CN111418119A - 制作管状激光光源的方法、管状激光光源及使用所述管状激光光源的检测器 - Google Patents

制作管状激光光源的方法、管状激光光源及使用所述管状激光光源的检测器 Download PDF

Info

Publication number
CN111418119A
CN111418119A CN201880076852.5A CN201880076852A CN111418119A CN 111418119 A CN111418119 A CN 111418119A CN 201880076852 A CN201880076852 A CN 201880076852A CN 111418119 A CN111418119 A CN 111418119A
Authority
CN
China
Prior art keywords
laser light
light source
substance
tubular
tubular laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880076852.5A
Other languages
English (en)
Inventor
长井悠佑
梶川浩太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of CN111418119A publication Critical patent/CN111418119A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N21/7746Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the waveguide coupled to a cavity resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/168Solid materials using an organic dye dispersed in a solid matrix
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1086Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using scattering effects, e.g. Raman or Brillouin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/20Liquids
    • H01S3/213Liquids including an organic dye
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2358Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media comprising dyes as the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/307Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094034Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a dye
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Lasers (AREA)

Abstract

本发明包括:管准备步骤,准备可使含有微细物质的溶液含浸在其管壁内且包含透光性的树脂材料的树脂制管;溶液准备步骤,准备含有发出荧光的微细的荧光物质或使光散射的微细的散射物质作为振荡材料的溶液;以及含浸步骤,使所述树脂制管浸渍在所述溶液内,使所述振荡材料含浸在所述树脂制管的管壁内。

Description

制作管状激光光源的方法、管状激光光源及使用所述管状激 光光源的检测器
技术领域
本发明涉及一种可具有作为例如液相色谱仪用检测器中的光源及测定单元的功能的管状激光光源及其制作方法、使用此种管状激光光源的检测器。
背景技术
在液相色谱仪等分析装置中,经常将吸光度计或暗示折射率计等用作检测器。此种检测器至少包括:(1)光源、(2)试样流动的测定单元、(3)用于检测来自测定单元的光的检测部、(4)用于朝测定单元引导来自光源的光的光学系统、(5)用于朝检测部引导来自测定单元的光的光学系统。由于存在此种多个构件,因此检测器的小型化存在极限。
因此,本发明者进行了如下的提案:在包含用作发光二极管或激光二极管的基材的蓝宝石等的基体的内部形成用于使试样流通的流路,使用半导体工艺以夹入所述流路的方式将光源与检测部形成在基体上,由此省略所述(4)及(5)的光学系统,并且将(1)光源、(2)测定单元及(3)检测部一体化来实现检测器的小型及轻量化(参照专利文献1)。
[现有技术文献]
[专利文献]
专利文献1:国际公开第2016/170670号
[非专利文献]
非专利文献1:H.Yanagi,R.Takeaki,S.Tomita,A.Ishizumi,F.Sasaki,K.Yamashita及K.Oe,“带有受激共振拉曼散射的染料掺杂聚合物微环激光耦合(Dye-dopedpolymer microring laser coupled with stimulated resonant Raman scattering)”,《应用物理快报(Appl.Phys.Lett.)》,95,03306(2009)。
非专利文献2:A.François,N.Riesen,K.Gardner,T.M.Monro及A.Meldrum,“光流体微毛细管中的回音壁模式的激射(Lasing of whispering gallerymodes in optofluidic microcapillaries)”,《光学快讯(Opt.Express)》,24(12),12466-12477(2016)。
非专利文献3:J.Peter,P.Radhakrishnan,V.P.N.Nampoori及M.Kailasnath,“来自独立圆柱微腔的多模激光发射(Multimode laser emission from free-standingcylindrical microcavities)”,《发光学报(J.Lumin.)》,149,204-207(2014)。
非专利文献4:X.Zhang,H.S.Choi及A.M.Armani,“硅微环谐振腔的极限品质因数(Ultimate quality factor of silica microtoroid resonant cavities)”,《应用物理快报(Appl.Phys.Lett.)》,96(2010)153304。
发明内容
[发明所要解决的问题]
若使用所述专利文献1的技术,则可实现检测器的轻量及小型化,但要求高超的制造工艺。
本发明的目的在于提供一种可不使用高超的制造工艺来构成轻量且小型的检测器的技术。
[解决问题的技术手段]
本发明者等人获得了如下的发现:使振荡材料含浸在树脂制管的管壁内,由此树脂制管可作为使激光光振荡的回音壁模式(Whispering Gallery Mode,WGM)激光器、或随机激光器来构成。所谓振荡材料,是指在被照射激发光时可获得增益的增益介质(例如,发出荧光的荧光物质)、或增益介质与使光散射的散射物质(也存在增益介质与散射介质兼具功能的情况)。
当已使荧光物质作为振荡材料含浸在树脂制管的管壁内时,若对管壁内的荧光物质进行激发,则从荧光物质发出的荧光之中,具有特定波长的光在树脂制管的管壁与空气层的界面重复全反射并进行振荡。其结果,当以固定以上的强度对荧光物质照射了激发光时,特定波长的光作为激光光从树脂制管的管壁内朝外侧进行振荡。在树脂制管中进行振荡的激光光的波长依存于从荧光物质发出的荧光波长与树脂制管的内外径尺寸或管壁内的折射率。因此,不仅调节含浸在树脂制管的荧光物质的种类或浓度,而且调节树脂制管的内外径尺寸或管壁内的折射率、管外侧的折射率,由此可使具有所期望的波长的激光光进行振荡。
当已使散射物质作为振荡材料含浸在树脂制管的管壁内时,若从外部对管壁内的散射物质照射光,则由所述光所激发的荧光通过散射物质而散射,具有特定波长的光在树脂制管的内部及管壁与空气层的界面重复多重散射或反射,并进行振荡。其结果,当以固定以上的强度对散射物质照射了光时,特定波长的光作为激光光从树脂制管的管壁内朝外侧进行振荡。
已使振荡材料含浸在管壁内的树脂制管可使试样在其内侧流通,因此在检测器中可兼具作为用于使试样流通的测定单元、及对试样照射光的光源的功能。
此外,在非专利文献1或非专利文献2中,提出有将含有荧光色素的树脂涂布在玻璃制毛细管等筒状的支撑材料的内表面或外表面,制作环状的色素激光光源。但是,需要玻璃制毛细管等筒状的支撑材料,而且将含有荧光色素的树脂均匀地涂布在此种支撑材料的外表面或内表面并不容易。进而,在非专利文献3中,提出有将含有荧光色素的树脂灌入模具,对管状激光光源进行树脂成型,但需要树脂成型用的模具装置等大型的设备,谈不上容易制作。
本发明的管状激光光源的制作方法是可比非专利文献1~非专利文献3中所公开的技术更容易地制作管状激光光源的方法,包括:管准备步骤,准备可使含有微细物质的溶液含浸在其管壁内且包含透光性的树脂材料的树脂制管;溶液准备步骤,准备含有发出荧光的微细的荧光物质或使光散射的微细的散射物质作为振荡材料的溶液;以及含浸步骤,使所述树脂制管浸渍在所述溶液内,使所述振荡材料含浸在所述树脂制管的管壁内。通过这些步骤所制作的管状激光光源根据从所述荧光物质发出或由所述散射物质散射的光,使激光光朝所述管壁的外侧振荡。
在本发明的方法中的所述溶液准备步骤中,也可以使所述溶液内也含有用于调整所述管壁内的折射率的折射率调整物质,在所述含浸步骤中,使所述折射率调整物质也与所述振荡材料一同含浸在所述管壁。若使折射率调整物质含浸在树脂制管的管壁内来提高管壁内的折射率,则共振器的Q值变大,可降低用于使激光光振荡的阈值(参照非专利文献4)。另外,如已述那样,从管状激光光源进行振荡的激光光的波长也依存于树脂制管的管壁内的折射率,因此通过使折射率调整物质也与振荡材料一同含浸在管壁内,可不变更荧光物质的种类或树脂制管的尺寸,而变更从管状激光光源进行振荡的激光光的波长。
所述树脂制管的一例是丙烯酸管。
本发明的管状激光光源通过所述制作方法来制作。具体而言,本发明的管状激光光源以如下方式构成:将发出荧光的微细的荧光物质或使光散射的微细的散射物质作为振荡材料,含浸在可使含有微细物质的溶液含浸在其管壁内且包含透光性的树脂材料的树脂制管的管壁内,根据从所述荧光物质发出或由所述散射物质散射的光,使激光光从所述管壁内朝所述管壁的外侧振荡。
在本发明的管状激光光源中,优选用于调整所述管壁内的折射率的折射率调整物质与所述振荡材料一同含浸在所述管壁内。若管壁内的折射率因折射率调整物质而变高,则共振器的Q值变大,用于使激光光振荡的阈值下降,能够以更小的能量使激光光振荡。
作为所述振荡材料,可使用有机电致发光(Electroluminescence,EL)材料(例如,2,5-二辛氧基聚(对苯乙炔)(2,5-dioctyloxy poly(p-phenylene vinylene),DOO-PPV)。在此情况下,设置用于朝所述树脂制管的内侧面与外侧面之间施加用于对所述有机EL材料进行激发的电压的电压施加部,由此可利用电流注入方式来对有机EL材料进行激发,而不需要用于从外部照射激发光的光源。
本发明的检测器包括:测定单元,构成为试样在所述管状激光光源的内侧流路中流动;振荡部,使激光光在所述管状激光光源进行振荡;检测部,检测朝所述管状激光光源的管壁的外侧发出的测定光;以及运算部,构成为根据由所述检测部所检测的所述测定光的强度或波长,可实施在所述管状激光光源的内侧流路中流动的试样的成分浓度的定量分析、或试样种类的定性分析。
此处,检测部所检测的测定光并非仅是指在管状激光光源中进行了振荡的波长的光。在求出在测定单元中流动的试样的吸光度的情况下,检测在管状激光光源中进行了振荡的特定波长的光透过管及试样时的强度,并测定其变化量,因此在管状激光光源中进行了振荡的波长的光变成测定光。在进行了振荡的激光光的波长并非单一的波长的情况下,存在杂散光成分增加且直线性恶化的担忧,但即便测定总光量,并计算吸光度,也无问题(也可以使用滤光器来去除不需要的光)。在求出在管中流动的试样的拉曼散射光的情况下,作为用于产生拉曼散射的激发光,使用在管状激光光源中进行了振荡的波长的光。在此情况下,来自已被激发的试样成分的散射光也包含与在管状激光光源中进行了振荡的光不同的波长,因此测定光变成具有与在管状激光光源中进行了振荡的光不同的波长的光。
作为所述检测器的优选的一实施方式,可列举如下的实施方式:所述测定单元构成为将多个所述管状激光光源串联地进行流体连通,所述多个所述管状激光光源构成为使互不相同的激光光进行振荡,所述检测部具有检测来自所述多个管状激光光源各者的测定光的检测元件,所述运算部构成为根据由所述检测部的所述检测元件各者所检测的所述测定光的强度或波长,求出在所述管状激光光源的内侧流路中流动的试样的成分浓度。通过设为此种构成,可对在测定单元中流动的试样照射多种波长的光来进行测定。或者,也可以制作将多个管捆扎的流路,进行成分浓度测定。由于管透明,因此进行了振荡的激光光透过管。
[发明的效果]
本发明的管状激光光源的制作方法仅准备树脂制管,并且准备含有振荡材料的溶液,使树脂制管浸渍在所述溶液内,使振荡材料含浸在树脂制管的管壁内,因此可容易地制作管状激光光源。
本发明的管状激光光源通过所述制作方法来制作,因此容易制作。而且,所述管状激光光源不仅可用作光源,也可以用作使液体流动的流路,因此可兼具检测器中的作为光源的功能与作为测定单元的功能,有助于检测器的轻量及小型化。
本发明的检测器将所述管状激光光源用作光源及测定单元,因此与现有的检测器相比,零件数减少,可实现轻量、小型且廉价的检测器。
附图说明
图1是表示使用管状激光光源的检测器的一实施例的概略构成图。
图2是所述实施例的管状激光光源的剖面图。
图3是按各步骤表示管状激光光源的制作方法的图。
图4是表示通过使4-(二氰基亚甲基)-2-甲基-6-(4-二甲基氨基苯乙烯基)-4H-吡喃(4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran,DCM)含浸在树脂制管的管壁内所制作的管状激光光源的(A)振荡波长光谱、及(B)为了进行激光振荡而需要的能量的图表。
图5是表示通过使DCM与4-氰基-4'-戊基联苯(4-cyano-4'-pentylbiphenyl,5CB)含浸在树脂制管的管壁内所制作的管状激光光源的(A)振荡波长光谱、及(B)为了进行激光振荡而需要的能量的图表。
图6是通过使DCM与5CB含浸在树脂制管的管壁内所制作的管状激光光源(随机激光器)的振荡波长光谱。
图7是表示使用管状激光光源的检测器的另一实施例的概略构成图。
具体实施方式
图1表示使用管状激光光源的检测器的一实施例。
本实施例的检测器将管状激光光源2用作用于使试样流通的测定单元。如图2所示,管状激光光源2在包含透光性的材料的树脂制管的管壁2b内含浸有振荡材料。作为振荡材料,可列举:发出荧光的微细的荧光物质或使光散射的微细的散射物质。
在振荡材料为荧光物质的情况下,若对管壁2b内的荧光物质进行激发,则从荧光物质发出的荧光之中,具有特定波长的光在管状激光光源2的管壁2b与空气层的界面重复全反射并进行振荡。其结果,当以固定以上的强度对荧光物质照射了激发光时,特定波长的光作为激光光从管状激光光源2的管壁内朝外侧进行振荡。另一方面,在振荡材料为散射物质的情况下,若从外部对管壁2b内的散射物质照射光,则由所述光所激发的荧光通过散射物质而散射,具有特定波长的光在管状激光光源2的管壁2b与空气层的界面重复反射、或在管内重复多重散射,由此进行振荡。其结果,当以固定以上的强度对散射物质照射了光时,特定波长的光作为激光光从管状激光光源2的管壁2b内朝外侧进行振荡。
回到图1,振荡部4利用管状激光光源2的管壁2b内的振荡材料,使激光光在管状激光光源2中进行振荡。当含浸在管壁2b内的振荡材料为荧光物质时,作为振荡部4,可列举发出用于对所述荧光物质进行激发的激发光的激发光源。
荧光物质的一例为DCM(4-(二氰基亚甲基)-2-甲基-6-(4-二甲基氨基苯乙烯基)-4H-吡喃),但只要是通过进行激发而发出荧光的微细的物质,则可使用任何物质。
作为荧光物质,也可以使用DOO-PPV(2,5-二辛氧基聚(对苯乙炔))等有机EL材料。作为此情况下的振荡部4,可列举以如下方式构成的电压施加部:从管状激光光源2的内侧面与外侧面的两侧施加电压,利用电流注入方式来进行有机EL材料的激发。
另一方面,当含浸在管壁2b内的振荡材料为散射物质时,作为振荡部4,可使用对散射物质照射任意波长的光的光源。散射物质的一例为存在于管内部的次微米级~微米级的气泡、通过有意地使树脂劣化所产生的混浊、可含浸在树脂管的大小(直径为100nm以下)的纳米粒子等,但只要是使光散射的微细的物质,则可使用任何物质。
检测部6用于检测来自管状激光光源2的测定光。检测部6例如通过光电二极管等来实现,但也可以包括用于提取成为测定光的光的滤光器或分光器等。
运算部8以如下方式构成:根据由检测部6所检测的测定光强度的测定值,求出在管状激光光源2的内侧流路2a中流动的试样的吸光度、折射率、拉曼散射光强度等。运算部8是通过在专用的计算机或通用的个人计算机中,运算元件执行规定的程序所获得的功能。
若利用检测部6,将在管状激光光源2中进行了振荡的特定波长的光作为测定光来检测,并求出其变化量(减少量),则可求出在管状激光光源2的内侧流路2a中流动的试样的吸光度。
另外,将在管状激光光源2中进行振荡的波长的光用作激发光,测定从已被激发的试样成分发出的与振荡波长不同的波长的光,由此也可以求出试样的拉曼散射光强度。
继而,使用图2对管状激光光源2的制作方法进行说明。
准备可使含有荧光物质或散射物质等微细的振荡材料的溶液含浸且包含透光性材料的树脂制管2(图2的(A))、及含有振荡材料的溶液10(图2的(B))。此处,透光性是对用于测定的波长的光不具有吸收(例如,透过率为99%以上)的意思。作为树脂制管2,例如可使用丙烯酸管或mori甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)管。含有振荡材料的溶液10是将DCM或DOO-PPV等振荡材料与2-乙氧基乙酸乙酯或丙酮等溶剂混合而成的溶液。溶液10也可以含有多种振荡材料。使用丙烯酸等来制作管,由此可弯折,例如在将本激光器用于液相色谱仪等具有流路的分析的情况下,可安装的地方增加(也可以用作配管)。
使树脂制管2在含有振荡材料的溶液10内浸渍固定期间(例如1小时)(图2的(C)),使振荡材料含浸在树脂制管2的管壁2b内(图2的(D))。
另外,含浸在管壁2b内的振荡材料以与测定目的对应的波长的光在管状激光光源2中进行振荡的方式来选择。在管状激光光源2中进行振荡的光的波长除根据振荡材料的种类来决定以外,根据管状激光光源2的内径、外径、管壁2b内的折射率等来决定。管壁2b内的折射率例如可通过将向列液晶(5CB:4-氰基-4A-npentyl联苯)作为折射率调整物质,与振荡材料一同含浸在管壁2b内来调整。作为折射率调整物质,除向列相液晶以外,也可以使用近晶相液晶、或具有高粘度的高分子液体等。
若使液晶等折射率调整物质含浸在管壁2b内来提高管壁2b内的折射率,则共振器的Q值变大,可降低用于使激光光振荡的阈值。另外,可不改变荧光物质的种类或树脂制管的尺寸,而变更在管状激光光源2中进行振荡的激光光的波长。
图4以及图5分别是使DCM作为振荡材料含浸在管壁2b内所制作的管状激光光源(图4)的测定数据,使DCM作为振荡材料、使液晶(5CB)作为折射率调整物质含浸在管壁2b内所制作的管状激光光源(图5)的测定数据,各图中的(A)表示振荡波长光谱,(B)表示为了进行激光振荡而需要的能量。
若对图4的(A)与图5的(A)进行比较,则在不使作为折射率调整物质的5CB含浸在管壁2b内的情况(图4的(A))下,振荡波长为603nm附近,相对于此,在使5CB含浸在管壁2b内的情况(图5的(A))下,振荡波长变化至617nm附近。因此,可知通过使用折射率调整物质来变更管壁2b内的折射率,可调整振荡波长。
另外,若对图5的(B)与图5的(B)进行比较,则在不使5CB含浸在管壁2b内的情况下,用于激光振荡的阈值为38μJ/mm2,相对于此,在使5CB含浸在管壁2b内的情况下,用于激光振荡的阈值下降至25μJ/mm2。因此,可知通过使用折射率调整物质来增大管壁2b内的折射率,可降低用于激光振荡的阈值。
图6表示在制作使DCM/5CB作为振荡材料含浸在管壁2b内所制作的管后,使树脂劣化,由此降低管的透明度来作为散射物质,进行随机激光振荡的管状激光光源的测定数据。激发光强度为1350μJ/mm2,若与图5的管状激光进行比较,则需要大的激发光。其是利用散射体之间所产生的多重散射的激光振荡,因此若与所述WGM激光器进行比较,则Q值变低,阈值变高。
继而,使用图7对使用多个管状激光光源2的应用例进行说明。
在此实施例中,将三个管状激光光源2-1~2-3串联地进行流体连通,构成用于使试样流通的测定单元。试样从最上游的管状激光光源2-1朝最下游的管状激光光源2-3依次在各自的内侧流路内流动。管状激光光源2-1~管状激光光源2-3以使具有互不相同的波长的激光振荡的方式,调整振荡材料的种类、折射率调整物质的有无或种类。另外,管状激光光源的数量可为任意数量,既可以是两个,也可以是四个以上。
进而,设置有用于使管状激光光源2-1~管状激光光源2-3分别进行激光振荡的振荡部4-1~振荡部4-3、及用于检测来自管状激光光源2-1~管状激光光源2-3的测定光的检测部6-1~检测部6-3。由检测部6-1~检测部6-3所获得的信号以被输入共用的运算部8的方式构成。
如上所述,通过使互不相同的波长的激光光振荡的多个管状激光光源2-1~2-3来构成测定单元,由此可同时实施多种波长中的测定。另外,图7的实施例只不过是使用多个管状激光光源2的实施方式的一例。
如此,容易制作且结构简单的本发明的管状激光光源2不仅可兼具检测器中的光源与测定单元的功能,而且可将多个管状激光光源2组合来用于各种用途。
另外,在以上所说明的实施例中,将对在管状激光光源2的内侧流路中流动的试样照射在管状激光光源2中进行了振荡的激光光作为前提进行了说明,但本发明并不限定于此种用途。也能够以朝其他对象物照射在管状激光光源2中进行了振荡的激光光的方式构成。
[符号的说明]
2、2-1、2-2、2-3:管状激光光源
2a:内侧流路
2b:管壁
4、4-1、4-2、4-3:振荡部
6、6-1、6-2、6-3:检测部
8:运算部
10:含有振荡材料的溶液。

Claims (9)

1.一种制作管状激光光源的方法,包括:
管准备步骤,准备能够使含有微细物质的溶液含浸在其管壁内且包含透光性的树脂材料的树脂制管;
溶液准备步骤,准备含有发出荧光的微细的荧光物质或使光散射的微细的散射物质作为振荡材料的溶液;以及
含浸步骤,使所述树脂制管浸渍在所述溶液内,使所述振荡材料含浸在所述树脂制管的管壁内;
所述管状激光光源根据从所述荧光物质发出或由所述散射物质散射的光,使激光光朝所述管壁的外侧振荡。
2.根据权利要求1所述的方法,其中在所述溶液准备步骤中,使所述溶液内也含有用于调整所述管壁内的折射率的折射率调整物质,
在所述含浸步骤中,使所述折射率调整物质也与所述振荡材料一同含浸在所述管壁。
3.根据权利要求1或2所述的方法,所述树脂制管是丙烯酸管。
4.一种管状激光光源,以如下方式构成:将发出荧光的微细的荧光物质作为振荡材料、或将荧光物质与使光散射的微细的散射物质一同作为振荡材料,含浸在能够使含有微细物质的溶液含浸在其管壁内且包含透光性的树脂材料的树脂制管的管壁内,根据从所述荧光物质发出或由所述散射物质散射的光,使激光光从所述管壁内朝所述管壁的外侧振荡。
5.根据权利要求4所述的管状激光光源,其中用于调整所述管壁内的折射率的折射率调整物质与所述散射物质一同含浸在所述管壁内。
6.根据权利要求4或5所述的管状激光光源,其中所述振荡材料是有机电致发光材料,且
所述管状激光光源包括:电压施加部,其用于朝所述树脂制管的内侧面与外侧面之间施加用于对所述有机电致发光材料进行激发的电压。
7.根据权利要求4至6中任一项所述的方法,其中所述树脂制管是丙烯酸管。
8.一种检测器,包括:
测定单元,构成为试样在根据权利要求4至7中任一项所述的管状激光光源的内侧流路中流动;
振荡部,使激光光在所述管状激光光源进行振荡;
检测部,检测朝所述管状激光光源的管壁的外侧发出的测定光;以及
运算部,构成为根据由所述检测部所检测的所述测定光的强度或波长,求出在所述管状激光光源的内侧流路中流动的试样的成分浓度。
9.根据权利要求8所述的检测器,其中所述测定单元构成为将多个所述管状激光光源串联或并联地进行流体连通,所述多个所述管状激光光源构成为使互不相同的激光光进行振荡,
所述检测部具有检测来自所述多个管状激光光源各者的测定光的检测元件,
所述运算部构成为根据由所述检测部的所述检测元件各者所检测的所述测定光的强度或波长,求出在所述管状激光光源的内侧流路中流动的试样的成分浓度或成分种类。
CN201880076852.5A 2017-12-19 2018-06-20 制作管状激光光源的方法、管状激光光源及使用所述管状激光光源的检测器 Pending CN111418119A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-242478 2017-12-19
JP2017242478 2017-12-19
PCT/JP2018/023415 WO2019123691A1 (ja) 2017-12-19 2018-06-20 チューブ状レーザ光源を作製する方法、チューブ状レーザ光源及びそのチューブ状レーザ光源を用いた検出器

Publications (1)

Publication Number Publication Date
CN111418119A true CN111418119A (zh) 2020-07-14

Family

ID=66994564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880076852.5A Pending CN111418119A (zh) 2017-12-19 2018-06-20 制作管状激光光源的方法、管状激光光源及使用所述管状激光光源的检测器

Country Status (4)

Country Link
US (2) US20200393361A1 (zh)
JP (1) JP6911942B2 (zh)
CN (1) CN111418119A (zh)
WO (1) WO2019123691A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924435A (zh) * 2021-01-26 2021-06-08 复旦大学 一种mof薄膜修饰的管状光流体探测器及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261358A (ja) * 2001-03-02 2002-09-13 Nippon Steel Corp 固体レーザ発振装置及びそれを用いた薄鋼板溶接装置
JP2007129140A (ja) * 2005-11-07 2007-05-24 Seiko Electric Co Ltd レーザー発振用の型成形色素体の製造方法および型成形色素体を用いたレーザー発振装置
CN102097740A (zh) * 2011-01-10 2011-06-15 东南大学 全光控制的增益介质出射激光的调控方法
CN105006729A (zh) * 2015-08-20 2015-10-28 电子科技大学 随机激光器、随机谐振腔制造及探测微小颗粒浓度的方法
CN107300789A (zh) * 2017-05-10 2017-10-27 哈尔滨工程大学 一种兼具回音壁模式与分布反馈发射的液晶可调谐激光器及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466568A (en) * 1966-10-03 1969-09-09 Gen Telephone & Elect Liquid laser
US3753146A (en) * 1971-10-18 1973-08-14 Eastman Kodak Co Novel visible spectrum dye lasers
JPS5246795A (en) * 1975-10-11 1977-04-13 Masaaki Kusano Laser equipment
GB8512571D0 (en) * 1985-05-17 1985-06-19 Barr & Stroud Ltd Lasers
JPS63188121A (ja) * 1987-01-30 1988-08-03 Nippon Telegr & Teleph Corp <Ntt> プラスチツク光フアイバおよびその製造方法
JPH04199585A (ja) * 1990-11-28 1992-07-20 Mitsubishi Electric Corp プラスチックレーザー素子
JPH05136497A (ja) * 1991-11-11 1993-06-01 Mitsubishi Electric Corp 固体レーザ発振装置
US6276217B1 (en) * 1993-04-15 2001-08-21 Osaka Gas Company Limited Method of measuring fluid flow by analyzing the fluorescent emissions of tracer particles in the fluid
JPH0621558A (ja) * 1992-06-30 1994-01-28 Tdk Corp ポリマー微小球レーザの製造方法
US6665479B2 (en) * 2000-03-06 2003-12-16 Shayda Technologies, Inc. Polymeric devices including optical waveguide laser and optical amplifier
JP2003315268A (ja) * 2002-04-19 2003-11-06 Mitsubishi Electric Corp 粉塵検出装置
US6888862B2 (en) * 2002-12-20 2005-05-03 Eastman Kodak Company Dye-doped polymer nanoparticle gain medium
JPWO2006120854A1 (ja) * 2005-05-09 2008-12-18 松下電器産業株式会社 発光素子、発光素子アレイ及びそれらの製造方法、並びに露光装置
JP5079421B2 (ja) * 2007-08-17 2012-11-21 国立大学法人九州大学 有機エレクトロルミネッセンス素子および有機レーザダイオード
US7633979B2 (en) * 2008-02-12 2009-12-15 Pavilion Integration Corporation Method and apparatus for producing UV laser from all-solid-state system
JP2009277696A (ja) * 2008-05-12 2009-11-26 Mitsubishi Electric Corp レーザー発振装置およびそれに用いられるプラスチックロッドの製造方法
US10475953B2 (en) * 2015-04-24 2019-11-12 Shimadzu Corporation Optical analyzer and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261358A (ja) * 2001-03-02 2002-09-13 Nippon Steel Corp 固体レーザ発振装置及びそれを用いた薄鋼板溶接装置
JP2007129140A (ja) * 2005-11-07 2007-05-24 Seiko Electric Co Ltd レーザー発振用の型成形色素体の製造方法および型成形色素体を用いたレーザー発振装置
CN102097740A (zh) * 2011-01-10 2011-06-15 东南大学 全光控制的增益介质出射激光的调控方法
CN105006729A (zh) * 2015-08-20 2015-10-28 电子科技大学 随机激光器、随机谐振腔制造及探测微小颗粒浓度的方法
CN107300789A (zh) * 2017-05-10 2017-10-27 哈尔滨工程大学 一种兼具回音壁模式与分布反馈发射的液晶可调谐激光器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.PETER, ET AL.: "multimode laser emission from free-standing cylindrical microcavities", JOURNAL OF LUMINESCENCE, vol. 149, pages 2 - 3 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112924435A (zh) * 2021-01-26 2021-06-08 复旦大学 一种mof薄膜修饰的管状光流体探测器及其制备和应用

Also Published As

Publication number Publication date
WO2019123691A1 (ja) 2019-06-27
US20200393361A1 (en) 2020-12-17
US20220376460A1 (en) 2022-11-24
US11824321B2 (en) 2023-11-21
JP6911942B2 (ja) 2021-07-28
JPWO2019123691A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
Ta et al. Tuning whispering gallery mode lasing from self-assembled polymer droplets
Chang et al. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip
US8195014B2 (en) Optical chemical detector and method
US6385380B1 (en) Hollow optical waveguide for trace analysis in aqueous solutions
Vezenov et al. Integrated fluorescent light source for optofluidic applications
Chen et al. Optofluidic FRET lasers using aqueous quantum dots as donors
Aas et al. Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching
Li et al. High sensitivity pH sensing by using a ring resonator laser integrated into a microfluidic chip
Zheng et al. Multi-color lasing in chemically open droplet cavities
Wang et al. A review of droplet resonators: Operation method and application
Sano et al. Pneumatically tunable optofluidic DFB dye laser using corrugated sidewalls
Lee et al. Versatile optofluidic ring resonator lasers based on microdroplets
Smolka et al. Selectively coated photonic crystal fiber for highly sensitive fluorescence detection
US11824321B2 (en) Method of fabricating tubular laser light source, tubular laser light source and detection device using tubular laser light source
Siegle et al. Comparison of various excitation and detection schemes for dye-doped polymeric whispering gallery mode micro-lasers
Shopova et al. Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer
Shi et al. Enhanced stimulated raman scattering of solvent due to anharmonic energy transfer from resonance raman solute molecules
Westcott et al. Broadband optical absorbance spectroscopy using a whispering gallery mode microsphere resonator
Maayani et al. Droplet Raman laser coupled to a standard fiber
Zhi et al. Silicon quantum dot coated microspheres for microfluidic refractive index sensing
Frigenti et al. Microbubble resonators for scattering-free absorption spectroscopy of nanoparticles
Larson et al. Semiconductor laser-induced fluorescence detection in picoliter volume flow cells
Shi et al. Single-resonator, stable dual-longitudinal-mode optofluidic microcavity laser based on a hollow-core microstructured optical fiber
Shi et al. A multi-sample analysis method with spatial resolution based on a single-longitudinal-mode fiber optofluidic microring laser
Zhang et al. Defect-assisted, spray-printed colloidal quantum dot microlasers for biosensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200714

RJ01 Rejection of invention patent application after publication