CN111399474A - 一种基于健康指标的均衡控制模块寿命预测方法及装置 - Google Patents

一种基于健康指标的均衡控制模块寿命预测方法及装置 Download PDF

Info

Publication number
CN111399474A
CN111399474A CN202010132742.5A CN202010132742A CN111399474A CN 111399474 A CN111399474 A CN 111399474A CN 202010132742 A CN202010132742 A CN 202010132742A CN 111399474 A CN111399474 A CN 111399474A
Authority
CN
China
Prior art keywords
control module
balance control
action
characteristic
health index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010132742.5A
Other languages
English (en)
Other versions
CN111399474B (zh
Inventor
彭军
王胜男
黄志武
杨迎泽
李恒
蒋富
张晓勇
刘伟荣
程亦君
顾欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010132742.5A priority Critical patent/CN111399474B/zh
Publication of CN111399474A publication Critical patent/CN111399474A/zh
Application granted granted Critical
Publication of CN111399474B publication Critical patent/CN111399474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种基于健康指标的均衡控制模块寿命预测方法及装置,所述方法包括以下步骤:步骤S1:基于均衡控制模块在各次动作中的数据,计算其在各次动作时的特征值;步骤S2:构建健康指标模型,基于均衡控制模块样本的特征值确定模型参数;并基于提取的特征值,采用参数确定后的健康指标模型计算均衡控制模块在其各次动作时的健康指标;步骤S3:构建寿命预测模型,基于均衡控制模块样本的健康指标序列和剩余使用寿命序列训练预测模型参数,得到训练好的寿命预测模型;步骤S4:将待检测的均衡控制模块的历史健康指标序列输入训练好的寿命预测模型,输出其剩余使用寿命。本发明能针对均衡控制模块进行寿命预测,且准确性高。

Description

一种基于健康指标的均衡控制模块寿命预测方法及装置
技术领域
本发明涉及一种用于铁路机车制动系统的寿命预测领域,特别涉及一种基于健康指标 的制动机均衡控制模块寿命预测方法及装置。
背景技术
随着轨道交通运输业的迅速发展,电空制动机(如新一代电空制动机——DK-2制动系 统)被广泛应用于铁路交通,其中的均衡控制模块用于实现对均衡风缸压力的闭环控制, 其作为保障制动机安全运转的关键模块,其寿命预测受到了国内外研究者的广泛关注。
传统的寿命预测技术主要针对单个元器件进行研究,由于单一元件工况单一,老化趋 势较为明显,故而较好预测。然而均衡控制模块通常运行于不同工况切换的状态下,采集 到的数据为多个元件数据,此时数据不在存有明显老化趋势,难以进行多工况条件下的系 统剩余使用寿命预测。许多研究直接使用基于学习的方法进行寿命预测,然而该方法很大 程度上依赖于数据集的完备程度,隐藏在模式切换规则中的老化信息鲜被挖掘,且难以根 据老化模型得出具有解释性的结论,故此,一种适用于均衡控制模块的寿命预测方法及装 置有待研究。
发明内容
为了解决现有技术中存在的问题,本发明提供了一种基于健康指标的均衡控制模块寿 命预测方法及装置,能针对制动机中均衡控制模块进行寿命预测,且准确性高。
为了实现上述技术目的,本发明采用以下技术方案:
一方面,提供一种基于健康指标的均衡控制模块寿命预测方法,包括以下步骤:
步骤S1:基于均衡控制模块在各次动作中的数据,计算其在各次动作时的特征值;
步骤S2:构建健康指标模型,基于均衡控制模块样本的特征值确定模型参数;并基于 提取的特征值,采用参数确定后的健康指标模型计算均衡控制模块在其各次动作时的健康 指标;
步骤S3:构建寿命预测模型,基于均衡控制模块样本的健康指标序列和剩余使用寿命 序列训练预测模型参数,得到训练好的寿命预测模型;可将每个样本在其每一次动作时的 剩余使用寿命标记为:该样本在整个生命周期的总动作次数-该样本在该次动作时已经进行 过的动作次数;
步骤S4:将待检测的均衡控制模块的历史健康指标序列输入训练好的寿命预测模型, 输出其剩余使用寿命,实现均衡控制模块剩余使用寿命预测。
进一步地,所述步骤S1具体包括以下步骤:
步骤S1.1、提取静态特征:
基于均衡控制模块在每次动作时其中每个电磁阀驱动电流曲线,提取一组电磁阀老化 特征,电磁阀老化特征包括驱动电流统计特征和能量特征;其中驱动电流统计特征包括响 应时间Δt、局部波峰值I、局部波谷值I′、稳定电流值
Figure BDA0002396249240000021
其中能量特征是使用经验模态 分解,将驱动电流曲线分解为Z个固有模态函数分量
Figure BDA0002396249240000022
并计算得到的各个固有模态函数分量
Figure BDA0002396249240000023
的能量ez,计算公式如下:
Figure BDA0002396249240000024
其中L为采样点个数;
由此获得一组驱动电流统计特征
Figure BDA0002396249240000025
与能量特征E=[e1,e2,...eZ],即一组电磁 阀老化特征;
基于均衡控制模块在每次动作时其中列车管、均衡风缸气路气压数据,提取一组对应 的阶段性特征,包括充排风阶段的列车管、均衡风缸的稳定阶段的气压(p列车,p均缸),充风阶段的时间(t1 列车,t1 均缸)、排风阶段的时间(t2 列车,t2 均缸)、稳定阶段压力平稳时间 (t3 列车,t3 均缸)、充排风阶段列车管与均衡风缸气压曲线的皮尔森相关系数(α充风,α排风); 由此获得一组阶段性特征Q=[p列车,p均缸,t1 列车,t1 均缸,t2 列车,t2 均缸,t3 列车,t3 均缸充风排风];
由此,针对均衡控制模块每次动作,获得一组静态特征B=[V1,E1,V2,E2,…,VN,EN,Q], 其中V1~VN表示该次动作时该均衡控制模块中N个电磁阀的驱动电流统计特征V与能量特 征E;
步骤S1.2、提取累积动态特征,构建累积动态特征序列:
均衡控制模块在每次动作时的累计动态特征F=(F1,F2,F3,F4)包括F1、F2、F3和F4四部分:
(1)基于步骤S2.1针对均衡控制模块的每次动作可提取一组静态特征B=[V1,E1,V2,E2,…,VN,EN,Q],时间轴尺度上可获得静态特征序列,即将针对均衡控制模 块在已经历的生命周期的每次动作提取的静态特征按对应的时间先后顺序排列,可获得一 个静态特征序列;一方面由于环境等因素的影响,原始信号通常包含噪声因素,为了进行 去噪,另一方面为了使长期变化更为明显,使用多项式平滑算法对静态特征序列进行平滑 滤波处理得到平滑特征序列,平滑特征序列中的元素即均衡控制模块在每次动作时的平滑 特征,记为F1
(2)具有多种制动模式,如紧急制动、常用制动等,总体而言,均衡控制模块根据不同 制动模式的要求调整目标压力,针对不同制动模模式其目标压力不同,对应的压力变化模 式不同。根据记录的均衡控制模块历史动作序列(目标压力切换序列、工况切换序列)可以确定每次动作对应的模式。均衡控制模块工作在不同的模式下调用的元件、受到的损伤不同,故此针对均衡控制模块的每次动作,提取均衡控制模块在该次动作时已经经历过的各模式的次数,记为F2
(3)针对均衡控制模块的每次动作,计算该次动作与各模式上次动作的时间之间的间 隔,记为F3
(4)针对均衡控制模块的每次动作,计算该次动作与各模式上次动作的平滑特征之间的 差值,记为F4
由上述步骤,针对均衡控制模块的每次动作可提取一组累积动态特征,将针对均衡控 制模块在已经历的生命周期的每次动作提取的累积动态特征按对应的时间先后顺序排列, 可获得一个累积动态特征序列。
进一步地,所述步骤S2中,健康指标模型以融合累积动态特征序列获得表示均衡控制 模块老化状态(系统退化趋势)的健康指标为目的。考虑到累积动态特征F包含的每一部 分(F1,F2,F3,F4)都是多维度的,令K为累积动态特征的总维度,即其包含的特征个数,则均衡控制模块在第t次动作时的累积动态特征可表示为F(t)=(f1(t),f2(t),...,fK(t)),所述 的健康指标表示为特征的线性组合,即构建的健康指标模型为:
H(t)=w1f1(t)+w2f2(t)+...wkfk(t)+...+wKfK(t)
其中,H(t)为均衡控制模块在第t次动作时的健康指标,w1,w2,...,wk,...,wK表示各维 特征分量对应的权重。
进一步地,其特征在于,所述步骤S2中,
基于均衡控制模块健康状态变化特点,分析健康指标应具有的三种性质,建立多目标 规划方程求解权重w=(w1,w2,...,wk,...,wK)T
(1)健康指标的单调性,即随着系统(均衡控制模块)使用次数的增加,系统逐渐老化,健康指标应当呈单调性变化:通过松弛变量εi,t表示第i个样本在第t次动作时的健康指标的单调性违反量,εi,t=max[Hi(t+1)-Hi(t),0],假设健康指标是单调递减的,通过最小化违反量之和,以保证健康指标的单调性:
Figure BDA0002396249240000041
s.t.w′M′G=1,Mw≥0,εi,t≥0
其中,p为样本个数,q为样本生命周期长度(整个生命周期的总动作次数),M为表示退化趋势信息的对角矩阵,此矩阵大小为K×K,矩阵对角线上的第k个值取决于fk(t)特征的变化趋势为递增,还是递减,若递增,则取+1,递减则取-1;w′和M′分别为w和M的 转置;G为长度为K的元素全为1的向量;0为长度为K的元素全为0的向量,Mw≥0表 示Mw中每个元素都大于0;
(2)故障阈值相似性,即对于各均衡控制模块样本,各系统故障时的特征具有一定相似性:
minww′A′CAw
s.t.w′M′G=1,Mw≥0
其中,C为对称矩阵,C=(I-O/p)/(p-1),I是p×p的单位矩阵,O是p×p的每 个元素均为1的矩阵;A矩阵大小为p×K,矩阵内每一行为每个样本故障时对应的特征 值;A′为A的转置矩阵;训练集的每个样本,包含了系统从健康到故障的所有动作对应的 数据,可以将每个样本最后一次动作对应的数据所提取出的特征值视为样本故障时对应的 特征值;
(3)变化趋势相似性,因为系统基本构成相同,故此各样本的健康指标的变化趋势应当具有相似性,使用动态时间规整距离DTW(Hα(t),Hβ(t))表示第α个样本和第β个样本 健康指标的相似度:则该性质以最小化动态时间规整距离为目标,可表示为:
Figure BDA0002396249240000051
s.t.w′M′G=1,Mw≥0.
Hα(t),Hβ(t)分别为第α个样本和第β个样本在第t次动作时的健康指标;
综合三个性质,得到以下多目标规划方程:
Figure BDA0002396249240000052
s.t.w′M′G=1,Mw≥0,λ123=1
其中,λ1、λ2、λ3为系数,根据经验取值;
进行上述多目标规划方程求解,最终可获得各特征对应的权重值,从而得到参数确定 的健康指标模型。
进一步地,所述步骤S3中,基于门控循环神经网络构建寿命预测模型。门控循环神经 网络中每个神经元(门控循环单元)包括重置门与更新门,可实现对历史信息的不同程度 遗忘与新信息的不同程度添加,实现长期累积预测。以所有样本的历史健康指标序列和历 史剩余使用寿命序列作为训练集,进行模型参数训练与调整。
另一方面,提供一种基于健康指标的均衡控制模块寿命预测装置,包括以下模块:
特征提取模块(静态特征提取和累积动态特征提取模块),用于基于均衡控制模块在 各次动作中的数据,计算其在各次动作时的特征值;
健康指标计算模块,用于构建健康指标模型,基于均衡控制模块样本的特征值确定模 型参数;并基于提取的特征值,采用参数确定后的健康指标模型计算均衡控制模块在其各 次动作时的健康指标;
寿命预测模型构建及训练模块,用于构建寿命预测模型,基于均衡控制模块样本的健 康指标序列和剩余使用寿命序列训练预测模型参数,得到训练好的寿命预测模型;可将每 个样本在其每一次动作时的剩余使用寿命标记为:该样本在整个生命周期的总动作次数- 该样本在该次动作时已经进行过的动作次数;
寿命预测模块,用于将待检测的均衡控制模块的历史健康指标序列输入训练好的寿命 预测模型,输出其剩余使用寿命。
另一方面,提供一种电子设备,包括处理器和存储器,所述存储器上存储有计算机程 序;所述计算机程序被处理器执行时,使得处理器实现如权利要求1至5中任一项所述的方法。
进一步地,所述的电子设备还包括制动控制模块,所述制动控制模块与所述均衡控制 模块相连,用于发出制动模式指令,控制均衡控制模块按照指令进行工况切换;
进一步地,所述的电子设备还包括模拟量采集模块,部分部署在均衡控制模块,包括 电磁阀驱动端电流采集装置与气路气压采集装置;电流采集装置包括模拟量输入模块、逻 辑控制与缓存模块、电流传感器模块(采集电磁阀驱动端电流)等,最终将数据存储至电脑。气路气压采集装置主要部署在均衡控制模块的气路部分,通过设置压力传感器,采集列车管、总风、均衡风缸压力,数据存储于制动控制单元中,模拟量采集模块连接数据采 集卡将模拟量数据传送至工控机。
另一方面,提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所 述计算机程序被处理器执行时,实现如权利要求1至5中任一项所述的方法。
有益效果:
本发明上述技术方案提供的基于健康指标的制动机中均衡控制模块寿命预测方法及装 置,先基于采集到的均衡控制模块在各次动作时的数据,提取多工况工作条件下均衡控制 模块的累计动态特征,具体为:基于采集的均衡控制模块电磁阀驱动端电流数据提取驱动 电流统计特征与能量特征;基于采集均衡控制模块气路气压数据提取阶段性老化特征,将 上述提取的特征作为静态特征;根据均衡控制模块工况切换规则,结合静态特征构建累计 动态特征;再基于累计动态特征构建具有解释性的健康指标表征系统的退化状态,最后以 历史累计健康指标序列为输入,剩余使用寿命序列为输出,构建寿命预测模型(可基于门 控循环神经网络进行构建),通过预测模型对待检测均衡控制模块进行寿命预测。本发明 上述技术方案适用于DK-2型机车制动机均衡控制模块健康状态评估,解决了多工况制动 机均衡控制模块工作于复杂环境的剩余使用寿命难以准确预测问题,具有良好的应用前 景。通过对均衡模块的寿命预测,可实现关键模块或元件的视情维修,保障制动机的安全 运转与列车的安全行驶。本发明相对比与现有的寿命预测方法,考虑到了工况切换给系统 带来的影响,提取了隐藏在切换序列中的老化信息,同时减少了对数据完备程度的依赖性, 此外模型的参数可通过离线训练得出,故此可根据在线数据进行实时准确的寿命预测。
附图说明
图1为本发明实施例提供的一种基于健康指标的均衡控制模块寿命预测方法的特征提 取示意图;
图2为本发明实施例中的驱动电流曲线;
图3为本发明实施例中的使用经验模态分解分解电流曲线的示意图;
图4为本发明实施例中的气路气压数据;
图5为本发明实施例提供的一种基于健康指标的均衡控制模块寿命预测方法的流程 图;
图6为本发明实施例提供的一种电子设备的结构示意图;
图7为本发明实施例中的均衡控制模块原理图;
图8为本发明实施例中的均衡控制模块压力调节流程图;
图9为本发明实施例中的数据采集流程图。
具体实施方式
下面参照附图对本发明进行更全面的描述。
实施例1:
本实施例公开了一种基于健康指标的均衡控制模块寿命预测方法,包括以下步骤:
步骤S1:基于制动机均衡控制模块在各次动作中的数据,提取其在各次动作时的特征 值;
步骤S2:构建健康指标模型,基于制动机均衡控制模块样本的特征值确定模型参数; 并基于提取的特征值,采用参数确定后的健康指标模型计算制动机均衡控制模块在其各次 动作时的健康指标;
步骤S3:构建寿命预测模型,基于制动机均衡控制模块样本的健康指标序列和剩余使 用寿命序列(标记每个样本在其每一次动作时的剩余使用寿命=该样本在整个生命周期的 总动作次数-该样本在该次动作时已经进行过的动作次数,如样本生命周期,即从健康到故 障的总动作次数为100,则其第20次动作时的剩余使用寿命标记为100-20=80)训练预测 模型参数,得到训练好的寿命预测模型;
步骤S4:将待检测的均衡控制模块的历史健康指标序列输入训练好的寿命预测模型, 输出其剩余使用寿命,实现均衡控制模块剩余使用寿命预测。
实施例2:
本实施例在实施例1的基础上,如图1所示,所述步骤S1中的特征提取具体包括以下 步骤:
步骤S1.1、提取静态特征:
基于制动机均衡控制模块在每次动作时其中每个电磁阀驱动电流曲线,提取一组电磁 阀老化特征,电磁阀老化特征包括驱动电流统计特征和能量特征;其中驱动电流统计特征 包括响应时间Δt、局部波峰值I、局部波谷值I′、稳定电流值
Figure BDA0002396249240000081
其中能量特征是使用经 验模态分解,将驱动电流曲线分解为Z个固有模态函数分量
Figure BDA0002396249240000082
并计算得到的各个固有模态函数分量
Figure BDA0002396249240000083
的能量ez,计算公式如下:
Figure BDA0002396249240000084
其中L为采样点个数;
由此获得一组驱动电流统计特征
Figure BDA0002396249240000085
与能量特征E=[e1,e2,...eZ],即一组电磁 阀老化特征;
本实施例中,以100000Hz的采集频率,即采样点间隔为10us,采集各电磁阀驱动端电 流数据,采集7000个采样点的数据,绘制电磁阀单次动作的驱动电流曲线如图2所示,根据该驱动电流曲线,对于每个电磁阀的在每次动作时都可以提取一组统计特征
Figure BDA0002396249240000086
而后使用经验模态分解,将驱动电流曲线分解为多个固有模态函数分量(IMFs),如图3所示,分解后的曲线具体表现为不同频率段的信号,通过计 算各IMF信号
Figure BDA0002396249240000087
的能量ez,获得一组能量特征E=[e1,e2,...eZ]。
基于制动机均衡控制模块在每次动作时其中列车管、均衡风缸气路气压数据,提取一 组对应的阶段性特征,包括充排风阶段的列车管、均衡风缸的稳定阶段的气压(p列车,p均缸), 充风阶段的时间(t1 列车,t1 均缸)、排风阶段的时间(t2 列车,t2 均缸)、稳定阶段压力平稳时间(t3 列车,t3 均缸)、充排风阶段列车管与均衡风缸气压曲线的皮尔森相关系数(α充风,α排风); 由此获得一组阶段性特征Q=[p列车,p均缸,t1 列车,t1 均缸,t2 列车,t2 均缸,t3 列车,t3 均缸充风排风];
本实施例中,使用BCU以采样点间隔40ms采集气路气压数据,如图4所示,从中提取阶段性特征。
由此,针对制动机均衡控制模块每次动作,获得一组静态特征 B=[V1,E1,V2,E2,…,VN,EN,Q],其中V1~VN表示该次动作时该制动机均衡控制模块中N个 电磁阀的驱动电流统计特征V与能量特征E;
步骤S1.2、提取累积动态特征,构建累积动态特征序列:
均衡控制模块在每次动作时的累计动态特征F=(F1,F2,F3,F4)包括F1、F2、F3和F4四部分:
(1)基于步骤S2.1针对均衡控制模块的每次动作可提取一组静态特征 B=[V1,E1,V2,E2,…,VN,EN,Q],时间轴尺度上可获得静态特征序列,即将针对均衡控制模 块在已经历的生命周期的每次动作提取的静态特征按对应的时间先后顺序排列,可获得一 个静态特征序列;一方面由于环境等因素的影响,原始信号通常包含噪声因素,为了进行 去噪,另一方面为了使长期变化更为明显,使用多项式平滑算法对静态特征序列进行平滑 滤波处理得到平滑特征序列,平滑特征序列中的元素即均衡控制模块在每次动作时的平滑 特征,记为F1
(2)制动机具有多种制动模式,如紧急制动、常用制动等,总体而言,均衡控制模块根 据不同制动模式的要求调整目标压力,针对不同制动模模式其目标压力不同,对应的压力 变化模式不同。根据记录的均衡控制模块历史动作序列(目标压力切换序列)可以确定每 次动作对应的模式。均衡控制模块工作在不同的模式下调用的元件、受到的损伤不同,故 此针对均衡控制模块的每次动作,提取均衡控制模块在该次动作时已经经历过的各模式的 次数,记为F2
(3)针对均衡控制模块的每次动作,计算该次动作与各模式上次动作的时间之间的间 隔,记为F3
(4)针对均衡控制模块的每次动作,计算该次动作与各模式上次动作的平滑特征之间的 差值,记为F4
本实施例中的DK-2制动机样本针对不同制动模式其目标压力包括0kpa,300kpa,500kpa三种,对应的压力变化包括六种模式,0kpa-300kpa,0kpa-500kpa,300kpa-500kpa,500kpa-300kpa,500kpa-0kpa,300kpa-0kpa,将其分别标注为模式1,2,3,4,5,6。对于特征F2、 F3和F4,对应于每个模式都有一个分量,故对于本实施例中的DK-2制动机样本,F2、F3和F4都有6个分量。
由上述步骤,针对均衡控制模块的每次动作可提取一组累积动态特征,将针对均衡控 制模块在已经历的生命周期的每次动作提取的累积动态特征按对应的时间先后顺序排列, 可获得一个累积动态特征序列。
实施例3:
本实施例在实施例1的基础上,所述步骤S2中,健康指标模型以融合累积动态特征序 列获得表示均衡控制模块老化状态(系统退化趋势)的健康指标为目的。考虑到累积动态 特征F包含的每一部分(F1,F2,F3,F4)都是多维度的,令K为累积动态特征的总维度,即其包含的特征个数,则将均衡控制模块在第t次动作对应的累积动态特征可表示为 F(t)=(f1(t),f2(t),...,fK(t)),所述的健康指标表示为特征的线性组合,即构建的健康指标 模型为:
H(t)=w1f1(t)+w2f2(t)+...wkfk(t)+...+wKfK(t)
其中,H(t)为均衡控制模块在第t次动作时的健康指标,w1,w2,...,wk,...,wK表示各维特 征分量对应的权重。
实施例4:
本实施例在实施例3的基础上,基于均衡控制模块健康状态变化特点,分析健康指标 应具有的三种性质,建立多目标规划方程求解权重w=(w1,w2,...,wk,...,wK)T
(1)健康指标的单调性,即随着系统(均衡控制模块)使用次数的增加,系统逐渐老化,健康指标应当呈单调性变化:通过松弛变量εi,t表示第i个样本在第t次动作时的健康指标的单调性违反量,εi,t=max[Hi(t+1)-Hi(t),0],假设健康指标是单调递减的,通过最小化违反量之和,以保证健康指标的单调性:
Figure BDA0002396249240000101
s.t.w′M′G=1,Mw≥0,εi,t≥0
其中,p为样本个数,q为样本生命周期长度,M为表示退化趋势信息的对角矩阵,此矩阵大小为K×K,矩阵对角线上的第k个值取决于fk(t)特征的变化趋势为递增,还是 递减,若递增,则取+1,递减则取-1;w′和M′分别为w和M的转置;G为长度为K的 元素全为1的向量;0为长度为K的元素全为0的向量,Mw≥0表示Mw中每个元素都大 于0;
(2)故障阈值相似性,即对于各均衡控制模块样本,各系统故障时的特征具有一定相似性:
minww′A′CAw
s.t.w′M′G=1,Mw≥0
其中,C为对称矩阵,C=(I-O/p)/(p-1),I是p×p的单位矩阵,O是p×p的每 个元素均为1的矩阵;A矩阵大小为p×K,矩阵内每一行为每个样本故障时对应的特征 值;A′为A的转置矩阵;训练集的每个样本,包含了系统整个生命周期(从健康到故障) 的所有动作对应的数据,可以将每个样本最后一次动作对应的数据所提取出的特征值视为 样本故障时对应的特征值;
(3)变化趋势相似性,因为系统基本构成相同,故此各样本的健康指标的变化趋势应当具有相似性,使用动态时间规整距离DTW(Hα(t),Hβ(t))表示第α个样本和第β个样本 健康指标的相似度:则该性质以最小化动态时间规整距离为目标,可表示为:
Figure BDA0002396249240000111
s.t.w′M′G=1,Mw≥0.
Hα(t),Hβ(t)分别为第α个样本和第β个样本在第t次动作时的健康指标;
综合三个性质,得到以下多目标规划方程:
Figure BDA0002396249240000112
s.t.w′M′G=1,Mw≥0,λ123=1
其中,λ1、λ2、λ3为系数,根据经验取值;
进行上述多目标规划方程求解,最终可获得各特征对应的权重值,从而得到参数确定 的健康指标模型。
实施例5:
本实施例在实施例4的基础上,所述步骤S3中,基于门控循环神经网络构建寿命预测 模型。以所有样本的历史健康指标序列和历史剩余使用寿命序列作为训练集,进行模型参 数训练与调整。
本实施例流程图如图5所示。
实施例6:
本实施例公开了一种基于健康指标的均衡控制模块寿命预测装置,其特征在于,包括 以下模块:
特征提取模块(静态特征提取和累积动态特征提取模块),用于基于制动机均衡控制 模块在各次动作中的数据,计算其在各次动作时的特征值;
健康指标计算模块,用于构建健康指标模型,基于制动机均衡控制模块样本的特征值 确定模型参数;并基于提取的特征值,采用参数确定后的健康指标模型计算制动机均衡控 制模块在其各次动作时的健康指标;
寿命预测模型构建及训练模块,用于构建寿命预测模型,基于制动机均衡控制模块样 本的健康指标序列和剩余使用寿命序列训练预测模型参数,得到训练好的寿命预测模型; 每个样本在其每一次动作时的剩余使用寿命可标记为:该样本在整个生命周期的总动作次 数-该样本在该次动作时已经进行过的动作次数,如样本生命周期,即从健康到故障的总动 作次数为100,则其第20次动作时的剩余使用寿命标记为100-20=80;
寿命预测模块,用于将待检测的均衡控制模块的历史健康指标序列输入训练好的寿命 预测模型,输出其剩余使用寿命。
实施例7:
本实施例公开了一种电子设备,包括处理器和存储器,所述存储器上存储有计算机程 序;所述计算机程序被处理器执行时,使得处理器实现上述实施例1至5中任一项所述的 方法。
实施例8:
本实施例在实施例7的基础上,所述的电子设备还包括制动控制模块,所述制动控制 模块与所述均衡控制模块相连,用于发出制动模式指令,控制均衡控制模块按照指令进行 工况切换;
实施例9:
本实施例在实施例8的基础上,所述的电子设备还包括模拟量采集模块,部分部署在 均衡控制模块,包括电磁阀驱动端电流采集装置与气路气压采集装置;电流采集装置包括 模拟量输入模块、逻辑控制与缓存模块、电流传感器模块(采集电磁阀驱动端电流)等,最终将数据存储至工控机(电脑)。气路气压采集装置主要部署在均衡控制模块的气路部分,通过设置压力传感器,采集列车管、总风、均衡风缸压力,数据存储于制动控制单元 中,模拟量采集模块连接数据采集卡将模拟量数据传送至工控机。
图6是本实施例提供的一种电子设备的结构示意图,包括制动控制单元100、均衡控 制模块200、处理器(寿命预测模块)400,用于静态特征、累计差分特征的提取、健康指标的构建与基于门控循环单元的寿命预测模块。
均衡控制模块如图7所示,包括四个电磁阀、均衡风缸调压阀、中继阀、电空转换阀等元件组成。
制动控制单元工作原理如图8所示,在闭环模拟控制模式下,根据均衡风缸目标值命 令使均衡控制模块调节气路压力值,具体通过比较目标值与压力传感器反馈的均衡风缸实 时压力值大小关系,进行对进、排气高速电空阀的充排气判断,通过PWM控制达到精确控制均衡风缸压力的目的。
模拟量采集模块如图9所示。
本实施例所述的电子设备工作工程如下:
步骤1,使用制动控制模块,发出制动模式指令,通过电信号发送工况信息,控制均衡控制模块按照指令进行工况切换,指导均衡控制模块实现充风、排风、紧急制动等功能;
步骤2:均衡控制模块使用闭环模拟控制、脉冲宽度调制等手段,联合各元器件协同 工作,从而实现对均衡风缸压力的闭环控制;根据制动控制模块发出的指令,调整环路各 部件状态、进行模式操作与功能实现;
步骤3:使用模拟量采集模块实时采集均衡控制模块各电磁阀驱动端电流及均衡控制 模块气路数据;
步骤4:部署于工控机上的处理器,基于模拟量采集模块采集的数据(模拟量数据)进行特征提取;
处理器中的静态特征提取模块先将模拟量采集模块采集的数据转换为静态特征,静态 特征在时间轴尺度上,表现为静态特征序列;累积动态特征提取模块再根据记录的工况切 换规则与元件/气路工作特点将静态特征转换为累积动态特征,累积动态特征同样在时间轴 尺度上表现为累积动态特征序列;
步骤5:处理器中的健康指标计算模块将累计动态特征序列转换为表示均衡控制模块 老化状态的健康指标序列;
步骤6:处理器中的寿命预测模块预测待测均衡控制模块的剩余使用寿命。
实施例10:
本实施例公开了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序 被处理器执行时,实现上述实施例1至5中任一项所述的方法。
实验中,可通过更换不同均衡控制模块或关键元器件,进行样本的变更。通过对不同 样本的老化试验,构造历史数据集,训练模型参数,通过更换均衡控制模块或关键元器件 进行测试样本数据采集。
关于上述装置实施例中各个模块的具体工作原理可参照上述方法实施例中相应的各个 步骤的具体实施细节的描述,此处不再赘述。
综上所述,本发明提供了一种基于健康指标的制动机均衡控制模块寿命装置,通过采 集均衡控制模块关键电磁阀电流与气路气压数据,实现均衡模块的寿命预测,
本发明上述实施例提供的一种基于健康指标的制动机均衡控制模块寿命预测装置及方 法,通过采集均衡控制模块关键电磁阀电流与气路气压数据,提取多工况工作条件下均衡 控制模块的累计动态差分特征,构建具有解释性的健康指标表征系统的退化状态,并利用 门控循环单元进行均衡控制模块的寿命预测。进一步可完成关键模块或元件的视情维修, 保障制动机的安全运转与列车的安全行驶。本发明相对比与现有的寿命预测方法,考虑到 了工况切换给系统带来的影响,提取了隐藏在切换序列中的老化信息,同时减少了对数据 完备程度的依赖性,此外模型的参数可通过离线训练得出,故此可根据在线数据进行实时 准确的寿命预测。
以上所述仅为本发明的实施例而已,并不用以限制本发明,凡在本发明精神和原则之 内,所作任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于健康指标的均衡控制模块寿命预测方法,其特征在于,包括以下步骤:
步骤S1:基于均衡控制模块在各次动作中的数据,计算其在各次动作时的特征值;
步骤S2:构建健康指标模型,基于均衡控制模块样本的特征值确定模型参数;并基于提取的特征值,采用参数确定后的健康指标模型计算均衡控制模块在其各次动作时的健康指标;
步骤S3:构建寿命预测模型,基于均衡控制模块样本的健康指标序列和剩余使用寿命序列训练预测模型参数,得到训练好的寿命预测模型;
步骤S4:将待检测的均衡控制模块的历史健康指标序列输入训练好的寿命预测模型,输出其剩余使用寿命。
2.根据权利要求1所述的基于健康指标的均衡控制模块寿命预测方法,其特征在于,所述步骤S1具体包括以下步骤:
步骤S1.1、提取静态特征:
基于均衡控制模块在每次动作时其中每个电磁阀驱动电流曲线,提取一组驱动电流统计特征V和能量特征E;其中驱动电流统计特征V包括响应时间Δt、局部波峰值I、局部波谷值I′和稳定电流值
Figure FDA0002396249230000013
其中能量特征E是使用经验模态分解,将驱动电流曲线分解为Z个固有模态函数分量
Figure FDA0002396249230000011
并计算得到的各个固有模态函数分量
Figure FDA0002396249230000012
的能量ez
基于均衡控制模块在每次动作时其中列车管、均衡风缸气路气压数据,提取一组对应的阶段性特征Q,包括充排风阶段的列车管、均衡风缸的稳定阶段的气压(p列车,p均缸),充风阶段的时间(t1 列车,t1 均缸)、排风阶段的时间(t2 列车,t2 均缸)、稳定阶段压力平稳时间(t3 列车,t3 均缸)、充排风阶段列车管与均衡风缸气压曲线的皮尔森相关系数(α充风,α排风);
由此,针对均衡控制模块每次动作,获得一组静态特征B=[V1,E1,V2,E2,…,VN,EN,Q],其中V1~VN表示该次动作时该均衡控制模块中N个电磁阀的驱动电流统计特征V与能量特征E;
步骤S1.2、提取累积动态特征;
均衡控制模块在每次动作时的累计动态特征F包括F1、F2、F3和F4四部分:
1)将针对均衡控制模块在已经历的生命周期的每次动作提取的静态特征按对应的时间先后顺序排列,获得一个静态特征动态特征序列;对静态特征序列进行平滑滤波处理得到平滑特征序列,平滑特征序列中的元素即均衡控制模块在每次动作时的平滑特征,记为F1
2)针对均衡控制模块的每次动作,提取均衡控制模块在该次动作时已经经历过的各模式的次数,记为F2
3)针对均衡控制模块的每次动作,计算该次动作与各模式上次动作的时间之间的间隔,记为F3
4)针对均衡控制模块的每次动作,计算该次动作与各模式上次动作的平滑特征之间的差值,记为F4
3.根据权利要求1所述的基于健康指标的均衡控制模块寿命预测方法,其特征在于,所述步骤S2中,设K为累积动态特征F的总维度,即其包含的特征个数,将均衡控制模块在第t次动作时的累积动态特征表示为F(t)=(f1(t),f2(t),...,fK(t)),构建健康指标模型为:
H(t)=w1f1(t)+w2f2(t)+...wkfk(t)+...+wKfK(t)
其中,H(t)为均衡控制模块在第t次动作时的健康指标,w1,w2,...,wk,...,wK表示各维特征分量对应的权重。
4.根据权利要求3所述的基于健康指标的均衡控制模块寿命预测方法,其特征在于,所述步骤S2中,建立以下多目标规划方程求解权重w=(w1,w2,...,wk,...,wK)T
Figure FDA0002396249230000021
s.t.w′M′G=1,Mw≥0,λ123=1
其中,p为均衡控制模块样本个数,q为样本生命周期长度,M为表示退化趋势信息的对角矩阵,此矩阵大小为K×K,矩阵对角线上的第k个值取决于fk(t)特征的变化趋势为递增,还是递减,若递增,则取+1,递减则取-1;w′和M′分别为w和M的转置;G为长度为K的元素全为1的向量;0为长度为K的元素全为0的向量;松弛变量εi,t表示第i个样本在第t次动作时的健康指标的单调性违反量,εi,t=max[Hi(t+1)-Hi(t),0];
C为对称矩阵,C=(I-O/p)/(p-1),I是p×p的单位矩阵,O是p×p的每个元素均为1的矩阵;A矩阵大小为p×K,矩阵内每一行为每个样本故障时对应的特征值;A′为A的转置矩阵;
Hα(t),Hβ(t)分别为第α个样本和第β个样本在第t次动作时的健康指标;
λ1、λ2、λ3为系数,根据经验取值。
5.根据权利要求1所述的基于健康指标的均衡控制模块寿命预测方法,其特征在于,所述步骤S3中,基于门控循环神经网络构建寿命预测模型。
6.一种基于健康指标的均衡控制模块寿命预测装置,其特征在于,包括以下模块:
特征提取模块,用于基于均衡控制模块在各次动作中的数据,计算其在各次动作时的特征值;
健康指标计算模块,用于构建健康指标模型,基于均衡控制模块样本的特征值确定模型参数;并基于提取的特征值,采用参数确定后的健康指标模型计算均衡控制模块在其各次动作时的健康指标;
寿命预测模型构建及训练模块,用于构建寿命预测模型,基于均衡控制模块样本的健康指标序列和剩余使用寿命序列训练预测模型参数,得到训练好的寿命预测模型;
寿命预测模块,用于将待检测的均衡控制模块的历史健康指标序列输入训练好的寿命预测模型,输出其剩余使用寿命。
7.一种电子设备,其特征在于,包括处理器和存储器,所述存储器上存储有计算机程序;所述计算机程序被处理器执行时,使得处理器实现如权利要求1至5中任一项所述的方法。
8.根据权利要求7所述的电子设备,其特征在于,还包括制动控制模块,所述制动控制模块与所述均衡控制模块相连,用于发出制动模式指令,控制均衡控制模块按照指令进行工况切换。
9.根据权利要求7所述的电子设备,其特征在于,还包括模拟量采集模块,包括电磁阀驱动端电流采集装置与气路气压采集装置。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求1至5中任一项所述的方法。
CN202010132742.5A 2020-02-29 2020-02-29 一种基于健康指标的均衡控制模块寿命预测方法及装置 Active CN111399474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010132742.5A CN111399474B (zh) 2020-02-29 2020-02-29 一种基于健康指标的均衡控制模块寿命预测方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010132742.5A CN111399474B (zh) 2020-02-29 2020-02-29 一种基于健康指标的均衡控制模块寿命预测方法及装置

Publications (2)

Publication Number Publication Date
CN111399474A true CN111399474A (zh) 2020-07-10
CN111399474B CN111399474B (zh) 2021-05-14

Family

ID=71432160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010132742.5A Active CN111399474B (zh) 2020-02-29 2020-02-29 一种基于健康指标的均衡控制模块寿命预测方法及装置

Country Status (1)

Country Link
CN (1) CN111399474B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906782A (zh) * 2021-02-07 2021-06-04 江西科技学院 基于dtw与最小二乘估计的轨道静态检查历史数据匹配方法
CN113570160A (zh) * 2021-08-27 2021-10-29 三一石油智能装备有限公司 一种混砂车砂泵的寿命预测方法及装置
CN114684096A (zh) * 2022-03-08 2022-07-01 中南大学 一种基于多源数据融合的电磁阀寿命预测装置及方法
CN114919559A (zh) * 2022-07-05 2022-08-19 中南大学 一种基于数字孪生的制动系统剩余使用寿命预测系统及方法
CN115470717A (zh) * 2022-10-31 2022-12-13 四川工程职业技术学院 一种机器人剩余寿命预测方法、装置、设备及存储介质
CN116124460A (zh) * 2022-12-26 2023-05-16 江西理工大学 一种基于健康指标构建的轴承寿命预测方法及系统
CN116501027A (zh) * 2023-06-29 2023-07-28 中南大学 分布式制动系统健康评估方法、系统、设备及存储介质

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721920A (zh) * 2012-06-29 2012-10-10 沈阳工业大学 一种断路器操动机构剩余寿命预测装置及方法
CN103324834A (zh) * 2013-04-07 2013-09-25 北京航空航天大学 一种完全截断数据条件下的机电系统及其关键部件寿命预测方法
CN106909756A (zh) * 2017-03-29 2017-06-30 电子科技大学 一种滚动轴承剩余寿命预测方法
CN107101828A (zh) * 2017-05-27 2017-08-29 辽宁大学 一种编码器健康度评价的轴承剩余寿命预测方法
CN109460618A (zh) * 2018-11-13 2019-03-12 华中科技大学 一种滚动轴承剩余寿命在线预测方法及系统
CN109507992A (zh) * 2019-01-02 2019-03-22 中车株洲电力机车有限公司 一种机车制动系统部件的故障预测方法、装置及设备
CN109693146A (zh) * 2017-10-23 2019-04-30 发那科株式会社 寿命推定装置以及机器学习装置
CN109857090A (zh) * 2019-03-05 2019-06-07 中南大学 一种均衡风缸制动装置健康评估系统和方法
CN110033135A (zh) * 2019-04-15 2019-07-19 北京交通大学 多变量时间序列特征加强的列车制动系统故障预测方法
WO2019171337A1 (en) * 2018-03-09 2019-09-12 Rikatec (Pty) Ltd. Vehicle monitoring system and method
CN110232249A (zh) * 2019-06-17 2019-09-13 中国人民解放军陆军装甲兵学院 一种滚动轴承剩余寿命预测方法
CN110276385A (zh) * 2019-06-11 2019-09-24 合肥工业大学 基于相似性的机械部件剩余使用寿命预测方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721920A (zh) * 2012-06-29 2012-10-10 沈阳工业大学 一种断路器操动机构剩余寿命预测装置及方法
CN103324834A (zh) * 2013-04-07 2013-09-25 北京航空航天大学 一种完全截断数据条件下的机电系统及其关键部件寿命预测方法
CN106909756A (zh) * 2017-03-29 2017-06-30 电子科技大学 一种滚动轴承剩余寿命预测方法
CN107101828A (zh) * 2017-05-27 2017-08-29 辽宁大学 一种编码器健康度评价的轴承剩余寿命预测方法
CN109693146A (zh) * 2017-10-23 2019-04-30 发那科株式会社 寿命推定装置以及机器学习装置
WO2019171337A1 (en) * 2018-03-09 2019-09-12 Rikatec (Pty) Ltd. Vehicle monitoring system and method
CN109460618A (zh) * 2018-11-13 2019-03-12 华中科技大学 一种滚动轴承剩余寿命在线预测方法及系统
CN109507992A (zh) * 2019-01-02 2019-03-22 中车株洲电力机车有限公司 一种机车制动系统部件的故障预测方法、装置及设备
CN109857090A (zh) * 2019-03-05 2019-06-07 中南大学 一种均衡风缸制动装置健康评估系统和方法
CN110033135A (zh) * 2019-04-15 2019-07-19 北京交通大学 多变量时间序列特征加强的列车制动系统故障预测方法
CN110276385A (zh) * 2019-06-11 2019-09-24 合肥工业大学 基于相似性的机械部件剩余使用寿命预测方法
CN110232249A (zh) * 2019-06-17 2019-09-13 中国人民解放军陆军装甲兵学院 一种滚动轴承剩余寿命预测方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906782A (zh) * 2021-02-07 2021-06-04 江西科技学院 基于dtw与最小二乘估计的轨道静态检查历史数据匹配方法
CN112906782B (zh) * 2021-02-07 2024-01-26 江西科技学院 基于dtw与最小二乘估计的轨道静态检查历史数据匹配方法
CN113570160A (zh) * 2021-08-27 2021-10-29 三一石油智能装备有限公司 一种混砂车砂泵的寿命预测方法及装置
CN114684096A (zh) * 2022-03-08 2022-07-01 中南大学 一种基于多源数据融合的电磁阀寿命预测装置及方法
CN114684096B (zh) * 2022-03-08 2023-02-17 中南大学 一种基于多源数据融合的电磁阀寿命预测装置及方法
CN114919559A (zh) * 2022-07-05 2022-08-19 中南大学 一种基于数字孪生的制动系统剩余使用寿命预测系统及方法
CN115470717A (zh) * 2022-10-31 2022-12-13 四川工程职业技术学院 一种机器人剩余寿命预测方法、装置、设备及存储介质
CN116124460A (zh) * 2022-12-26 2023-05-16 江西理工大学 一种基于健康指标构建的轴承寿命预测方法及系统
CN116124460B (zh) * 2022-12-26 2024-01-30 江西理工大学 一种基于健康指标构建的轴承寿命预测方法及系统
CN116501027A (zh) * 2023-06-29 2023-07-28 中南大学 分布式制动系统健康评估方法、系统、设备及存储介质
CN116501027B (zh) * 2023-06-29 2023-10-03 中南大学 分布式制动系统健康评估方法、系统、设备及存储介质

Also Published As

Publication number Publication date
CN111399474B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
CN111399474B (zh) 一种基于健康指标的均衡控制模块寿命预测方法及装置
Li et al. An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction
CN104914327B (zh) 基于实时监测信息的变压器故障检修预测方法
CN109726524B (zh) 一种基于cnn和lstm的滚动轴承剩余使用寿命预测方法
CN109270442B (zh) 基于dbn-ga神经网络的高压断路器故障检测方法
CN106844949B (zh) 一种用于实现机车节能操纵的双向lstm模型的训练方法
CN111319601B (zh) 一种均衡风缸控制模块故障诊断方法、装置及存储介质
Hua et al. Multi-timescale lifespan prediction for PEMFC systems under dynamic operating conditions
CN112069727B (zh) 具备高可信度的电力系统暂态稳定智能化评估系统及方法
CN112766618B (zh) 异常预测方法及装置
CN112883634B (zh) 基于多维度分析的直流测量系统状态预测方法及系统
CN114186379A (zh) 基于回声网络和深度残差神经网络的变压器状态评估方法
CN113204921A (zh) 飞机涡扇发动机的剩余使用寿命预测方法及系统
CN113485261A (zh) 一种基于CAEs-ACNN的软测量建模方法
CN115828745A (zh) 基于集成学习算法的机电作动器匝间短路故障诊断方法
CN105334472A (zh) 矿用本安电源在线剩余寿命预测方法
Liu et al. Multiple optimized online support vector regression for adaptive time series prediction
KR101242060B1 (ko) 도시철도차량의 신뢰도 및 가용도 관리 시스템
CN105651526B (zh) 基于振动信号分析的车辆工况识别方法
CN116819382A (zh) 一种基于数字孪生的dc-dc变换器状态监测方法
CN116305985A (zh) 一种基于多传感器数据融合的局部智能通风方法
CN116610940A (zh) 一种基于小波变换与深度神经网络的装备故障诊断系统
CN115718478A (zh) 基于sac深度强化学习的svg参数优化辨识方法
CN115222160A (zh) 一种基于实测大数据的轨道交通牵引负荷预测方法
CN114861349A (zh) 一种基于模型迁移和维纳过程的滚动轴承rul预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant