CN111424309A - 一种单晶金属箔材及其制备方法 - Google Patents

一种单晶金属箔材及其制备方法 Download PDF

Info

Publication number
CN111424309A
CN111424309A CN202010411463.2A CN202010411463A CN111424309A CN 111424309 A CN111424309 A CN 111424309A CN 202010411463 A CN202010411463 A CN 202010411463A CN 111424309 A CN111424309 A CN 111424309A
Authority
CN
China
Prior art keywords
metal foil
stress
crystal
polycrystalline
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010411463.2A
Other languages
English (en)
Other versions
CN111424309B (zh
Inventor
黄德萍
史浩飞
张永娜
李昕
李占成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing University
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University, Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing University
Priority to CN202010411463.2A priority Critical patent/CN111424309B/zh
Publication of CN111424309A publication Critical patent/CN111424309A/zh
Application granted granted Critical
Publication of CN111424309B publication Critical patent/CN111424309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/12Single-crystal growth directly from the solid state by pressure treatment during the growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种单晶金属箔材的制备方法,其中,方法包括以下步骤:(1)在多晶金属箔材两端施加应力;(2)在步骤(1)施加应力的同时将所述多晶金属箔材进行弯曲,并同时进行高温退火处理;(3)在多晶金属箔材两端施加逐渐定量增加的应力,获得单晶金属箔材。通过以上方法能制备大面积的单晶二维材料;此方法简单可控,可用于大需求的生产。

Description

一种单晶金属箔材及其制备方法
技术领域
本发明属于单晶金属材料制备技术领域,具体涉及一种单晶金属箔材及其制备方法。
背景技术
在材料的研究领域中单晶占据着非常重要的地位,通常情况下单晶才能表现出电、磁、光、热等方面的优异性能,因此可用作高性能的电子器件、半导体器件等。
二维材料薄膜的制备中,金属材料通常可作为催化剂衬底用于二维材料的的生长,而二维材料与金属衬底的外延关系及二者之间的晶格匹配,均对二维材料的性能影响较大。
大面积单晶二维材料的制备是目前二维材料制备和应用研究面临的瓶颈,单晶金属衬底对单晶二维材料的生长有重要意义,例如,在Cu(111)、Cu(110)表面可制备单晶石墨烯,在具有特定台阶的Cu(110)表面,可以生长单晶氮化硼;因此,单晶金属衬底的可控制备是生长单晶二维材料的基础,但目前单晶金属制备通常需要经过长时间的高温退火,难以实现大面积制备。
发明内容
有鉴于此,本发明的目的之一在于提供涉及一种单晶金属箔材的制备方法,用于制备单晶金属衬底,方法简单可控。
为实现上述目的,本发明的技术方案为:
一种单晶金属箔材的制备方法,包括以下步骤:
(1)在多晶金属箔材两端施加应力;
(2)在步骤(1)施加应力的同时将所述多晶金属箔材进行弯曲,并同时进行高温退火处理;
(3)在多晶金属箔材两端施加逐渐定量增加的应力,获得单晶金属箔材。
进一步地,所述多晶金属箔材的厚度为1-100μm,尺寸为1mm2-1000mm2
进一步地,所述多晶金属为裁剪成两端宽度大于中间宽度的“工”字形形状,且宽度大的两端中心位置分别打有一孔洞,通过所述孔洞安装应力拉升装置提供施加的应力。
进一步地,所述步骤(1)中施加应力的方法包括拉升、施压及重力引起的应力施加效应。
进一步地,所述应力大小为0-300Mpa。
进一步地,所述弯曲半径为0.01mm-100mm。
进一步地,所述弯曲角度为0-360度。
进一步地,所述进行高温退火处理的具体步骤为:
通入流量为1-1000sccm的氩气、1-1000的sccm氮气、1-500sccm的氢中的一种或多种作为保护气;
按1-20℃/s的升温速率升高退火温度至300-1200℃后,持续1-200h后降温,降温速率为1-50℃/s。
进一步地,所述多晶金属箔材的金属种类包括铜、镍、铂、钯、金、铝在内的面心立方金属。
进一步地,所述金属的纯度大于99%。
进一步地,其特征在于,所述步骤(3)中得到的所述单晶金属箔材的表面晶面包括(111)、(110)、(211)、(223)、(116)、(335)、(233)晶面。
与此同时,本发明还提供了目的之一的方法得到的一种单晶金属箔材,所述单晶金属箔材的厚度为1-100μm,尺寸为1mm2-1000mm2;其中,金属种类包括铜、镍、铂、钯、金、铝在内的面心立方金属。
有益效果
本发明提供一种单晶金属箔材的制备方法,此方法通过简单的弯曲和应力调节,可以制备所需晶面的单晶金属箔材,此方法操作简单且过程可控,避免了常规单晶制备方法中的长时间退火、晶种诱导等复杂或漫长的制备过程;同时,本发明还提供了可以通过改变应力大小、方向等,可控调制得到任意晶面单晶金属箔材的方法。另一方面,本发明还提供了一种单晶金属箔材。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍。显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明一种单晶金属箔材的制备方法的一实施例例流程图;
图2为本发明一种单晶金属箔材的制备方法中应力施加方式的示意图;
图3为本发明一种单晶金属箔材制备方法中进行退火处理的一实施例结构示意图;
图4为退火处理过程中多晶金属箔材弯曲角度示意图;
图5为本发明一种单晶金属箔材的制备方法中多晶金属箔材向单晶金属箔材转变的示意图;
图6a为本发明实施例1的一种单晶金属箔材的实验成果图;
图6b为本发明实施例1的一种单晶金属箔材的ESBD结果图;
图7a为本发明实施例2的一种单晶金属箔材的实验成果图;
图7b为本发明实施例2的一种单晶金属箔材的ESBD结果图;
图8a为本发明实施例3的一种单晶金属箔材的实验成果图;
图8b为本发明实施例3的一种单晶金属箔材的ESBD结果图;
图9a为本发明实施例4的一种单晶金属箔材的实验成果图;
图9b为本发明实施例4的一种单晶金属箔材的ESBD结果图;
图10a为本发明实施例5的一种单晶金属箔材的实验成果图;
图10b为本发明实施例5的一种单晶金属箔材的ESBD结果图;
图11a为本发明实施例6的一种单晶金属箔材的实验成果图;
图11b为本发明实施例6的一种单晶金属箔材的ESBD结果图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
所举实施例是为了更好地对本发明进行说明,但并不是本发明的内容仅局限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
参考图1,为本发明一种单晶金属箔材的制备方法,具体地,一种单晶金属箔材的制备方法包括以下步骤:
S100:在多晶金属箔材两端施加应力;然后执行步骤S200;
本实施例中,先将多晶金属箔材裁剪成两端宽度大于中间宽度的“工”字形形状,且宽度大的两端中心位置分别打有一孔洞,通过孔洞安装拉力器施加定量的拉力来提供施加定量的应力,应力大小为0-300Mpa;具体形状可参考图2,其中,F1,F1′为施加的拉力,2与4为孔洞,3为退火目标区域;
优选地,多晶金属箔材的厚度为1-100μm,尺寸为1mm2-1000mm2,多晶金属箔材的金属种类包括铜、镍、铂、钯、金、铝在内的面心立方金属,且金属的纯度大于99%。
S200:同时将多晶金属箔材进行高温退火处理;
进一步地,将在步骤S100施加应力的同时将多晶金属箔材2放入如图3中的管式炉中进行高温退火处理,图中2为多晶金属箔材,1为石英管,5为上加热丝,6为下加热丝,2为弯曲角度调节装置。
进一步地,弯曲角度调节装置2的作用是在高温和拉力作用下,使得金属表面发生弯曲,受到弯曲应力,同时拉力的方向也发生改变,从而促进表面晶向的变化。
进一步地,通过不同弯曲半径和角度的弯曲,使得表面的晶面发生不同的变化,从而调控不同晶面的产生。
具体地,退火处理的过程为:在石英管1中通入流量为1-1000sccm的氩气、1-1000的sccm氮气、1-500sccm的氢中的一种或多种作为保护气;按1-20℃/s的升温速率升高退火温度至300-1200℃后,持续1-200h后降温,降温速率为1-50℃/s。
S300:在多晶金属箔材两端施加逐渐定量增加的应力,获得单晶金属箔材。
本实施例中,在步骤S200进行高温退火的同时,施加的拉力将多晶金属箔材进行弯曲,具体可按照图4的方式,图4中,F1和F1’为拉力,r为角度调节装置的弯曲半径,θ为弯曲角度,F1’的方向可控制,使得θ在0-360°范围内,r的范围为0.1mm-100mm,通过r的变化调节金属箔材的弯曲程度,控制应力拉升装置的拉力大小,使升温退火过程中,应力大小在0-300Mpa之间变化。退火处理后,能在退火目标区域3内得到单晶金属箔材,且该单晶金属箔材的表面晶向包括常见晶面(111)、(110)、(100)、(211)、(223)、(116)、(335)、(233)、(017)、(014)、(212)。本发明可根据不同的拉力和曲面退火方式,调控不同的单晶晶面在样品中占主导地位。
图5为本发明中多晶金属箔材向单晶金属箔材转变的示意图,其中,7为退火前的多晶金属箔材,8为普通晶界,9为孪晶界;10为退火过程,11为退火后得到的单晶金属箔材。
实施例1
将尺寸为10cm*5cm的厚度为25微米的铜箔切割成图1所示的形状,在打孔区域打孔,放入石英管中退火区域,以3mm的弯曲半径进行弯曲60度,安装应力拉升装置,然后通入氢气100sccm,氩气200sccm,作为保护气和工艺气体,以5℃/s的速度进行升温,升温至1050℃后保持60min,升温退火过程中应力大小从0-30Mpa之间逐步增加,降温,观察多晶退火状态,如图所示6a,在退火目标区域3得到单一晶粒,对图6a中的单一晶粒进行观察,得到图6b中的ESBD结果图。
实施例2
将尺寸为10cm*8cm的厚度为25微米的铜箔切割成图1所示的形状,在打孔区域打孔,放入石英管中退火区域,以1mm的弯曲半径弯曲进行90度弯曲,安装拉升装置,然后通入氢气200sccm,氩气400sccm,作为保护气和工艺气体,以5℃/s的速度进行升温,升温至1050℃后保持120min。升温和退火过程中应力大小在0-40Mpa之间逐步增加,降温,最终得到图7a所示的实验图,观察退火后铜箔表面的晶粒状态,对图7a中的退火目标区域3中的单一晶粒进行观察,得到图7b中的ESBD结果图。
实施例3
将尺寸为10cm*5cm的厚度为40微米的铜箔切割成图1所示的形状,在打孔区域打孔,放入石英管中退火区域,以100微米的弯曲半径弯曲进行180度弯曲,安装应力拉升装置,然后通入氢气100sccm,氮气100sccm,作为保护气和工艺气体,之后以5℃/s的速度进行升温,升温至1060℃后保持60min。升温和退火过程中应力大小在0-40Mpa之间逐步增加,降温,最终得到图8a所示的实验图,观察退火铜箔表面目标区域3的晶粒状态,得到图8b中的ESBD结果图。
实施例4
将尺寸为30cm*10cm的厚度为40微米的铜箔切割成图1所示的形状,在打孔区域打孔,放入石英管中退火区域,以5mm的弯曲半径弯曲进行45度弯曲,安装应力拉升装置,然后以10℃/s的速度进行升温,升温至1060℃后保持360min。升温和退火过程中应力大小在0-50Mpa之间逐步增加,降温,最终得到图9a所示的实验图,测试退火后铜箔表面退火目标区域3的晶粒取向,得到图9b中的ESBD结果图。
实施例5
将尺寸为30cm*10cm的厚度为70微米的铜箔切割成图1所示的形状,在打孔区域打孔,放入石英管中退火区域,以50mm的弯曲半径弯曲进行120度弯曲,安装应力拉升装置,然后以10℃/s的速度进行升温,升温至1060℃后保持360min。升温和退火过程中应力大小在0-50Mpa之间逐步增加,降温,最终得到图10a所示的实验图,观察退火后铜箔表面退火目标区域3的晶粒状态,得到图10b中的ESBD结果图。
实施例6
将尺寸为10cm*6cm的厚度为50微米的镍箔切割成图1所示的形状,在打孔区域打孔,放入石英管中退火区域,以100mm的弯曲半径弯曲进行30度弯曲,安装应力拉升装置,然后以5℃/s的速度进行升温,升温至1000℃后保持60min。升温和退火过程中拉升应力大小在0-100Mpa之间逐步增加,降温,最终得到图11a所示的实验图,测试退火后铜箔表面退火目标区域3的晶粒取向,得到图11b中的ESBD结果图。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

1.一种单晶金属箔材的制备方法,其特征在于,包括以下步骤:
(1)在多晶金属箔材两端施加应力;
(2)在步骤(1)施加应力的同时将所述多晶金属箔材进行弯曲,并同时进行高温退火处理;
(3)在多晶金属箔材两端施加逐渐定量增加的应力,获得单晶金属箔材。
2.根据权利要求1所述的制备方法,其特征在于,所述多晶金属箔材的厚度为1-100μm,尺寸为1mm2-1000mm2
3.根据权利要求2所述的制备方法,其特征在于,所述多晶金属为裁剪成两端宽度大于中间宽度的“工”字形形状,且宽度大的两端中心位置分别打有一孔洞,通过所述孔洞安装应力拉升装置提供施加的应力。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中施加应力的方法包括拉升、施压及重力引起的应力施加效应,所述应力大小为0-300Mpa。
5.根据权力要求1所属的制备方法,其特征在于,所述步骤(2)中将所述多晶金属箔材进行弯曲的弯曲半径为0.01mm-100mm,弯曲角度为0-360°。
6.根据权利要求1所述的制备方法,其特征在于,所述进行高温退火处理的具体步骤为:
通入流量为1-1000sccm的氩气、1-1000的sccm氮气、1-500sccm的氢中的一种或多种作为保护气;
按1-20℃/s的升温速率升高退火温度至300-1200℃后,持续1-200h后降温,降温速率为1-50℃/s。
7.根据权利要求1所述的制备方法,其特征在于,所述多晶金属箔材的金属种类包括铜、镍、铂、钯、金、铝在内的面心立方金属。
8.根据权利要求7所述的制备方法,其特征在于,所述金属的纯度大于99%。
9.根据权利要求1所述的制备方法,其特征在于,所述步骤(3)中得到的所述单晶金属箔材的表面晶面包括(111)、(110)、(100)、(212)、(223)、(116)、(335)、(233)晶面。
10.根据权利要求1-9任一项制备方法得到的单晶金属箔材,其特征在于,所述单晶金属箔材的厚度为1-100μm,尺寸为1mm2-1000mm2;其中,金属的种类为面心立方金属,包括铜、镍、铂、钯、金、铝。
CN202010411463.2A 2020-05-15 2020-05-15 一种单晶金属箔材及其制备方法 Active CN111424309B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010411463.2A CN111424309B (zh) 2020-05-15 2020-05-15 一种单晶金属箔材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010411463.2A CN111424309B (zh) 2020-05-15 2020-05-15 一种单晶金属箔材及其制备方法

Publications (2)

Publication Number Publication Date
CN111424309A true CN111424309A (zh) 2020-07-17
CN111424309B CN111424309B (zh) 2021-07-09

Family

ID=71550900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010411463.2A Active CN111424309B (zh) 2020-05-15 2020-05-15 一种单晶金属箔材及其制备方法

Country Status (1)

Country Link
CN (1) CN111424309B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582232A (zh) * 2021-07-20 2021-11-02 北京大学 一种高定向过渡金属硫属化合物纳米带生长的方法
WO2023193636A1 (zh) * 2022-04-07 2023-10-12 北京大学 基于单晶二硒化钨的垂直异质外延高定向金属铂的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105603518A (zh) * 2016-03-15 2016-05-25 北京大学 一种多晶铜箔转变为单晶Cu(100)的方法
US20170121843A1 (en) * 2015-10-30 2017-05-04 The Board Of Trustees Of The Leland Stanford Junior University Single metal crystals
CN107354506A (zh) * 2017-06-30 2017-11-17 北京大学 一种制备超平整铜单晶薄膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170121843A1 (en) * 2015-10-30 2017-05-04 The Board Of Trustees Of The Leland Stanford Junior University Single metal crystals
CN105603518A (zh) * 2016-03-15 2016-05-25 北京大学 一种多晶铜箔转变为单晶Cu(100)的方法
CN107354506A (zh) * 2017-06-30 2017-11-17 北京大学 一种制备超平整铜单晶薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. S. HUNG ET AL.: "INTERACTION OF Al FILMS ON SINGLE CRYSTAL Si SUBSTRATES INDUCED BY ION IRRADIATION AND POST-ANNEAL", 《MAT. RS. SAC. SYMP. PROC. 》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582232A (zh) * 2021-07-20 2021-11-02 北京大学 一种高定向过渡金属硫属化合物纳米带生长的方法
CN113582232B (zh) * 2021-07-20 2022-09-27 北京大学 一种高定向过渡金属硫属化合物纳米带生长的方法
WO2023193636A1 (zh) * 2022-04-07 2023-10-12 北京大学 基于单晶二硒化钨的垂直异质外延高定向金属铂的方法

Also Published As

Publication number Publication date
CN111424309B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN111424309B (zh) 一种单晶金属箔材及其制备方法
CN108950684B (zh) 一种制备单晶金属箔的方法
TWI698908B (zh) SiC複合基板之製造方法及半導體基板之製造方法
CN108728813B (zh) 一种快速连续制备超大单晶薄膜的方法及装置
EP2733239A1 (en) Sic single crystal and manufacturing process therefor
CN109537043A (zh) 控制晶面暴露取向的单晶铜箔的制备方法
CN109722641A (zh) 金刚石/石墨烯复合导热膜及其制备方法和散热系统
CN112442729B (zh) 一种制备大面积单晶铜箔的方法
CN108687981A (zh) 锯线及切断装置
TW201420820A (zh) 鑽石磊晶成長方式
CN110616454B (zh) 一种基于单晶二维材料/单晶铜的垂直异质外延单晶金属薄膜的方法
CN109023291A (zh) 一种石墨烯薄膜及其制备方法与应用
CN111620325A (zh) 一种制备石墨烯纳米带阵列的方法
CN112875655A (zh) 一种非层状二维Cr2Se3纳米片的制备方法和应用
CN110616458B (zh) 一种基于单晶铜的垂直异质外延单晶金属薄膜的方法
Sugunraj et al. Analysis of grain structures and impurity distribution in mc-silicon grown by directional solidification: Computational and experimental approach
CN111690983A (zh) 一种米级大单晶高指数面铜箔的制备方法
EP4286568A1 (en) Sic substrate and sic epitaxial wafer
US20210002736A1 (en) Monocrystalline metal foil and manufacturing method therefor
JP2012526379A (ja) 多結晶シリコン薄膜の製造方法
CN108996487B (zh) 一种碳纳米管阵列与生长基底分离的方法
CN103353437B (zh) 直观显示金属衬底上cvd石墨烯表面褶皱分布的方法
KR20120001121A (ko) 물리적 기상 증착법을 이용한 그래핀 박막의 형성방법
KR20190064015A (ko) 단결정 금속 박막 및 이의 제조 방법
CN114481307A (zh) 一种SiC单晶衬底及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant