CN111440994A - 一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法 - Google Patents

一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法 Download PDF

Info

Publication number
CN111440994A
CN111440994A CN202010355373.6A CN202010355373A CN111440994A CN 111440994 A CN111440994 A CN 111440994A CN 202010355373 A CN202010355373 A CN 202010355373A CN 111440994 A CN111440994 A CN 111440994A
Authority
CN
China
Prior art keywords
low
ferrite
activation
martensite
martensite steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010355373.6A
Other languages
English (en)
Other versions
CN111440994B (zh
Inventor
杨胶溪
杨磊
吴文亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202010355373.6A priority Critical patent/CN111440994B/zh
Publication of CN111440994A publication Critical patent/CN111440994A/zh
Application granted granted Critical
Publication of CN111440994B publication Critical patent/CN111440994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法属于激光增材制造领域。低活化铁素体/马氏体钢的含量按重量(wt%):0.09‑0.15C,0.05‑0.09Si,0.5‑0.9Mn,8.7‑9.5Cr,0.15‑0.22Ta,0.3‑0.5V,1.7‑2.3W,0.01‑0.03Mo,0.01‑0.03Cu,0.02‑0.05N,0.02‑0.04Al,余量Fe。本发明是采用层间重熔的方式并通过控制工艺参数、扫描策略和温度梯度对低活化铁素体/马氏体钢的组织组成进行调控。最终获得了组织稳定、致密度高、力学性能良好的低活化铁素体/马氏体钢。

Description

一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法
技术领域
本发明涉及低活化铁素体/马氏体钢制备领域,具体涉及一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法。
背景技术
核聚变能以释放能量大、原料储备丰富、开采成本低廉、使用安全性能高等一系列优点,被世界各国视为未来清洁能源的第一选择,并对核聚变能的使用进行了大量的研究。
低活化铁素体/马氏体钢是一种具有较低的热膨胀系数、高的热导率、优良的抗肿胀和抗辐照脆性的结构材料,被广泛认为是未来聚变堆包层的首选结构材料。为了更好的适应聚变堆包层的服役环境,提高其服役寿命,通常对低活化铁素体/马氏体钢的元素含量进行调整,可以获得不同特性的材料,再结合不同的制备方式和工艺参数对其组织进行调控,可以获得稳定工作聚变堆包层结构材料。
激光选区熔化(SLM)技术作为一种快速的、精密的金属材料成形工艺,该技术利用激光束产生的热能量作用于金属粉末,使金属粉末快速熔化并快速凝固成形,能够制造高精度、高复杂性的零件。通常在加工之前,需要将工艺参数调整到合适数值,包括激光功率、扫描速度、扫描策略等均对其成形效果有影响,通过调整工艺参数及温度梯度可以对成形材料的组织构成进行调控,从而获得高质量、高性能的低活化铁素体/马氏体钢。
发明内容
本发明提供了一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法。采用自主研发的成分配比,通过热惰性气体雾化法制备了球形度良好,成分均匀的低活化铁素体/马氏体钢。
本发明通过调整激光参数、层间重熔及热梯度设计的方式对低活化铁素体/马氏体钢的质量、组织调控进行调控,最终获了致密度高、力学性能优良的低活化铁素体/马氏体钢。
实现本发明的技术方案是一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法,其特征在于,包括如下步骤:
(1)按照元素成分配比制备低活化铁素体/马氏体钢原材料,各元素的含量按重量(wt%):0.09-0.15C,0.05-0.15Si,0.5-1.3Mn,8.7-11.5Cr,0.15-0.22Ta,0.3-0.9V,1.7-3.2W,0.01-0.13Mo,0.01-0.12Cu,0.02-0.05N,0.02-0.06Al,余量Fe。采用热惰性气体雾化法,首先将氧化镁坩埚抽真空并充入氩气保护,之后用氧化镁坩埚进行熔炼至合金溶液到1450~1750℃,然后浇入中间包开始雾化,雾化介质为氩气,雾化压力2.0~8.0MPa,随后进行筛粉,最终制备了球形度良好,成分均匀的低活化铁素体/马氏体钢粉末,平均粒度300~400目。
(2)使用三维软件对成形零件进行三维建模,模型建立后采用Magics软件对其添加支撑、切片和修复处理。切片厚度20~80μm。,支撑面积比50-80%。改变支撑面积比50-80%,控制导热速率。
(3)根据材料体系设置激光器参数及激光扫描策略:激光功率200~600W,扫描速率600~2500mm/s,层间重熔n=1~3,光斑直径80~100μm,扫描间隔50~120μm,铺粉厚度20~80μm,每层扫描方向转动0~90°,每个零件选用一个固定角度值直至打印完成。为防止热应力不均导致零件变形,每层扫描方向顺时针α°,即在第一层完成后,第二层扫描方向转动α°,以此类推直至打印完成,α取值范围为0≤α≤90;如果零件不易变形也可以不转动角度,为了热应力更均匀也可以在取值范围内任意取值。
(4)成型舱室准备:在使用选区激光熔化设备工作前,使用吸尘器将成型舱室清理干净,调整刮刀直至在基板上铺上薄薄的一层金属粉末,然后关好舱门抽真空并向成型仓内充入惰性气体使舱内氧含量保持在50-400ppm,同时将基板预热到一定温度(80~120℃),并开启舱内气体循环系统。调整基板预设温度80~120℃,控制温度梯度。
(5)激光选区熔化成形:激光选区熔化设备根据之前设置好的激光参数和扫描策略一层层扫描成形,在第n层和n的倍数层处激光扫描两次,其中n=1~3,直至激光扫描完最后一层,得到预先设计的样品形状打印完成。
(6)将成形完成后的低活化铁素体/马氏体钢试样从基板上切割下来,经过SEM、TEM、XRD检测数据反馈,对SLM成形低活化铁素体/马氏体钢组织构成进行调控。
本发明的优点在于:该方法发明了一种特定组成成分的低活化铁素体/马氏体钢,并通过材料制备工艺参数、层间重熔及热梯度设计来调控其组织构成,最终获得了高质量、具有优异力学性能的低活化铁素体/马氏体钢制品。其中利用层间重熔方式可以有效改善低活化铁素体/马氏体钢的冶金结合质量,通过改变温度梯度使成形过程冷却速度变慢,有效降低了因冷却速度过快导致的组织不均匀和热应力的产生。
附图说明
图1为实施例1中SLM低活化铁素体/马氏体钢SEM图像
图2为实施例1中SLM低活化铁素体/马氏体钢TEM图像
图3为实施例2中SLM低活化铁素体/马氏体钢SEM图像
图4为实施例2中SLM低活化铁素体/马氏体钢TEM图像
图5为实施例3中SLM低活化铁素体/马氏体钢SEM图像
图6为实施例3中SLM低活化铁素体/马氏体钢TEM图像
图7为实施例1、2、3中SLM低活化铁素体/马氏体钢的拉伸性能曲线
具体实施方式
实施例1
(1)按照元素成分配比制备低活化铁素体/马氏体钢原材料,各元素的含量按重量(wt%):0.09C,0.05Si,0.5Mn,8.7Cr,0.22Ta,0.3V,1.7W,0.01Mo,0.02Cu,0.05N,0.02Al,余量Fe。采用热惰性气体雾化法,首先将氧化镁坩埚抽真空并充入氩气保护,之后用氧化镁坩埚进行熔炼至合金溶液到1500℃,然后浇入中间包开始雾化,雾化介质为氩气,雾化压力5.5MPa,随后进行筛粉,制备了球形度良好,成分均匀的低活化铁素体/马氏体钢粉末,平均粒度为300目。
(2)使用三维软件对成形零件进行三维建模,模型建立后采用Magics软件对其添加支撑、切片和修复处理,切片厚度20μm,支撑面积比50%。
(3)设置激光器参数及激光扫描策略:激光功率260W,扫描速率700mm/s,层间重熔n=1,光斑直径80μm,扫描间隔70μm,铺粉厚度20μm,每层扫描方向转动设置为0°。
(4)成型舱室准备:在使用选区激光熔化设备工作前,使用吸尘器将成型舱室清理干净,调整刮刀直至在基板上铺上薄薄的一层金属粉末,然后关好舱门抽真空并向成型仓内充入惰性气体使舱内氧含量保持在400ppm,同时将基板预热到80℃,并开启舱内气体循环系统。
(5)激光选区熔化成形:激光选区熔化设备根据之前设置好的激光参数和扫描策略一层层扫描成形,每层粉末激光连续扫描两次,每层完成后基板下降一个层厚的距离,刮刀进行铺粉,待铺上一层粉末后继续完成以上操作,直至激光扫描完最后一层,得到预先设计的样品形状打印完成。
(6)将成形完成后的低活化铁素体/马氏体钢试样从基板上切割下来,进行相关检测。
(7)在此工艺条件下获得的低活化铁素体/马氏体钢试样致密度为98.76%,组织结构为板条马氏体(67%)和铁素体(33%)混合结构,具有优良的力学性能。抗拉强度达到1322MPa,具体数据参考图1、图2、图7。
实施例2
(1)按照元素成分配比制备低活化铁素体/马氏体钢原材料,各元素的含量按重量(wt%):0.12C,0.1Si,0.9Mn,9.5Cr,0.19Ta,0.6V,2.2W,0.07Mo,0.06Cu,0.03N,0.04Al,余量Fe。采用热惰性气体雾化法,首先将氧化镁坩埚抽真空并充入氩气保护,之后用氧化镁坩埚进行熔炼至合金溶液到1500℃,然后浇入中间包开始雾化,雾化介质为氩气,雾化压力5.5MPa,随后进行筛粉,制备了球形度良好,成分均匀的低活化铁素体/马氏体钢粉末,平均粒度为300目。
(2)使用三维软件对成形零件进行三维建模,模型建立后采用Magics软件对其添加支撑、切片和修复处理,切片厚度30μm,支撑面积比60%。
(3)设置激光器参数及激光扫描策略:激光功率320W,扫描速率1100mm/s,层间重熔n=2,光斑直径80μm,扫描间隔70μm,铺粉厚度30μm,每层扫描方向转动设置为67°。
(4)成型舱室准备:在使用选区激光熔化设备工作前,使用吸尘器将成型舱室清理干净,调整刮刀直至在基板上铺上薄薄的一层金属粉末,然后关好舱门抽真空并向成型仓内充入惰性气体使舱内氧含量保持在100ppm,同时将基板预热到120℃,并开启舱内气体循环系统。
(5)激光选区熔化成形:激光选区熔化设备根据之前设置好的激光参数和扫描策略一层层扫描成形,从第2层开始每个偶数层的粉末将被激光连续扫描两次,每层完成后基板下降一个层厚的距离,刮刀进行铺粉,待铺上一层粉末后继续完成以上操作,直至激光扫描完最后一层,得到预先设计的样品形状打印完成。
(6)将成形完成后的低活化铁素体/马氏体钢试样从基板上切割下来,进行相关检测。
(7)在此工艺条件下获得的低活化铁素体/马氏体钢试样致密度为99.83%,组织结构为板条马氏体(79%)和铁素体(21%)混合结构,具有优良的力学性能,抗拉强度达到1353MPa,具体数据参考图3、图4、图7。
实施例3
(1)按照元素成分配比制备低活化铁素体/马氏体钢原材料,各元素的含量按重量(wt%):0.15C,0.15Si,1.3Mn,10.5Cr,0.15Ta,0.9V,3.2W,0.13Mo,0.12Cu,0.02N,0.06Al,余量Fe。采用热惰性气体雾化法,首先将氧化镁坩埚抽真空并充入氩气保护,之后用氧化镁坩埚进行熔炼至合金溶液到1500℃,然后浇入中间包开始雾化,雾化介质为氩气,雾化压力5.5MPa,随后进行筛粉,制备了球形度良好,成分均匀的低活化铁素体/马氏体钢粉末,平均粒度为300目。
(2)使用三维软件对成形零件进行三维建模,模型建立后采用Magics软件对其添加支撑、切片和修复处理,切片厚度40μm,支撑面积比70%。
(3)设置激光器参数及激光扫描策略:激光功率360W,扫描速率1500mm/s,层间重熔n=3,光斑直径80μm,扫描间隔80μm,铺粉厚度40μm,每层扫描方向转动设置为90°。
(4)成型舱室准备:在使用选区激光熔化设备工作前,使用吸尘器将成型舱室清理干净,调整刮刀直至在基板上铺上薄薄的一层金属粉末,然后关好舱门抽真空并向成型仓内充入惰性气体使舱内氧含量保持在100ppm,同时将基板预热到120℃,并开启舱内气体循环系统。
(5)激光选区熔化成形:激光选区熔化设备根据之前设置好的激光参数和扫描策略一层层扫描成形,从第3层开始每到3的倍数层激光连续扫描两次,每层完成后基板下降一个层厚的距离,刮刀进行铺粉,待铺上一层粉末后继续完成以上操作,直至激光扫描完最后一层,得到预先设计的样品形状打印完成。
(6)将成形完成后的低活化铁素体/马氏体钢试样从基板上切割下来,进行相关检测。
(7)在此工艺条件下获得的低活化铁素体/马氏体钢试样致密度为99.2%,组织结构为板条马氏体(72%)和铁素体(28%)混合结构,具有优良的力学性能。抗拉强度达到1264MPa,具体数据参考图5、图6、图7。
以上所述实施例仅表达了本发明的实施方式,描述的较为详细具体,但并不能够理解为本发明专利仅限于此范围,在未脱离本发明构思的前提下,对本发明做出的任何变形和改进的方式都属于本发明的保护范围之内。

Claims (5)

1.一种激光选区熔化低活化铁素体/马氏体钢,其特征在于:低活化铁素体/马氏体钢的含量按重量百分比为:0.09-0.15C,0.05-0.15Si,0.5-1.3Mn,8.7-11.5Cr,0.15-0.22Ta,0.3-0.9V,1.7-3.2W,0.01-0.13Mo,0.01-0.12Cu,0.02-0.05N,0.02-0.06Al,余量Fe;所制备粉末平均粒度为300~400目。
2.制备如权利要求1以所述的一种激光选区熔化低活化铁素体/马氏体钢的方法,其特征在于:激光选区熔化低活化铁素体/马氏体钢的工艺参数调控范围为:激光功率200~600W,扫描速率600~2500mm/s,层间重熔n=1~3,光斑直径80~100μm,扫描间隔50~120μm,铺粉厚度20~80μm,舱内氧含量50-400ppm;基板预设温度80~120℃,支撑面积比为50-80%。
3.如权利要求1所述一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法,其特征在于,通过层间重熔方式对低活化铁素体/马氏体钢的组织进行调控,具体如下:层间重熔n=1时,组织由44%~72%的马氏体和28%~56%的铁素体组成,致密度在93.2%~98.76%之间;层间重熔n=2时,组织由52%~84%的马氏体和16%~48%的铁素体组成,致密度在92.72%~99.83%之间;层间重熔n=3时,组织由57%~76%的马氏体和24%~43%的铁素体组成,致密度在93.2%~99.2%之间。
4.制备如权利要求1以所述的一种激光选区熔化低活化铁素体/马氏体钢的方法,其特征在于:调整基板预设温度控制温度梯度。
5.制备如权利要求1以所述的一种激光选区熔化低活化铁素体/马氏体钢的方法,其特征在于:改变支撑面积比控制导热速率。
CN202010355373.6A 2020-04-29 2020-04-29 一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法 Active CN111440994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010355373.6A CN111440994B (zh) 2020-04-29 2020-04-29 一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010355373.6A CN111440994B (zh) 2020-04-29 2020-04-29 一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法

Publications (2)

Publication Number Publication Date
CN111440994A true CN111440994A (zh) 2020-07-24
CN111440994B CN111440994B (zh) 2021-06-25

Family

ID=71655944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010355373.6A Active CN111440994B (zh) 2020-04-29 2020-04-29 一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法

Country Status (1)

Country Link
CN (1) CN111440994B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000063A (zh) * 2021-11-05 2022-02-01 安徽工程大学 一种增材制造高导热模具钢材料及其制备方法
CN114990425A (zh) * 2022-01-11 2022-09-02 长沙中金智能装备有限公司 一种废钢破碎用刀具及其制备、修复方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335813A (zh) * 2010-07-26 2012-02-01 核工业西南物理研究院 一种tbm第一壁u形含流冷却管道组的加工工艺
CN103160745A (zh) * 2013-02-25 2013-06-19 宝钢特种材料有限公司 一种核聚变堆用大吨级高Ta低活化马氏体钢及其制造方法
CN106493364A (zh) * 2016-10-26 2017-03-15 中国科学院合肥物质科学研究院 一种低活化马氏体钢选区激光熔化增材制造工艺
CN108356263A (zh) * 2018-04-28 2018-08-03 苏州大学 激光增材制造用新型马氏体耐热钢合金粉末及其制备方法
US20200078865A1 (en) * 2018-09-06 2020-03-12 Triad National Security, Llc Additive manufacturing of ferritic/martensitic steel with improved high temperature strength

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335813A (zh) * 2010-07-26 2012-02-01 核工业西南物理研究院 一种tbm第一壁u形含流冷却管道组的加工工艺
CN103160745A (zh) * 2013-02-25 2013-06-19 宝钢特种材料有限公司 一种核聚变堆用大吨级高Ta低活化马氏体钢及其制造方法
CN106493364A (zh) * 2016-10-26 2017-03-15 中国科学院合肥物质科学研究院 一种低活化马氏体钢选区激光熔化增材制造工艺
CN108356263A (zh) * 2018-04-28 2018-08-03 苏州大学 激光增材制造用新型马氏体耐热钢合金粉末及其制备方法
US20200078865A1 (en) * 2018-09-06 2020-03-12 Triad National Security, Llc Additive manufacturing of ferritic/martensitic steel with improved high temperature strength

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
谭超林: "选区激光熔化成型马氏体时效钢及其复合、梯度材料研究", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000063A (zh) * 2021-11-05 2022-02-01 安徽工程大学 一种增材制造高导热模具钢材料及其制备方法
CN114990425A (zh) * 2022-01-11 2022-09-02 长沙中金智能装备有限公司 一种废钢破碎用刀具及其制备、修复方法

Also Published As

Publication number Publication date
CN111440994B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN108486433B (zh) 选区激光熔化技术用Al-Mg-Sc-Zr系铝合金组合物及成型件制备方法
CN112935252B (zh) 一种基于激光选区熔化技术制备高强韧共晶高熵合金的方法
Gu et al. Laser additive manufacturing (AM): classification, processing philosophy, and metallurgical mechanisms
CN110090954B (zh) 一种增材制造NiTi形状记忆合金及其制备方法
Dzogbewu Additive manufacturing of TiAl-based alloys
Liu et al. Microstructure and mechanical properties of LMD–SLM hybrid forming Ti6Al4V alloy
CN110756806B (zh) 一种基于激光选区熔化技术的Ti/Al异种合金的成形方法
Jia et al. Selective laser melting additive manufacturing of TiC/Inconel 718 bulk-form nanocomposites: Densification, microstructure, and performance
CN109434118B (zh) 一种非晶增强金属基复合材料的制备与成形方法
CN111360257A (zh) 一种提升3d打印高强铝合金粉末成形性的方法
CN111440994B (zh) 一种激光选区熔化低活化铁素体/马氏体钢的组织调控方法
KR101789682B1 (ko) 대형제품이 제조가능한 레이저를 이용한 금속소재의 적층성형 가공방법
CN111842888A (zh) 一种镍钛基三元形状记忆合金的4d打印方法
CN105728725B (zh) 3d打印制备多元素过渡界面协同增强镍基复合材料的方法
CN104404509A (zh) 一种金属激光熔化增材制造方法
CN111014669A (zh) 一种原位纳米TiB晶须增强钛基复合材料的制备方法
CN112008079B (zh) 一种原位热处理提高3d打印镍基高温合金力学性能的方法
Dilip et al. A short study on the fabrication of single track deposits in SLM and characterization
CN113996812B (zh) 一种提高激光选区熔化α-β型钛合金疲劳性能的热处理方法
CN111570793A (zh) 多孔结构变密度梯度金属材料的激光选区熔化制备方法
CN112695220A (zh) 一种激光选区熔化成形纳米TiB2增强铝基复合材料制备方法
Ahmed et al. Effects of selective laser melting parameters on relative density of AlSi10Mg
CN109648091A (zh) 一种增材制造原位制备铜基形状记忆合金的方法
CN105798294A (zh) 一种难熔材料的快速零件成形方法
CN113414406A (zh) 提高激光选区熔化增材制造镁/镁合金零件致密度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant