CN111430486B - 一种光敏电阻、制备方法及其形成的传感器 - Google Patents

一种光敏电阻、制备方法及其形成的传感器 Download PDF

Info

Publication number
CN111430486B
CN111430486B CN202010258514.2A CN202010258514A CN111430486B CN 111430486 B CN111430486 B CN 111430486B CN 202010258514 A CN202010258514 A CN 202010258514A CN 111430486 B CN111430486 B CN 111430486B
Authority
CN
China
Prior art keywords
photoresistor
quantum dots
graphene
resonant cavity
layered graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010258514.2A
Other languages
English (en)
Other versions
CN111430486A (zh
Inventor
康晓旭
钟晓兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC R&D Center Co Ltd
Original Assignee
Shanghai IC R&D Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai IC R&D Center Co Ltd filed Critical Shanghai IC R&D Center Co Ltd
Priority to CN202010258514.2A priority Critical patent/CN111430486B/zh
Publication of CN111430486A publication Critical patent/CN111430486A/zh
Application granted granted Critical
Publication of CN111430486B publication Critical patent/CN111430486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种光敏电阻,包括谐振腔、反射层、电极、层状石墨烯以及嵌在层状石墨烯表面的量子点,其中,所述反射层位于所述谐振腔的底部,所述电极位于所述谐振腔的四周,所述层状石墨烯位于所述谐振腔和电极的上表面;当入射光入射至所述光敏电阻时,所述量子点被入射光激发出的电子经过所述层状石墨烯传输至电极,引起所述光敏电阻的阻值变化。本发明提供的一种光敏电阻,以石墨烯为基底,嵌在层状石墨烯表面的量子点作为扩展吸收使用,使得量子点产生的电子快速被基底传输到电极,从而提升光敏电阻性能。

Description

一种光敏电阻、制备方法及其形成的传感器
技术领域
本发明涉及光敏电阻领域,具体涉及一种光敏电阻、制备方法及其形成的传感器。
背景技术
光敏电阻器是利用半导体的光电导效应制成的一种电阻值随入射光的强弱而改变的电阻器,又称为光电导探测器。光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。常用的光敏电阻器硫化镉光敏电阻器,它是由半导体材料制成的。光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4~0.76)μm的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。
光敏电阻感受到的光线变化通常需要通过光敏电阻传感器进行输出,随着集成电路的发展,对于光敏电阻传感器的探测灵敏度以及探测波长范围要求越来越高,如何提高光敏电阻传感器的灵敏度和探测范围称为集成电路中亟待解决的问题。
量子点成像技术是目前的焦点技术,具有性能优异、探测波长范围广等特点。但如何将量子点应用到光敏电阻传感器中,并实现低成本量子点成像技术是目前的关键问题。
发明内容
本发明的目的是提供一种光敏电阻、制备方法及其形成的传感器,以石墨烯为基底,嵌在层状石墨烯表面的量子点作为扩展吸收使用,使得量子点产生的电子快速被基底传输到电极,从而提升光敏电阻性能。
为了实现上述目的,本发明采用如下技术方案:一种光敏电阻,包括谐振腔、反射层、电极、层状石墨烯以及嵌在层状石墨烯表面的量子点,其中,所述反射层位于所述谐振腔的底部,所述电极位于所述谐振腔的四周,所述层状石墨烯位于所述谐振腔和电极的上表面;
当入射光入射至所述光敏电阻时,所述量子点被入射光激发出的电子经过所述层状石墨烯传输至电极,引起所述光敏电阻的阻值变化。
进一步地,所述谐振腔为空腔或者所述谐振腔中填充介质隔离层。
进一步地,所述量子点包括硅、锗、锗硅、碲镉汞、铟镓砷中的一种或几种。
一种采用光敏电阻形成的传感器,还包括参考电阻、电容和放大器,其中,所述参考电阻的一端接地,所述光敏电阻的一端连接电源,所述参考电阻的另一端、光敏电阻的另一端和电容的一端共同连接至放大器的输入端,所述电容的另一端连接所述放大器输出端,所述放大器的另一输入端连接参考电压,所述放大器的输出端输出光敏信号。
一种制备光敏电阻的方法,包括如下步骤:
S01:将氧化石墨烯溶于水中形成氧化石墨烯溶液;
S02:通过调节剂控制所述氧化石墨烯溶液的黏性和表面张力,并加入量子点,混合均匀之后形成均匀分散剂;
S03:将均匀分散剂涂覆在衬底上表面,形成包含量子点的氧化石墨烯薄膜;所述衬底包含谐振腔和位于谐振腔周围的电极;
S04:对包含量子点的氧化石墨烯薄膜进行烘干和还原退火,形成包含谐振腔、电极、层状石墨烯以及嵌在层状石墨烯表面的量子点的光敏电阻。
进一步地,所述步骤S01将氧化石墨烯采用超声方式溶于水中,形成二维层状的氧化石墨烯溶液;所述步骤S02将加入量子点之后的氧化石墨烯溶液采用超声方式混合均匀。
进一步地,所述步骤S02中控制氧化石墨烯溶液的黏性为0.1-200mPa·s,表面张力为0.1-200mNm-1
进一步地,所述步骤S03中采用旋涂或者点胶或者纳米打印或者浸没式成膜的方式将均匀分散剂涂覆在衬底上表面。
进一步地,所述浸没式成膜具体包括:
S031:将衬底放置在容器内;所述容器中装有固定体积的均匀分散剂;
S032:在低于60℃的温度下使得所述均匀分散剂中溶剂蒸发,从而在衬底上表面形成包含量子点的氧化石墨烯薄膜。
进一步地,所述步骤S04具体包括:
S041:在低于100℃的温度下将衬底上表面包含量子点的氧化石墨烯薄膜烘干;
S042:在100℃至400℃温度下的惰性气体或者还原性气体环境中对衬底进行退火;
S043:在大于800℃温度下的还原性气体环境中对衬底进行退火,形成包含谐振腔、电极、层状石墨烯以及嵌在层状石墨烯表面的量子点的光敏电阻。
本发明具有如下有益效果:本发明利用层状石墨烯薄膜比表面积大、透明、表面迁移率高等特点,以层状石墨烯作基底,嵌在层状石墨烯表面的量子点作扩展吸收使用,使得量子点产生的电子快速被基底传输到电极,从而提升光敏电阻性能。
附图说明
附图1为本发明光敏电阻的结构示意图;
附图2为本发明光敏电阻形成的传感器示意图;
附图3为本发明中量子点和氧化石墨烯形成的均匀分散剂示意图。
图中:1反射层,2电极,3层状石墨烯,4量子点,12氧化石墨烯溶液。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式做进一步的详细说明。
如附图1所述,本发明提供的一种光敏电阻,包括谐振腔、反射层1、电极2、层状石墨烯3以及嵌在层状石墨烯表面的量子点4,其中,反射层1位于谐振腔的底部,具体的反射层1包括但不限于Al、Pt等金属;谐振腔可以为空腔,此时,谐振腔的高度由该光敏电阻所吸收的光线波长决定,入射光从层状石墨烯表面入射至光敏电阻中,透过层状石墨烯的入射光经过谐振腔以及反射层再反射回层状石墨烯中,有利于提高光敏电阻的光吸收率。谐振腔也可以为介质隔离层。电极2位于谐振腔的四周,层状石墨烯3位于谐振腔和电极2的上表面;电极可以但不限于为Pt、Au等材料。当入射光入射至光敏电阻中层状石墨烯时,嵌在层状石墨烯表面的量子点被入射光激发出的电子经过层状石墨烯传输至电极,引起光敏电阻的阻值变化。
层状石墨烯可以为石墨烯材料,也可以为还原的氧化石墨烯材料。量子点根据器件需求进行设置,如果吸收窄频段光线,可以是单一材料和尺寸的硅、锗、锗硅、碲镉汞、铟镓砷等材料;如需要吸收宽频段光线,可以是上述不同材料/尺寸的混合。
如附图2所述,本发明中光敏电阻形成的传感器,包括上述含有层状石墨烯以及嵌在层状石墨烯表面量子点的光敏电阻R1、参考电阻R0、电容C和放大器,其中,参考电阻R0的一端接地,光敏电阻R1的一端连接电源,参考电阻R0的另一端、光敏电阻R1的另一端和电容C的一端共同连接至放大器的输入端,电容C的另一端连接放大器输出端,放大器的另一输入端连接参考电压,放大器的输出端输出光敏信号。本发明中光敏电阻与参考电阻、放大器连接在一起,共同组成电容跨导放大器,当入射光入射至光敏电阻中层状石墨烯时,嵌在层状石墨烯表面的量子点被入射光激发出的电子经过层状石墨烯传输至电极,引起光敏电阻的阻值变化,进而引起放大器输出端光敏信号的变化,附图2中传感器通过放大器对光敏信号进行了放大,从而提高光敏电阻传感器的灵敏度。
本发明提供的一种制备光敏电阻的方法,包括如下步骤:
S01:将氧化石墨烯采用超声方式溶于水中,形成二维层状的氧化石墨烯溶液;本步骤中还可以通过过滤工艺控制氧化石墨烯二维薄片的尺寸,进而确保光敏电阻中的层状石墨烯的尺寸均匀一致。本步骤中在超声环境下,氧化石墨烯以二维层状形式均匀分散在溶液中,对氧化石墨烯溶液进行过滤可以筛选出特定尺寸的二维层状氧化石墨烯。
S02:如附图3所示,通过调节剂控制控制氧化石墨烯溶液12的黏性为0.1-200mPa·s,表面张力为0.1-200mNm-1,并加入量子点4,超声混合均匀之后形成均匀分散剂。具体的调节剂可以但不限于为异丙醇(IPA)等调节剂,调节剂是为了使得氧化石墨烯溶液中可以更好得分散,确保氧化石墨烯以二维层状结构均匀分散在溶液中,同时在超声环境下,量子点也均匀分散在氧化石墨烯溶液中,均匀分散的二维层状氧化石墨烯和量子点共同形成均匀分散剂。
S03:将均匀分散剂涂覆在衬底上表面,形成包含量子点的氧化石墨烯薄膜;本步骤中衬底包含谐振腔和位于谐振腔周围的电极;具体可以采用旋涂或者点胶或者纳米打印或者浸没式成膜等方式将均匀分散剂涂覆在衬底上表面,在衬底上表面形成包含量子点的氧化石墨烯薄膜。旋涂、点胶、纳米打印的具体方式为现有技术,可以参考现有技术中技术进行涂覆,在此不做详细介绍,以下以浸没式成膜方式为例,具体包括如下步骤:
S031:将衬底放置在容器内;容器中装有固定体积的均匀分散剂。由于步骤S02中制备出来的均匀分散剂浓度相同,本步骤中控制固定体积的均匀分散剂,可以确保在同一批次的衬底上形成的层状石墨烯以及嵌在层状石墨烯表面的量子点均匀一致。
S032:在低于60℃的温度下使得均匀分散剂中溶剂蒸发,均匀分散剂中溶剂蒸发之后,剩下层状石墨烯以及嵌在层状石墨烯表面的量子点,从而在衬底上表面形成包含量子点的氧化石墨烯薄膜。
S04:对包含量子点的氧化石墨烯薄膜进行烘干和还原退火,形成包含谐振腔、电极、层状石墨烯以及嵌在层状石墨烯表面的量子点的光敏电阻。
S041:在低于100℃的温度下将衬底上表面包含量子点的氧化石墨烯薄膜烘干;
S042:在100℃至400℃温度下的惰性气体或者还原性气体环境中对衬底进行退火;
S043:在大于800℃温度下的还原性气体环境中对衬底进行退火,形成包含谐振腔、电极、层状石墨烯以及嵌在层状石墨烯表面的量子点的光敏电阻。这里的层状石墨烯可以为石墨烯材料,也可以为还原的氧化石墨烯材料。
本发明利用层状石墨烯薄膜比表面积大、透明、表面迁移率高等特点,以层状石墨烯作基底,嵌在层状石墨烯表面的量子点作扩展吸收使用,使得量子点产生的电子快速被基底传输到电极,从而提升光敏电阻性能。
以上所述仅为本发明的优选实施例,所述实施例并非用于限制本发明的专利保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明所附权利要求的保护范围内。

Claims (10)

1.一种光敏电阻,其特征在于,包括谐振腔、反射层、电极、层状石墨烯以及嵌在层状石墨烯表面的量子点,其中,所述反射层位于所述谐振腔的底部,所述电极位于所述谐振腔的四周,所述层状石墨烯位于所述谐振腔和电极的上表面;
当入射光入射至所述光敏电阻时,所述量子点被入射光激发出的电子经过所述层状石墨烯传输至电极,引起所述光敏电阻的阻值变化;其中,入射光从层状石墨烯表面入射至光敏电阻中,透过层状石墨烯的入射光经过谐振腔以及反射层再反射回层状石墨烯中。
2.根据权利要求1所述的一种光敏电阻,其特征在于,所述谐振腔为空腔或者所述谐振腔中填充介质隔离层。
3.根据权利要求1所述的一种光敏电阻,其特征在于,所述量子点包括硅、锗、锗硅、碲镉汞、铟镓砷中的一种或几种。
4.一种采用权利要求1所述的光敏电阻形成的传感器,其特征在于,还包括参考电阻、电容和放大器,其中,所述参考电阻的一端接地,所述光敏电阻的一端连接电源,所述参考电阻的另一端、光敏电阻的另一端和电容的一端共同连接至放大器的输入端,所述电容的另一端连接所述放大器输出端,所述放大器的另一输入端连接参考电压,所述放大器的输出端输出光敏信号。
5.一种制备光敏电阻的方法,其特征在于,包括如下步骤:
S01:将氧化石墨烯溶于水中形成氧化石墨烯溶液;
S02:通过调节剂控制所述氧化石墨烯溶液的黏性和表面张力,并加入量子点,混合均匀之后形成均匀分散剂;
S03:将均匀分散剂涂覆在衬底上表面,形成包含量子点的氧化石墨烯薄膜;所述衬底包含谐振腔和位于谐振腔周围的电极;
S04:对包含量子点的氧化石墨烯薄膜进行烘干和还原退火,形成包含谐振腔、电极、层状石墨烯以及嵌在层状石墨烯表面的量子点的光敏电阻;当入射光入射至所述光敏电阻时,所述量子点被入射光激发出的电子经过所述层状石墨烯传输至电极,引起所述光敏电阻的阻值变化;其中,入射光从层状石墨烯表面入射至光敏电阻中,透过层状石墨烯的入射光经过谐振腔以及反射层再反射回层状石墨烯中。
6.根据权利要求5所述的一种制备光敏电阻的方法,其特征在于,所述步骤S01将氧化石墨烯采用超声方式溶于水中,形成二维层状的氧化石墨烯溶液;所述步骤S02将加入量子点之后的氧化石墨烯溶液采用超声方式混合均匀。
7.根据权利要求5所述的一种制备光敏电阻的方法,其特征在于,所述步骤S02中控制氧化石墨烯溶液的黏性为0.1-200mPa·s,表面张力为0.1-200mNm-1
8.根据权利要求5所述的一种制备光敏电阻的方法,其特征在于,所述步骤S03中采用旋涂或者点胶或者纳米打印或者浸没式成膜的方式将均匀分散剂涂覆在衬底上表面。
9.根据权利要求8所述的一种制备光敏电阻的方法,其特征在于,所述浸没式成膜具体包括:
S031:将衬底放置在容器内;所述容器中装有固定体积的均匀分散剂;
S032:在低于60℃的温度下使得所述均匀分散剂中溶剂蒸发,从而在衬底上表面形成包含量子点的氧化石墨烯薄膜。
10.根据权利要求5所述的一种制备光敏电阻的方法,其特征在于,所述步骤S04具体包括:
S041:在低于100℃的温度下将衬底上表面包含量子点的氧化石墨烯薄膜烘干;
S042:在100℃至400℃温度下的惰性气体或者还原性气体环境中对衬底进行退火;
S043:在大于800℃温度下的还原性气体环境中对衬底进行退火,形成包含谐振腔、电极、层状石墨烯以及嵌在层状石墨烯表面的量子点的光敏电阻。
CN202010258514.2A 2020-04-03 2020-04-03 一种光敏电阻、制备方法及其形成的传感器 Active CN111430486B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010258514.2A CN111430486B (zh) 2020-04-03 2020-04-03 一种光敏电阻、制备方法及其形成的传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010258514.2A CN111430486B (zh) 2020-04-03 2020-04-03 一种光敏电阻、制备方法及其形成的传感器

Publications (2)

Publication Number Publication Date
CN111430486A CN111430486A (zh) 2020-07-17
CN111430486B true CN111430486B (zh) 2023-09-26

Family

ID=71556256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010258514.2A Active CN111430486B (zh) 2020-04-03 2020-04-03 一种光敏电阻、制备方法及其形成的传感器

Country Status (1)

Country Link
CN (1) CN111430486B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752547A (zh) * 2015-03-10 2015-07-01 天津大学 PbSe量子点与石墨烯体异质结光敏场效应管及制备方法
CN104752549A (zh) * 2015-03-10 2015-07-01 天津大学 PbSe量子点与石墨烯多层异质结光敏场效应管及方法
CN107393984A (zh) * 2017-06-27 2017-11-24 上海集成电路研发中心有限公司 一种提高光吸收率的量子阱红外探测器及其制作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752547A (zh) * 2015-03-10 2015-07-01 天津大学 PbSe量子点与石墨烯体异质结光敏场效应管及制备方法
CN104752549A (zh) * 2015-03-10 2015-07-01 天津大学 PbSe量子点与石墨烯多层异质结光敏场效应管及方法
CN107393984A (zh) * 2017-06-27 2017-11-24 上海集成电路研发中心有限公司 一种提高光吸收率的量子阱红外探测器及其制作方法

Also Published As

Publication number Publication date
CN111430486A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
US20210005398A1 (en) Graphene-semiconductor based wavelength selective photodetector for sub-bandgap photo detection
CN107275421A (zh) 一种量子点光电探测器及其制备方法
WO2009108479A1 (en) Porous silicon quantum dot photodetector
Li et al. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects
Kim et al. Patterning All‐Inorganic Halide Perovskite with Adjustable Phase for High‐Resolution Color Filter and Photodetector Arrays
CN113410317B (zh) 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN106769287B (zh) 一种实现高效率液体封装的方法
Zheng et al. Stable and efficient perovskite solar cells by discrete two-dimensional perovskites capped on the three-dimensional perovskites bilayer thin film
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
Zhang et al. An Irradiance‐Adaptable Near‐Infrared Vertical Heterojunction Phototransistor
Duan et al. High performance organic-nanostructured silicon hybrid solar cell with modified surface structure
CN113782633A (zh) 一种新型二维同质结及其制备方法
CN111430486B (zh) 一种光敏电阻、制备方法及其形成的传感器
Mei et al. Ultraviolet‐Visible‐Short‐Wavelength Infrared Broadband and Fast‐Response Photodetectors Enabled by Individual Monocrystalline Perovskite Nanoplate
Zhang et al. Fabrication of a Periodic Inverse Micropyramid (PIMP)‐Si/In2Se3 Heterojunction Photodetector Array for RGB‐IR Image Sensing Application
Chakrabarty et al. Enhanced performance of hybrid self-biased heterojunction photodetector on soft-lithographically patterned organic platform
CN104659152B (zh) 一种基于扭转双层石墨烯的光电探测器及其制备方法
Zhang et al. Facilely Achieved Self‐Biased Black Silicon Heterojunction Photodiode with Broadband Quantum Efficiency Approaching 100%
Zhou et al. Solution‐Processing of CsPbClxBr3− x Perovskite Micro/Nanostructure Near‐Ultraviolet Photodetectors with High Performance
CN115692523A (zh) 双波段量子点层、器件及其制备方法与应用
Zhou et al. High-Performance, Flexible Perovskite Photodetector Based on CsPbBr $ _ {\text {3}} $ Nanonet
CN110993801B (zh) 一种葡萄糖掺杂的有机无机杂化钙钛矿复合膜及其制备和应用
Cabello et al. Terahertz emission enhancement of gallium-arsenide-based photoconductive antennas by silicon nanowire coating
Ntia et al. An analytical approach to CH3NH3PbI3 perovskite solar cells based on different hole transport materials
CN116914000B (zh) 一种顶层掺杂的平面光导型非倒装键合量子点成像芯片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant