时的放电平均电压
Figure BDA0002453234050000092
则第1次循环中,电池的极化电压为
Figure BDA0002453234050000093
第1次循环时的极化电压Vp,1作为初次循环的极化电压Vp,0=0.169V,因此第1次循环的极化电压增长率为ΔVP,1=(Vp,1-Vp,0)/Vp,0=(0.169-0.169)/0.169=0%。
如第2次循环,电池充电能量为18.361Wh,充电容量为4.758Ah,以充电能量除以充电容量,计算电池第2次循环时的充电平均电压
Figure BDA0002453234050000094
电池放电能量为16.690Wh,放电容量为4.740Ah,以放电能量除以放电容量,计算电池第2次循环时的放电平均电压
Figure BDA0002453234050000095
则第2次循环中,电池的极化电压为
Figure BDA0002453234050000096
以第2次循环时的极化电压Vp,2=0.169V相对初次循环的极化电压Vp,0=0.169V,计算第2次循环的极化电压增长率为ΔVP,2=(Vp,2-Vp,0)/Vp,0=(0.169-0.169)/0.169=0%。
当然,对于数据处理,可以在Excel软件中直接设置相应的公式进行计算,即可得到每次循环过程中的极化电压增长率。
第三步:将在线实时监测测试样本电池的极化电压增长率ΔVP,n与标准数据库中电池在45℃环境及相同循环制式下正常衰减时测得的极化电压增长率的阈值ΔVP,lim进行比对,来确定电池的健康状态:当ΔVP,n<ΔVP,lim时,判定电池健康状态良好;而当ΔVP,n≥ΔVP,lim时,即判定电池发生或即将发生失效。
如附图5,以循环次数为横坐标,以极化电压增长率为做纵坐标作图,当电池循环至945次时,其极化电压增长率为20.0%,达到标准数据库中20.0%的阈值(详见附图7),因此判断该电池即将发生失效。
从附图6a电池在945次循环时的容量保持率及循环趋势看,该电池仍保持良好的性能,但是通过继续循环测试发现,如附图6b该电池在980次次循环开始发生衰减的加速。因此在线检测的极化电压增长率对电池健康状态诊断具有一定的提前警示性,当极化电压增长率超出阈值后,电池将在短时间内发生失效。
标准数据库中实验电池在45℃恒温相同循环制式下极化电压增长率阈值ΔVP,lim的获得过程如下:
采集实验电池在循环过程中充电和放电的容量及能量数据,与样品电池相同的方法计算出各个循环下的电池极化电压增长率数据,如表4所示。
以此数据绘图分析,如附图7,以实验电池循环次数为横坐标,以循环过程中的极化电压增长率为纵坐标作图,得到极化电压随循环过程的变化曲线;
表4实验电池循环过程中采集的容量及能量数据及计算
Figure BDA0002453234050000101
结合表4数据及附图7分析,当电池循环至951次时,其极化电压增长率为20.0%,当电池再继续循环时,极化电压增长率曲线因增长率增大而偏离原来趋势,结合附图8的电池容量保持率曲线,可以发现当极化电压增长率发生增大后,电池循环性能也在随后发生快速衰减,因此,将此循环制式下的电池极化电压增长率阈值设置为20.0%,即ΔVP,lim=20.0%。
上述参照实施例对该一种锂离子电池健康状态的在线检测方法进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。

Claims (3)

1.一种锂离子电池健康状态的在线检测方法,其特征是:根据测试样本电池在历次充放电过程中的容量及能量数据实时计算电池的极化电压增长率,并通过与标准数据库中的实验电池极化电压增长率的阈值比对,快速实现对测试样本电池健康状态的在线检测,具体步骤如下:
第一步:测试样本电池在历次充放电过程中的容量及能量数据,以充电总能量除以充电总容量计算得到电池在充电过程中的平均电压
Figure FDA0002453234040000011
以放电总能量除以放电总容量计算得到电池在放电过程中的平均电压
Figure FDA0002453234040000012
然后据此计算电池在每次循环过程中的极化电压
Figure FDA0002453234040000013
第二步:计算测试样本电池在第n次循环中的极化电压VP,n相对于初次循环时的极化电压Vp,0的极化电压增长率ΔVP,n=(VP,n-VP,0)/VP,0
第三步:将在线实时检测的电池极化电压增长率ΔVP,n与标准数据库中实验电池在对应工作条件下测得的极化电压增长率的阈值ΔVP,lim进行比对,来确定测试样本电池的健康状态:当ΔVP,n<ΔVP,lim时,判定电池健康状态良好;而当ΔVP,n≥ΔVP,lim时,即判定电池发生或即将发生失效;所述标准数据库中不同体系或不同型号的实验电池在不同工作条件下的极化电压增长率的阈值ΔVP,lim通过实验测试或模拟计算获得。
2.根据权利要求1所述的在线检测方法,其特征是:所述实验电池的不同体系根据电池的配方组分进行区分,不同型号包括方型、圆型或软包装各个类型电池的各种尺寸产品,不同工作条件包括充放电电流、电压、温度及湿度影响电池性能发挥的因素。
3.根据权利要求1或2所述的在线检测方法,其特征是:所述实验电池在不同工作条件下的循环测试数据处理方法:以实验电池循环次数为横坐标,以循环过程中的极化电压增长率为纵坐标作图,得到极化电压随循环过程的变化曲线,当极化电压增长率发生突然增大时,且对应的实验电池循环性能发生快速衰减,将此时的极化电压增长率设为阈值ΔVP,lim
CN202010298861.8A 2020-04-16 2020-04-16 锂离子电池健康状态的在线检测方法 Active CN111458648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010298861.8A CN111458648B (zh) 2020-04-16 2020-04-16 锂离子电池健康状态的在线检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010298861.8A CN111458648B (zh) 2020-04-16 2020-04-16 锂离子电池健康状态的在线检测方法

Publications (2)

Publication Number Publication Date
CN111458648A true CN111458648A (zh) 2020-07-28
CN111458648B CN111458648B (zh) 2022-04-08

Family

ID=71686013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010298861.8A Active CN111458648B (zh) 2020-04-16 2020-04-16 锂离子电池健康状态的在线检测方法

Country Status (1)

Country Link
CN (1) CN111458648B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363069A (zh) * 2020-09-18 2021-02-12 万向一二三股份公司 一种锂离子电池极耳断裂检测方法
CN112382798A (zh) * 2020-11-12 2021-02-19 湖南立方新能源科技有限责任公司 一种电池循环失效的判断方法及判断系统
CN112736309A (zh) * 2020-12-25 2021-04-30 南京国轩电池有限公司 一种解决动力锂离子返工电池分容后k值异常的方法
CN114062930A (zh) * 2021-11-16 2022-02-18 蜂巢能源科技有限公司 一种电芯极耳异常接触的检测方法、装置和设备
CN114094043A (zh) * 2021-11-12 2022-02-25 蜂巢能源科技有限公司 评估锂电池正极材料循环性能的方法
CN114137417A (zh) * 2021-11-19 2022-03-04 北京理工大学 一种基于充电数据特征的电池内短路检测方法
WO2022174698A1 (zh) * 2021-02-20 2022-08-25 青岛特来电新能源科技有限公司 新能源设备的健康状况测评方法、装置、介质及提示终端
CN116738932A (zh) * 2023-08-16 2023-09-12 杭州程单能源科技有限公司 锂电池梯次利用的电芯压差优化方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150024561A (ko) * 2013-08-27 2015-03-09 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
TW201612539A (en) * 2014-09-25 2016-04-01 Nat Inst Chung Shan Science & Technology Method and apparatus for battery states detection
CN105738815A (zh) * 2014-12-12 2016-07-06 国家电网公司 一种在线检测锂离子电池健康状态的方法
CN106443461A (zh) * 2016-09-06 2017-02-22 华北电力科学研究院有限责任公司 电池储能系统状态评估方法
CN106532187A (zh) * 2016-11-08 2017-03-22 哈尔滨理工大学 一种基于电池健康状态的电池加热方法
CN107843846A (zh) * 2017-10-26 2018-03-27 哈尔滨工业大学 一种锂离子电池健康状态估计方法
CN110133525A (zh) * 2019-05-13 2019-08-16 哈尔滨工业大学 一种应用于电池管理系统的锂离子电池健康状态估计方法
US20190288344A1 (en) * 2016-05-18 2019-09-19 Hitachi Automotive Systems, Ltd. Battery Control Device
CN110286324A (zh) * 2019-07-18 2019-09-27 北京碧水润城水务咨询有限公司 一种电池荷电状态估算方法及电池健康状态估算方法
CN110967631A (zh) * 2019-05-17 2020-04-07 宁德时代新能源科技股份有限公司 Soh修正方法和装置、电池管理系统和存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150024561A (ko) * 2013-08-27 2015-03-09 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
TW201612539A (en) * 2014-09-25 2016-04-01 Nat Inst Chung Shan Science & Technology Method and apparatus for battery states detection
CN105738815A (zh) * 2014-12-12 2016-07-06 国家电网公司 一种在线检测锂离子电池健康状态的方法
US20190288344A1 (en) * 2016-05-18 2019-09-19 Hitachi Automotive Systems, Ltd. Battery Control Device
CN106443461A (zh) * 2016-09-06 2017-02-22 华北电力科学研究院有限责任公司 电池储能系统状态评估方法
CN106532187A (zh) * 2016-11-08 2017-03-22 哈尔滨理工大学 一种基于电池健康状态的电池加热方法
CN107843846A (zh) * 2017-10-26 2018-03-27 哈尔滨工业大学 一种锂离子电池健康状态估计方法
CN110133525A (zh) * 2019-05-13 2019-08-16 哈尔滨工业大学 一种应用于电池管理系统的锂离子电池健康状态估计方法
CN110967631A (zh) * 2019-05-17 2020-04-07 宁德时代新能源科技股份有限公司 Soh修正方法和装置、电池管理系统和存储介质
CN110286324A (zh) * 2019-07-18 2019-09-27 北京碧水润城水务咨询有限公司 一种电池荷电状态估算方法及电池健康状态估算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, IS: "A Technique for Estimating the State of Health of Lithium Batteries Through a Dual-Sliding-Mode Observer", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》 *
冯能莲,等: "锂离子电池健康状态估计方法", 《北京工业大学学报》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363069A (zh) * 2020-09-18 2021-02-12 万向一二三股份公司 一种锂离子电池极耳断裂检测方法
CN112363069B (zh) * 2020-09-18 2023-07-07 万向一二三股份公司 一种锂离子电池极耳断裂检测方法
CN112382798A (zh) * 2020-11-12 2021-02-19 湖南立方新能源科技有限责任公司 一种电池循环失效的判断方法及判断系统
CN112736309A (zh) * 2020-12-25 2021-04-30 南京国轩电池有限公司 一种解决动力锂离子返工电池分容后k值异常的方法
CN112736309B (zh) * 2020-12-25 2023-12-08 南京国轩电池有限公司 一种解决动力锂离子返工电池分容后k值异常的方法
WO2022174698A1 (zh) * 2021-02-20 2022-08-25 青岛特来电新能源科技有限公司 新能源设备的健康状况测评方法、装置、介质及提示终端
CN114094043A (zh) * 2021-11-12 2022-02-25 蜂巢能源科技有限公司 评估锂电池正极材料循环性能的方法
CN114062930A (zh) * 2021-11-16 2022-02-18 蜂巢能源科技有限公司 一种电芯极耳异常接触的检测方法、装置和设备
CN114062930B (zh) * 2021-11-16 2023-06-09 蜂巢能源科技有限公司 一种电芯极耳异常接触的检测方法、装置和设备
CN114137417A (zh) * 2021-11-19 2022-03-04 北京理工大学 一种基于充电数据特征的电池内短路检测方法
CN116738932A (zh) * 2023-08-16 2023-09-12 杭州程单能源科技有限公司 锂电池梯次利用的电芯压差优化方法及装置
CN116738932B (zh) * 2023-08-16 2024-01-05 杭州程单能源科技有限公司 锂电池梯次利用的电芯压差优化方法及装置

Also Published As

Publication number Publication date
CN111458648B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN111458648B (zh) 锂离子电池健康状态的在线检测方法
US11422194B2 (en) Battery diagnosis apparatus and battery diagnosis method based on current pulse method
Zheng et al. Fault identification and quantitative diagnosis method for series-connected lithium-ion battery packs based on capacity estimation
CN111036575B (zh) 一种基于温度变化分析的锂离子电池分选方法
CN111929602B (zh) 一种基于容量估计的单体电池漏电或微短路定量诊断方法
CN111198328A (zh) 一种电池析锂检测方法及电池析锂检测系统
CN111580003A (zh) 一种基于阻抗谱的二次电池不一致性鉴别方法及装置
CN107132481B (zh) 一种识别电池组中单体一致的方法及系统
CN116027199B (zh) 基于电化学模型参数辨识检测电芯全寿命内短路的方法
CN115219905A (zh) 一种电池内短路在线检测方法、装置及存储介质
CN114935725A (zh) 一种电池soh预测方法、存储介质及系统
CN113820615B (zh) 一种电池健康度检测方法与装置
CN112748348B (zh) 电池低温性能分布水平检测方法、系统及存储介质
CN113369177A (zh) 一种锂电池一致性的筛选方法
CN116520173A (zh) 电池自放电率的测量方法
CN109669133A (zh) 一种动力锂电池寿命数据后台挖掘分析方法
CN113391214A (zh) 一种基于电池充电电压排名变化的电池微故障诊断方法
CN111007416A (zh) 诊断蓄电池健康状态的方法
CN114487886B (zh) 一种电芯胀气检测方法、装置、电池管理系统及电子设备
CN117907845B (zh) 基于电参数分析的电化学储能系统绝缘检测方法
CN113702852B (zh) 一种同批次锂离子电池直流内阻的推算方法
CN114994557A (zh) 电池健康状态检测方法及系统
CN116718942A (zh) 储能锂电池衰减程度估算方法及系统
CN116754995A (zh) 锂离子电池微短路测试方法及系统
Lyu et al. Predicting Remaining Discharge Time for Lithium-ion Batteries based on Differential Model Decomposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230202

Address after: 300457 No. 38, Haitai South Road, Binhai high tech Industrial Development Zone (outer ring), Binhai New Area, Tianjin

Patentee after: TIANJIN LISHEN BATTERY JOINT-STOCK Co.,Ltd.

Patentee after: Tianjin Juyuan New Energy Technology Co.,Ltd.

Address before: 300384 Tianjin Binhai New Area Binhai high tech Industrial Development Zone (outer ring) 38 Haitai South Road

Patentee before: TIANJIN LISHEN BATTERY JOINT-STOCK Co.,Ltd.

TR01 Transfer of patent right