CN111431397B - 基于参数最优化方法的变换器并联系统的效率优化方法 - Google Patents

基于参数最优化方法的变换器并联系统的效率优化方法 Download PDF

Info

Publication number
CN111431397B
CN111431397B CN202010328698.5A CN202010328698A CN111431397B CN 111431397 B CN111431397 B CN 111431397B CN 202010328698 A CN202010328698 A CN 202010328698A CN 111431397 B CN111431397 B CN 111431397B
Authority
CN
China
Prior art keywords
parallel
efficiency
equation
parallel system
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010328698.5A
Other languages
English (en)
Other versions
CN111431397A (zh
Inventor
李永峰
宁超帆
成军平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Jiehang Electronic Technology Co ltd
Original Assignee
Xi'an Jiehang Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Jiehang Electronic Technology Co ltd filed Critical Xi'an Jiehang Electronic Technology Co ltd
Priority to CN202010328698.5A priority Critical patent/CN111431397B/zh
Publication of CN111431397A publication Critical patent/CN111431397A/zh
Application granted granted Critical
Publication of CN111431397B publication Critical patent/CN111431397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供了一种基于参数最优化方法的变换器并联系统的效率优化方法,建立Buck变换器并联系统的效率优化问题数学模型,通过采用代入消元法消除了并联系统效率优化问题中对优化变量的等式约束,通过采用变量替换法消除了并联系统效率优化问题中对优化变量的不等式约束,将并联系统效率优化有约束问题转化为无约束优化问题,求解满足变换器并联系统运行效率最高的各并联模块的电流分配值。本发明通过采用代入消元法和变量替换法,将Buck变换器并联系统的效率优化问题转化为无约束优化问题,获得了变换器并联系统效率优化的解析表达式求解方法,实现了按各并联模块运行性能进行电流分配的目的,提高了变换器并联系统的运行效率。

Description

基于参数最优化方法的变换器并联系统的效率优化方法
技术领域
本发明涉及变换器技术领域,尤其是一种DC-DC变换器效率优化方法。
背景技术
DC-DC开关变换器是开关电源的主要组成部分,其在航空航天、通信、计算机等各个领域得到了广泛的应用。随着变换器的发展,为了解决单个变换器不断增加的电流应力、热应力以及价格昂贵的功率开关器件等问题,多个电源模块并联技术在直流变换器中得到广泛的采用。
目前对并联DC-DC变换器的电流控制方法的研究已经有了一系列的结果,主要可以分为:输出阻抗法、主从设置法、有源均流法等。已提出的控制方法各有特色,但它们提出的基本出发点是一致的,并联模块平均分担负载电流。
随着人类社会的发展,能量的不断消耗引发了世界范围的能源危机和环境污染,在全社会呼吁节能环保的趋势下,优化DC-DC变换器的运行特性,提高变换器的转换效率以实现电子设备的高能效显得至关重要。
DC-DC变换器组成的分布式电源系统中,可选择功率等级相同或不同的变换器模块,功率等级不同模块的运行效率也会有所区别。如果并联运行的变换器模块平均分担负载电流,势必会造成有些运行模块工作在较低的效率,变换器的性能也就得不到较充分地利用,因此平均分担负载电流的思想只适合于运行特性相同或相近的模块并联运行。
发明内容
为了克服现有技术的不足,本发明提供一种基于参数最优化方法的变换器并联系统的效率优化方法。本发明解决了现有技术中因Buck变换器并联模块存在差异,采取常规的均流策略时,并联模块运行性能不均衡,并联系统运行效率受影响的问题。
本发明解决其技术问题所采用的技术方案的具体步骤如下:
步骤1、建立Buck变换器并联系统的效率优化问题数学模型;
Buck变换器并联系统效率η的计算式如下
Figure BDA0002464169930000011
其中,Vo为系统的输出电压,Io为并联系统的负载电流,Ii为第i个并联模块的输出电流,i=1,2,…,n,n为并联模块数,αi、βi和γi分别为第i个并联模块的效率系数,效率系数值的计算公式如下所示:
Figure BDA0002464169930000021
其中,D为变换器系统的导通占空比,Roni为第i个并联模块开关器件的导通电阻,RLi为第i个并联模块的电感等效电阻,Vin为变换器系统的输入电压,toni为第i个并联模块开关器件的开通时间,toffi为第i个并联模块开关器件的关断时间,f为变换器系统的开关频率,Li为第i个并联模块的电感值,Von为第i个并联模块二极管的导通压降;
为使式(1)的并联系统效率取最大值,效率优化问题的数学模型描述为:
求解目标函数的最小值,目标函数的公式为:
Figure BDA0002464169930000022
约束条件为:
Figure BDA0002464169930000023
其中,IiN表示第i个并联模块的额定电流,Iid表示第i个并联模块电感电流连续的最小值;
步骤2、将带约束的效率优化问题转化为无约束问题;
利用等式约束消去目标函数中的第n个变量,即:
Figure BDA0002464169930000024
将式(4)代入式(3),则目标函数转化为:
Figure BDA0002464169930000025
利用式(6)所示的变量替换消除原优化问题中的不等式约束:
Ii=Iid+(IiN-Iid)sin2xi (6)
将式(6)代入式(5),式(3)述的带约束的优化问题转化为等价的无约束优化问题;
Figure BDA0002464169930000031
步骤3、求解并联系统的效率优化问题;
对xi的一阶偏导数如式(8)所示:
Figure BDA0002464169930000032
其中ΔIi=IiN-Iid
令式(8)等于零可得:
sin(2xi)=0 (9)
Figure BDA0002464169930000033
式(10)表示的方程组用矩阵形式描述,如式(11)所示:
AX=B (11)
其中:
Figure BDA0002464169930000034
Figure BDA0002464169930000041
通过矩阵初等变换,变换矩阵A为对角阵M:
M=PA (12)
其中:
Figure BDA0002464169930000042
Figure BDA0002464169930000043
Q=2αnαn-1ΔIn-1m+2(αn-1n)ΔIn-1
Figure BDA0002464169930000044
Figure BDA0002464169930000045
根据式(12)可得A的逆矩阵为:
Figure BDA0002464169930000046
因此,式(11)的解为:
X=A-1B (13)
即:
Figure BDA0002464169930000051
如果根据式(14)求解得到0≤sin2xi≤1时,将求解出的sin2xi的值代入式(6),即得到并联系统电流优化分配时各模块的电流值Ii
如果根据式(14)求解得到sin2xi<0或sin2xi>1,则xi的值使用式(9)的解,将式(9)求解出的xi的值代入式(6),即得到并联系统电流优化分配时各模块的电流值Ii
按步骤3中的优化结果进行并联模块电流分配,可实现Buck变换器并联系统的效率优化。
本发明的有益效果在于:
1)本发明通过采用代入消元法和变量替换法,将Buck变换器并联系统的效率优化问题转化为无约束优化问题,获得了变换器并联系统效率优化的解析表达式求解方法。
2)本发明中的Buck变换器并联系统效率优化方法,实现了按各并联模块运行性能进行电流分配的目的,提高了变换器并联系统的运行效率。
附图说明
图1是本发明Buck变换器并联系统的电路拓扑图。
图2为本发明由不同模块并联的Buck变换器系统的效率曲线对比数值仿真结果。
Vin为变换器并联系统的输入电压,Mi(i=1,2,…,n,n为并联模块数)为第i个并联模块的开关器件,VDi(i=1,2,…,n)为第i个并联模块的二极管,RLi(i=1,2,…,n)为第i个并联模块的电感等效电阻,Li(i=1,2,…,n)为第i个并联模块的电感,C为变换器并联系统的滤波电容,RC为变换器并联系统滤波电容的等效串联电阻,R为变换器并联系统的负载电阻,Io为变换器并联系统的负载电流,Vo为变换器并联系统的输出电压。曲线1为并联系统采用常规的平均电流分配法时的系统效率曲线,曲线2为并联系统采用本申请的效率优化方法时的系统效率曲线。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
本发明变换器并联系统效率优化的方法是:建立Buck变换器并联系统的效率优化问题数学模型,通过采用代入消元法消除了并联系统效率优化问题中对优化变量的等式约束,通过采用变量替换法消除了并联系统效率优化问题中对优化变量的不等式约束,将并联系统效率优化有约束问题转化为无约束优化问题,求解满足变换器并联系统运行效率最高的各并联模块的电流分配值。
本发明基于参数最优化方法的变换器并联系统效率优化方法,具体按照以下步骤实施:
步骤1、建立Buck变换器并联系统的效率优化问题数学模型;
Buck变换器并联系统效率η的计算式如下
Figure BDA0002464169930000061
其中,Vo为系统的输出电压,Io为并联系统的负载电流,Ii为第i个并联模块的输出电流,i=1,2,…,n,n为并联模块数,αi、βi和γi分别为第i个并联模块的效率系数,效率系数值的计算公式如下所示:
Figure BDA0002464169930000062
其中,D为变换器系统的导通占空比,Roni为第i个并联模块开关器件的导通电阻,RLi为第i个并联模块的电感等效电阻,Vin为变换器系统的输入电压,toni为第i个并联模块开关器件的开通时间,toffi为第i个并联模块开关器件的关断时间,f为变换器系统的开关频率,Li为第i个并联模块的电感值,Von为第i个并联模块二极管的导通压降;
为使式(1)的并联系统效率取最大值,效率优化问题的数学模型描述为:
求解目标函数的最小值,目标函数的公式为:
Figure BDA0002464169930000071
约束条件为:
Figure BDA0002464169930000072
其中,IiN表示第i个并联模块的额定电流,Iid表示第i个并联模块电感电流连续的最小值;
步骤2、将带约束的效率优化问题转化为无约束问题;
利用等式约束消去目标函数中的第n个变量,即:
Figure BDA0002464169930000073
将式(4)代入式(3),则目标函数转化为:
Figure BDA0002464169930000074
利用式(6)所示的变量替换消除原优化问题中的不等式约束:
Ii=Iid+(IiN-Iid)sin2xi (6)
将式(6)代入式(5),式(3)述的带约束的优化问题转化为等价的无约束优化问题;
Figure BDA0002464169930000075
步骤3、求解并联系统的效率优化问题;
对xi的一阶偏导数如式(8)所示:
Figure BDA0002464169930000081
其中ΔIi=IiN-Iid
令式(8)等于零可得:
sin(2xi)=0 (9)
Figure BDA0002464169930000082
式(10)表示的方程组用矩阵形式描述,如式(11)所示:
AX=B (11)
其中:
Figure BDA0002464169930000083
Figure BDA0002464169930000084
通过矩阵初等变换,变换矩阵A为对角阵M:
M=PA (12)
其中:
Figure BDA0002464169930000085
Figure BDA0002464169930000091
Q=2αnαn-1ΔIn-1m+2(αn-1n)ΔIn-1
Figure BDA0002464169930000092
Figure BDA0002464169930000093
根据式(12)可得A的逆矩阵为:
Figure BDA0002464169930000094
因此,式(11)的解为:
X=A-1B (13)
即:
Figure BDA0002464169930000095
如果根据式(14)求解得到0≤sin2xi≤1时,将求解出的sin2xi的值代入式(6),即得到并联系统电流优化分配时各模块的电流值Ii
如果根据式(14)求解得到sin2xi<0或sin2xi>1,则xi的值使用式(9)的解,将式(9)求解出的xi的值代入式(6),即得到并联系统电流优化分配时各模块的电流值Ii
按步骤3中的优化结果进行并联模块电流分配,可实现Buck变换器并联系统的效率优化。
实施例
本实施例的变换器并联系统由三个不同的Buck模块并联构成,如图1所示,并联系统输入电压Vin=24V,系统输出电压Vo=12V,系统开关频率f=500kHz,系统的导通占空比D=0.5,三个并联模块的参数如表1所示。
表1 并联模块参数
模块一 模块二 模块三
R<sub>on</sub>(mΩ) 35 13.4 8.1
R<sub>L</sub>(mΩ) 19 1 7
L(μH) 50 10 30
t<sub>on</sub>(ns) 27 16 41
t<sub>off</sub>(ns) 49 20 44
V<sub>on</sub>(V) 0.6 0.6 0.6
图2为直接根据效率公式计算的Buck变换器并联系统效率数值仿真结果,曲线1为并联模块按平均分配电流时的并联系统效率曲线,曲线2为并联模块根据申请书中提出的优化方法进行电流分配时的并联系统效率曲线。
本发明提出的基于参数最优化方法的变换器并联系统效率优化,根据并联系统效率最优进行并联模块的电流分配,应用代入消元法和变量替换法将并联系统的效率优化问题转化为无约束问题的求解,提高了由不同模块组成的Buck变换器并联系统的运行效率。

Claims (1)

1.一种基于参数最优化方法的变换器并联系统的效率优化方法,其特征在于包括下述步骤:
步骤1、建立Buck变换器并联系统的效率优化问题数学模型;
Buck变换器并联系统效率η的计算式如下
Figure FDA0002464169920000011
其中,Vo为系统的输出电压,Io为并联系统的负载电流,Ii为第i个并联模块的输出电流,i=1,2,…,n,n为并联模块数,αi、βi和γi分别为第i个并联模块的效率系数,效率系数值的计算公式如下所示:
Figure FDA0002464169920000012
其中,D为变换器系统的导通占空比,Roni为第i个并联模块开关器件的导通电阻,RLi为第i个并联模块的电感等效电阻,Vin为变换器系统的输入电压,toni为第i个并联模块开关器件的开通时间,toffi为第i个并联模块开关器件的关断时间,f为变换器系统的开关频率,Li为第i个并联模块的电感值,Von为第i个并联模块二极管的导通压降;
为使式(1)的并联系统效率取最大值,效率优化问题的数学模型描述为:
求解目标函数的最小值,目标函数的公式为:
Figure FDA0002464169920000013
约束条件为:
Figure FDA0002464169920000014
其中,IiN表示第i个并联模块的额定电流,Iid表示第i个并联模块电感电流连续的最小值;
步骤2、将带约束的效率优化问题转化为无约束问题;
利用等式约束消去目标函数中的第n个变量,即:
Figure FDA0002464169920000021
将式(4)代入式(3),则目标函数转化为:
Figure FDA0002464169920000022
利用式(6)所示的变量替换消除原优化问题中的不等式约束:
Ii=Iid+(IiN-Iid)sin2xi (6)
将式(6)代入式(5),式(3)述的带约束的优化问题转化为等价的无约束优化问题;
Figure FDA0002464169920000023
步骤3、求解并联系统的效率优化问题;
对xi的一阶偏导数如式(8)所示:
Figure FDA0002464169920000024
其中ΔIi=IiN-Iid
令式(8)等于零可得:
sin(2xi)=0 (9)
Figure FDA0002464169920000025
式(10)表示的方程组用矩阵形式描述,如式(11)所示:
AX=B (11)
其中:
Figure FDA0002464169920000031
Figure FDA0002464169920000032
通过矩阵初等变换,变换矩阵A为对角阵M:
M=PA (12)
其中:
Figure FDA0002464169920000033
Figure FDA0002464169920000034
Q=2αnαn-1ΔIn-1m+2(αn-1n)ΔIn-1
Figure FDA0002464169920000035
Figure FDA0002464169920000036
根据式(12)可得A的逆矩阵为:
Figure FDA0002464169920000041
因此,式(11)的解为:
X=A-1B (13)
即:
Figure FDA0002464169920000042
如果根据式(14)求解得到0≤sin2xi≤1时,将求解出的sin2xi的值代入式(6),即得到并联系统电流优化分配时各模块的电流值Ii
如果根据式(14)求解得到sin2xi<0或sin2xi>1,则xi的值使用式(9)的解,将式(9)求解出的xi的值代入式(6),即得到并联系统电流优化分配时各模块的电流值Ii
按步骤3中的优化结果进行并联模块电流分配,可实现Buck变换器并联系统的效率优化。
CN202010328698.5A 2020-04-23 2020-04-23 基于参数最优化方法的变换器并联系统的效率优化方法 Active CN111431397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010328698.5A CN111431397B (zh) 2020-04-23 2020-04-23 基于参数最优化方法的变换器并联系统的效率优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010328698.5A CN111431397B (zh) 2020-04-23 2020-04-23 基于参数最优化方法的变换器并联系统的效率优化方法

Publications (2)

Publication Number Publication Date
CN111431397A CN111431397A (zh) 2020-07-17
CN111431397B true CN111431397B (zh) 2022-06-03

Family

ID=71559145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010328698.5A Active CN111431397B (zh) 2020-04-23 2020-04-23 基于参数最优化方法的变换器并联系统的效率优化方法

Country Status (1)

Country Link
CN (1) CN111431397B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362519B (zh) * 2021-12-31 2023-10-24 华中科技大学 一种两相交错并联dc-dc变换器效率优化方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199489B1 (ko) * 2011-07-19 2012-11-09 한국에너지기술연구원 입력전압차를 이용하여 전류를 분배하는 동기형 벅 컨버터 및 그를 이용한 전류 분배방법
CN103248231A (zh) * 2013-04-02 2013-08-14 浙江大学 多相均流控制的并联调整电路及控制方法
CN107508311A (zh) * 2017-07-06 2017-12-22 上海交通大学 并联型风电变流器的提升运行效率的方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692329B2 (en) * 2007-02-23 2010-04-06 Intel Corporation Current sharing for multiphase power conversion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199489B1 (ko) * 2011-07-19 2012-11-09 한국에너지기술연구원 입력전압차를 이용하여 전류를 분배하는 동기형 벅 컨버터 및 그를 이용한 전류 분배방법
CN103248231A (zh) * 2013-04-02 2013-08-14 浙江大学 多相均流控制的并联调整电路及控制方法
CN107508311A (zh) * 2017-07-06 2017-12-22 上海交通大学 并联型风电变流器的提升运行效率的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A current sharing control strategy of paralleled DC-DC converter based on simple model;Sun Jinkun et al.;《2010 International Conference on Optics, Photonics and Energy Engineering (OPEE)》;20100712;第288-291页 *
基于效率模型的DC-DC变换器并联系统电流分配策略;孙晋坤等;《中国电机工程学报》;20130525;第33卷(第15期);第10-18页 *

Also Published As

Publication number Publication date
CN111431397A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
Mohseni et al. A new high step-up multi-input multi-output DC–DC converter
Li et al. A novel quadratic boost converter with low inductor currents
Zhu et al. Single-switch high step-up Zeta converter based on Coat circuit
Bhaskar et al. Non isolated and non-invertingCockcroft-Walton multiplier based hybrid 2Nx interleaved boost converterfor renewable energy applications
CN105896972B (zh) 一种用于buck变换器的自适应二次斜坡补偿电路
CN111431397B (zh) 基于参数最优化方法的变换器并联系统的效率优化方法
Subrata et al. Maximum power point tracking in PV arrays with high gain DC-DC boost converter
Pandey et al. Design and Analysis of Extendable Switched-Inductor and Capacitor-Divider Network Based High-Boost DC-DC Converter for Solar PV Application
Khosroshahi et al. A new coupled inductor-based high step-up DC-DC converter for PV applications
Li et al. Improved quadratic boost converter based on the voltage lift technique
Alilou et al. A new high step-up DC-DC converter using voltage lift techniques suitable for renewable applications
Kumaravel et al. Dual-input dual-output dc-dc converter for dc microgrid applications
Yuvaraj et al. Analysis of PV based Soft Switching Boost DC-DC Converter with Zero Current Switching Technique
Kirubakaran et al. Fuzzy Logic Controlled SEPIC With Coupled Inductor-based Converter for High Voltage Applications
Chellammal et al. Integration of renewable energy resources in off GRID system using three port zeta converter
Gupta et al. Comparative Analysis of Boost and Interleaved Boost Converter for PV Application
Yılmaz et al. Voltage Control of Cuk Converter with PI and Fuzzy Logic Controller in Continuous Current Mode
Bulut et al. Maximum power point tracking by the small-signal-based pi and fuzzy logic controller approaches for a two-stage switched-capacitor dc-dc power boost converter; applicable for photovoltaic utilizations
Jia et al. A SiC-based dual-input buck-boost converter with independent MPPT for photovoltaic power systems
Mohan et al. Switched inductor based transformerless boost inverter
CN110829831A (zh) 应用于直流配网系统运行模式下的简单升压变流器
Alzgool et al. A novel multi-inputs-single-output DC transformer topology
Sutikno et al. A New FL-MPPT High Voltage DC-DC Converter for PV Solar Application
CN110336325A (zh) 一种基于新型单相光伏并网拓扑的控制方法与装置
CN114709811B (zh) 一种光伏直流汇集系统中ipos级联结构模块控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant