CN111392947B - 一种氨水资源化利用工艺及装置 - Google Patents

一种氨水资源化利用工艺及装置 Download PDF

Info

Publication number
CN111392947B
CN111392947B CN202010286354.2A CN202010286354A CN111392947B CN 111392947 B CN111392947 B CN 111392947B CN 202010286354 A CN202010286354 A CN 202010286354A CN 111392947 B CN111392947 B CN 111392947B
Authority
CN
China
Prior art keywords
tower
ammonia
liquid
tail gas
ammonia water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010286354.2A
Other languages
English (en)
Other versions
CN111392947A (zh
Inventor
胡付超
王瑞宝
覃鹏辉
王鹏
胡波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Taisheng Chemical Co Ltd
Original Assignee
Hubei Taisheng Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Taisheng Chemical Co Ltd filed Critical Hubei Taisheng Chemical Co Ltd
Priority to CN202010286354.2A priority Critical patent/CN111392947B/zh
Publication of CN111392947A publication Critical patent/CN111392947A/zh
Application granted granted Critical
Publication of CN111392947B publication Critical patent/CN111392947B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/022Preparation of aqueous ammonia solutions, i.e. ammonia water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明提供的一种氨水资源化利用工艺及装置,为保证蒸氨工段副产氨水能被有效的资源化利用,针对原有工艺中尾气吸收塔氨水浓度低、不稳定的情况,主要是通过改变吸收塔循环采出方式和以软水更换吸收液提升氨水质量,将二级吸收的排浓液补充到一级吸收塔作为吸收液,将一级吸收塔排浓液补充到蒸氨塔作为塔顶回流,以此对蒸氨工艺流程进行优化。蒸氨系统只有冷凝氨水回流罐一处排浓,彻底并有效控制了两级尾气吸收塔不规律排浓导致的现场异味、两股氨水的浓度不稳定问题,同时解决两级吸收液中氨水浓度过高造成填料塔堵塞,塔压降增大而导致的塔内液泛、淹塔等故障工况,克服氨水浓度过低无法实现资源化回用的问题,从而达到烟气脱硫脱硝的使用要求,进一步降低生产成本。

Description

一种氨水资源化利用工艺及装置
技术领域
本发明涉及一种高浓度氨氮氧化液汽提脱氨回收氨水技术,具体涉及到一种氨水资源化利用工艺技术。
背景技术
草甘膦结晶液是一种生产草甘膦原药过程中产生的废水,其成分复杂,主要含有机磷、有机氮和氯化钠等物质,直接排放势必对环境造成严重污染,我公司目前采用湿式催化氧化技术对这种有机废水进行处理,表面呈黄色,pH值为8-9,氧化废水氨氮含量为4000-6000ppm。
专利CN201720781613.2中提到的含氨氮氧化废水处理工艺,通过汽提脱氨塔进行氨氮脱除,塔顶冷凝器利用工业循环水完成对回流液的冷凝,液体进回流罐,部分采出即为15%-18%的氨水,另有不凝气送至吸收塔,经过二级水洗塔吸收,得到8%-10%的氨水。吸收塔的8%-10%的稀氨水和塔顶采出的15%-18%的氨水一并进入氨水储罐中,塔底得到去除氨氮后的氧化液,送至下游工段提取磷酸盐,脱氨氧化液去除氨氮后,保障了下游工段的产品质量和工作环境。
但在实际生产过程中,运用专利CN201720781613.2的技术存在以下问题:第一,汽提脱氨系统所产的副产氨水主要由蒸氨塔顶回流罐、一级尾气吸收塔排浓、二级尾气吸收塔排浓这三处排出的氨水混合所得,为保证最终尾气排放合格、现场无异味,两级吸收塔排浓氨水浓度需控制在6%以下;第二,由于尾气吸收塔采用的是填料塔,吸收液中氨水浓度不宜过高,否则会造成填料塔堵塞,塔压降增大,进而导致出现液泛、淹塔等故障工况,所以吸收液中氨水浓度也不能过高;第三,由于需要控制现场异味,两级尾气吸收塔的吸收液排浓需要根据现场异味的实际情况,进行不规律排浓,从而导致这两股氨水的浓度十分不稳定,优化前的工艺流程图如图1所示。由于氨水储罐中的氨水是由三路混合所得,而从吸收塔送来的氨水浓度偏低,且存在浓度不稳定情况,最终导致外送氨水的浓度偏低(6%~8%),而且浓度还十分不稳定,因此,达不到锅炉等焚烧设备烟气脱硫脱硝使用要求(8%以上)。
发明内容
本技术发明的目的旨在提出一种氨水资源化利用方案,主要是通过改变吸收塔循环采出方式和以软水更换吸收液提升氨水质量,解决了原有工艺中一级尾气吸收塔、二级尾气吸收塔排浓液直接与冷凝液氨水一起进入稀氨水中转罐导致的稀氨水的浓度偏低(6%~8%)和浓度不稳定等问题,本发明提出的优化工艺从而克服该技术难点,使得氨水浓度稳定在10%-15%范围,生产成稀氨水外销,达到资源化利用的目的。
本发明提供的一种氨水资源化利用工艺及装置,为保证蒸氨工段副产氨水能被其汽提脱氨工艺进行优化和改造,主要是通过改变尾气吸收塔塔底吸收液循环采出方式,并以软水更换吸收液提升氨水质量,将二级尾气吸收塔塔底的排浓液补充到一级吸收塔作为吸收液,将一级尾气吸收塔塔底的排浓液补充到蒸氨塔作为塔顶回流,优化后的工艺流程图如图1所示。
为实现本发明的目的、技术方案及优点更加清楚明白,现对几股工艺水相关成分进一步说明:
1.氧化液:指草甘膦生产的结晶液废水,经高温高压氧化降COD值的弱碱性液体。
2.氧化液中氨氮含量为4000mg/L~6000mg/L,二氧化碳含量为5000mg/L~11000mg/L,COD含量:20000~40000mg/L,盐分含量为19~29%,正磷含量:15000~25000mg/L,总磷含量:20000~30000mg/L,pH值8~9。
3.脱氨氧化液:经汽提脱氨塔分离后,塔釜底部出来的脱氨氧化液。其中氨氮含量(以NH3计):<100mg/L,CO2含量为<100mg/L,COD含量:20000~40000mg/L,盐分含量为19~29%,正磷含量:15000~25000mg/L,总磷含量:20000~30000mg/L。
为实现本发明的目的,采取了如下装置,包括以下设备及管线(见附图1):
含氨氮氧化液管道与氧化液进料泵连接,氧化液进料泵出口通过管线与氧化液进料板式换热器物料进口连接;氧化液进料板式换热器物料出口通过管线与汽提脱氨塔进口连接;汽提脱氨塔气相出口通过管线与氨气冷凝器气相进口连接,氨气冷凝器液相出口与冷凝氨水回流罐进口连接,冷凝氨水回流罐液相出口经冷凝氨水回流采出泵与稀氨水中转罐进口连接;稀氨水中转罐出口与稀氨水转运泵进口连接。
冷凝氨水回流罐液相出口经冷凝氨水回流采出泵与汽提脱氨塔回流管线连接。
氨气冷凝器气相出口以及冷凝氨水回流罐气相出口分别与一级尾气吸收塔连接;一级尾气吸收塔气相出口与二级尾气吸收塔气相进口连接,二级尾气吸收塔吸收液出口经管线与二级尾气吸收塔采出循环泵进口连接,二级尾气吸收塔采出循环泵出口通过管线与一级尾气吸收塔连接。
一级尾气吸收塔吸收液出口与一级尾气吸收塔采出循环泵进口连接,一级尾气吸收塔采出循环泵出口与汽提脱氨塔回流管线连接。
汽提脱氨塔塔釜底部液相出口与脱氨氧化液采出循环泵进口连接,脱氨氧化液采出循环泵出口通过管线分别与再沸器进口和氧化液进料板式换热器热源进口连接,氧化液进料板式换热器热源出口与脱氨氧化液出料泵连接;再沸器出口与塔釜通过管线连接。所述的再沸器包括一级再沸器及二级再沸器。
为实现本发明的目的采取了如下工艺,主要步骤为(见附图1):
步骤(1)利用28-34%液碱将氧化液的pH值调为8±0.5,含氨氮氧化液通过氧化液进料泵与脱氨氧化液在氧化液进料板式换热器中进行热交换和预热,升温至70~80℃。
进一步地,步骤(1)所述的氧化液进料板式换热器换热面积60m2
步骤(2)升温后的含氨氮氧化液通进入汽提脱氨塔内,控制汽提脱氨塔进料流量40m3/h~50m3/h,氧化液进入气体脱氨塔与塔釜产生的蒸汽进行热交换,气体分离后进入汽提脱氨塔上部精馏段提浓,并从塔顶馏出。汽提脱氨塔为筛板式常压汽提塔,进料方式为塔底进料,另塔底设有再沸器,利用蒸汽升温,控制蒸汽压力在0.3MPa~0.5MPa范围内,保障塔底温度85℃-90℃,塔顶温度75℃-80℃。
进一步地,步骤(2)所述的汽提脱氨塔直径1米~2.5米,塔高20~45米,其中提馏段15~36米(包括塔釜),精馏段4~9米,提馏段塔板数为15~50块。
步骤(3)塔釜底部脱氨氧化液在保持一定液位的情况下,从塔底通过脱氨氧化液采出/循环泵与调节阀控制,80%~90%(体积比)脱氨氧化液去到脱氨氧化液储罐,10%~20%(体积比)脱氨氧化液通过再沸器(包括一级再沸器及二级再沸器)汽化后进入塔釜液位上方,并在脱氨汽提塔中进行气液分离。通过控制脱氨氧化液采出和循环加热体积比在上述范围内,主要存在以下好处:一是能控制脱氨氧化液中氨氮、COD和总磷等指标在可控范围内,避免因过大流量的采出导致脱氨氧化液相关技术指标不合格;二是一定量脱氨氧化液进入塔顶回流,能够确保整个塔内温度不会因新鲜氧化液的进入过快降低,影响氨氮脱除效果及冷凝氨水浓度。
进一步地,步骤(3)所述的再沸器换热面积160m2
进一步地,步骤(3)所述的脱氨氧化液采出/循环泵流量为40m3/h~60m3/h,控制蒸汽压力在0.3MPa~1.0MPa范围内,通过蒸汽阀门开度控制再沸器(包括一级再沸器及二级再沸器)温度120℃~130℃。
步骤(4)从汽提脱氨塔顶出来的含氨蒸气经氨气冷凝器冷凝,冷凝氨水进入回流罐,后经冷凝氨水回流/采出泵10%~20%(体积比)氨水进入脱氨汽提塔顶部回流,80%~90%(体积比)冷凝氨水进入稀氨水中转罐,经稀氨水转运泵转运到其他地方回用。回流量在上述体积比范围内,汽、液两相接触传质效果可达到最优,且能较好的控制塔底温度在85℃-90℃范围内,塔顶温度75℃-80℃范围内。
进一步的,步骤(4)所述的稀氨水转运泵根据需要开关,其流量为40m3/h~50m3/h,冷凝氨水回流/采出泵为1m3/h~12m3/h,副产稀氨水浓度:10%~15%。
步骤(5)经氨气冷凝器后的不凝气体进入一级尾气吸收塔吸收,二级尾气吸收塔吸收液经二级尾气吸收塔采出泵进入一级尾气吸收塔顶部进入一级尾气吸收塔,继续吸收不凝尾气。将二级尾气吸收塔的吸收液补充到一级尾气吸收塔作为吸收液,一级尾气吸收塔吸收液经一级尾气吸收塔采出/循环泵,其中30%~50%(体积比)吸收液到脱氨汽提塔顶部回流,50%~70%(体积比)吸收液从一级尾气吸收塔顶部进入一级尾气吸收塔,形成外循环继续吸收不凝尾气。精确控制吸收液回流比例可将吸收效果达到最优,避免吸收液因吸收不凝气达到饱和后无法继续吸收不凝气,导致现场异味失去管控。同时也可避免因过大和过小的回流量导致塔内温度偏低、淹塔和脱氨效果差、氨水浓度不稳定等现象的发生。
进一步地,所述的一级尾气吸收塔采出/循环泵流量为1m3/h~12m3/h,二级尾气吸收塔采出泵流量为1m3/h~12m3/h。
经过以上工艺优化之后,蒸氨系统只有蒸氨塔顶回流罐1处排浓。
本发明一种氨水资源化利用工艺及装置,具有以下有益效果:
(1)解决了原有工艺中一级尾气吸收塔、二级尾气吸收塔排浓液直接与冷凝液氨水一起进入稀氨水中转罐,导致外送氨水的浓度偏低(6%~8%)的问题。
(2)该技术解决了氨水浓度过低无法实现资源化回用的问题,达到脱硫脱硝的使用要求,实现蒸氨工段副产氨水得到了有效的资源化利用,每年节约处理成本480万元。
(3)经过以上工艺优化之后,解决两级吸收液中氨水浓度过高造成填料塔堵塞,塔压降增大而导致的塔内液泛、淹塔等故障工况。
(4)彻底并有效控制了两级尾气吸收塔不规律排浓导致的现场异味和两股氨水的浓度不稳定问题,环保效益明显。
附图说明
图1为一种氨水资源化利用工艺流程图。其中,脱氨氧化液出料泵1,氧化液进料泵2,氧化液进料板式换热器3,汽提脱氨塔4,氨气冷凝器5,冷凝氨水回流罐6,冷凝氨水回流/采出泵7,一级再沸器8,二级再沸器9,脱氨氧化液采出循环泵10,一级尾气吸收塔11,一级尾气吸收塔采出循环泵12,二级尾气吸收塔13,二级尾气吸收塔采出循环泵14,稀氨水中转罐15,稀氨水转运泵16。
具体实施方式
实施例1
一种氨水资源化利用装置,氧化液进料泵2出口通过管线与氧化液进料板式换热器3物料进口连接;氧化液进料板式换热器3物料出口通过管线与汽提脱氨塔4进口连接;汽提脱氨塔4气相出口通过管线与氨气冷凝器5气相进口连接,氨气冷凝器5液相出口与冷凝氨水回流罐6进口连接,冷凝氨水回流罐液相出口6通过经冷凝氨水回流/采出泵7连接氨水输送管线与稀氨水中转罐15进口和汽提脱氨塔4回流管线连接,稀氨水中转罐15出口与稀氨水转运泵16进口连接。
冷凝氨水回流罐6气相出口与一级尾气吸收塔11连接。氨气冷凝器5气相出口与一级尾气吸收塔11气相进口连接。
汽提脱氨塔4塔釜液相出口与脱氨氧化液采出/循环泵10进口连接,脱氨氧化液采出循环泵10出口通过管线与一级再沸器8,二级再沸器9进口和氧化液进料板式换热器3热源进口连接,氧化液进料板式换热器3热源出口与脱氨氧化液出料泵1连接。一级再沸器8,二级再沸器9出口与塔釜通过管线连接。
一级尾气吸收塔11吸收液出口与一级尾气吸收塔采出循环泵12进口连接,一级尾气吸收塔采出/循环泵12出口与汽提脱氨塔4回流管线连接。
一级尾气吸收塔11气相出口与二级尾气吸收塔13气相进口连接,二级尾气吸收塔13吸收液出口经管线与二级尾气吸收塔采出循环泵14进口连接,二级尾气吸收塔采出/循环泵14出口通过管线与一级尾气吸收塔11连接。
实施例2
氧化液调节pH值经调节至8.5后经氧化液进料泵以50m3/h的流量进入系统,通过与氧化液进料板式换热器热交换后升温至80℃后再进入汽提脱氨塔,气体分离后进入汽提脱氨塔上部精馏段提浓,并从塔顶馏出。汽提脱氨塔为筛板式常压汽提塔,进料方式为塔底进料,另塔底设有再沸器,利用蒸汽升温,蒸汽压力0.5Mpa,塔底温度90℃,塔顶温度80℃;塔釜底脱氨氧化液在保持一定液位的情况下,通过脱氨氧化液采出循环泵连续采出,汽提脱氨塔塔釜液位与脱氨氧化液采出循环泵形成连锁控制。从塔底通过脱氨氧化液采出循环泵与调节阀控制,90%(体积比)脱氨氧化液去脱氨氧化液储罐,10%(体积比)脱氨氧化液再沸器汽化后进入塔釜液位上方,脱氨氧化液采出/循环泵流量为46.28m3/h,蒸汽压力0.5MPa,通过蒸汽阀门开度控制一级再沸器,二级再沸器温度125℃。进入塔釜液面上方,汽流上升,与下降的氧化液进行气液分离,分离的气体继续进入精馏段,提浓后从塔顶馏出,经氨气冷凝器冷凝,进入塔顶冷凝氨水回流罐。12%(体积比)氨水进入脱氨汽提塔顶部回流,88%(体积比)冷凝氨水进入稀氨水中转罐。冷凝氨水回流/采出泵为2.3m3/h。
不凝气体进入一级尾气吸收塔吸收,二级尾气吸收塔吸收液经二级尾气吸收塔采出泵进入一级尾气吸收塔顶部进入一级尾气吸收塔,继续吸收不凝尾气。将二级尾气吸收塔的吸收液补充到一级尾气吸收塔作为吸收液,50%(体积比)一级尾气吸收塔吸收液经一级尾气吸收塔采出/循环泵和管线进入脱氨汽提塔顶部回流,50%(体积比)一级尾气吸收塔吸收液从一级尾气吸收塔顶部进入一级尾气吸收塔,形成外循环继续吸收不凝尾气。一级尾气吸收塔采出/循环泵流量为2m3/h,二级尾气吸收塔采出泵流量为1m3/h。
经过以上工艺优化之后,蒸氨系统只有冷凝氨水回流罐处排浓。经稀氨水转运泵转运到其他地方回用,稀氨水转运泵根据需要启动,其流量为50m3/h。
所获得的稀氨水浓度12%,达到烟气脱硫脱硝使用要求(8%以上),脱氨氮后氧化液氨氮含量80mg/L,二氧化碳含量86mg/L,COD含量:26200mg/L,盐分含量为20.5%,正磷含量:22364mg/L,总磷含量:26420mg/L。
实施例3
氧化液调节pH值经调节至8.2后经氧化液进料泵以50m3/h的流量进入系统,通过与氧化液进料板式换热器热交换后升温至80℃后再进入汽提脱氨塔,气体分离后进入汽提脱氨塔上部精馏段提浓,并从塔顶馏出。汽提脱氨塔为筛板式常压汽提塔,进料方式为塔底进料,另塔底设有再沸器,利用蒸汽升温,蒸汽压力0.5Mpa,塔底温度85℃,塔顶温度75℃;塔釜底脱氨氧化液在保持一定液位的情况下,通过脱氨氧化液采出循环泵连续采出,汽提脱氨塔塔釜液位与脱氨氧化液采出循环泵形成连锁控制。从塔底通过脱氨氧化液采出循环泵与调节阀控制,85%(体积比)脱氨氧化液去脱氨氧化液储罐,15%(体积比)脱氨氧化液再沸器汽化后进入塔釜液位上方,脱氨氧化液采出/循环泵流量为44.68m3/h,蒸汽压力0.5MPa,通过蒸汽阀门开度控制一级再沸器,二级再沸器温度120℃。进入塔釜液面上方,汽流上升,与下降的氧化液进行气液分离,分离的气体继续进入精馏段,提浓后从塔顶馏出,经氨气冷凝器冷凝,进入塔顶冷凝氨水回流罐。10%(体积比)氨水进入脱氨汽提塔顶部回流,90%(体积比)冷凝氨水进入稀氨水中转罐。冷凝氨水回流/采出泵为1.8m3/h。
不凝气体进入一级尾气吸收塔吸收,二级尾气吸收塔吸收液经二级尾气吸收塔采出泵进入一级尾气吸收塔顶部进入一级尾气吸收塔,继续吸收不凝尾气。将二级尾气吸收塔的吸收液补充到一级尾气吸收塔作为吸收液,30%(体积比)一级尾气吸收塔吸收液经一级尾气吸收塔采出/循环泵和管线进入脱氨汽提塔顶部回流,70%(体积比)一级尾气吸收塔吸收液从一级尾气吸收塔顶部进入一级尾气吸收塔,形成外循环继续吸收不凝尾气。一级尾气吸收塔采出/循环泵流量为4.67m3/h,二级尾气吸收塔采出泵流量为2m3/h。
经过以上工艺优化之后,蒸氨系统只有冷凝氨水回流罐处排浓。经稀氨水转运泵转运到其他地方回用,稀氨水转运泵根据需要启动,其流量为50m3/h。
所获得的稀氨水浓度13.5%,达到烟气脱硫脱硝使用要求(8%以上),脱氨氮后氧化液氨氮含量62mg/L,二氧化碳含量75mg/L,COD含量:22100mg/L,盐分含量为18.3%,正磷含量:21533mg/L,总磷含量:23100mg/L。
实施例4
氧化液调节pH值经调节至8.6后经氧化液进料泵以52m3/h的流量进入系统,通过与氧化液进料板式换热器热交换后升温至80℃后再进入汽提脱氨塔,气体分离后进入汽提脱氨塔上部精馏段提浓,并从塔顶馏出。汽提脱氨塔为筛板式常压汽提塔,进料方式为塔底进料,另塔底设有再沸器,利用蒸汽升温,蒸汽压力0.5Mpa,塔底温度90℃,塔顶温度80℃;塔釜底脱氨氧化液在保持一定液位的情况下,通过脱氨氧化液采出循环泵连续采出,汽提脱氨塔塔釜液位与脱氨氧化液采出循环泵形成连锁控制。从塔底通过脱氨氧化液采出循环泵与调节阀控制,95%(体积比)脱氨氧化液去脱氨氧化液储罐,5%(体积比)脱氨氧化液再沸器汽化后进入塔釜液位上方,脱氨氧化液采出/循环泵流量为50.86m3/h,蒸汽压力0.5MPa,通过蒸汽阀门开度控制一级再沸器,二级再沸器温度125℃。进入塔釜液面上方,汽流上升,与下降的氧化液进行气液分离,分离的气体继续进入精馏段,提浓后从塔顶馏出,经氨气冷凝器冷凝,进入塔顶冷凝氨水回流罐。8%(体积比)氨水进入脱氨汽提塔顶部回流,92%(体积比)冷凝氨水进入稀氨水中转罐。冷凝氨水回流/采出泵为3.3m3/h。
不凝气体进入一级尾气吸收塔吸收,二级尾气吸收塔吸收液经二级尾气吸收塔采出泵进入一级尾气吸收塔顶部进入一级尾气吸收塔,继续吸收不凝尾气。将二级尾气吸收塔的吸收液补充到一级尾气吸收塔作为吸收液,25%(体积比)一级尾气吸收塔吸收液经一级尾气吸收塔采出/循环泵和管线进入脱氨汽提塔顶部回流,75%(体积比)一级尾气吸收塔吸收液从一级尾气吸收塔顶部进入一级尾气吸收塔,形成外循环继续吸收不凝尾气。一级尾气吸收塔采出/循环泵流量为4.8m3/h,二级尾气吸收塔采出泵流量为1.2m3/h。
经过以上工艺优化之后,蒸氨系统只有冷凝氨水回流罐处排浓。经稀氨水转运泵转运到其他地方回用,稀氨水转运泵根据需要启动,其流量为50m3/h。
所获得的稀氨水浓度8.5%,达到烟气脱硫脱硝使用要求(8%以上),脱氨氮后氧化液氨氮含量120mg/L,二氧化碳含量114mg/L,COD含量:35000mg/L,盐分含量为15.2%,正磷含量:25200mg/L,总磷含量:32000mg/L。
本发明的装置中,各设备的型号如下:
Figure BDA0002448661860000081

Claims (6)

1.一种氨水资源化利用装置,其特征在于,含氨氮氧化液管道与氧化液进料泵(2)连接,氧化液进料泵(2)出口通过管线与氧化液进料板式换热器(3)物料进口连接;氧化液进料板式换热器(3)物料出口通过管线与汽提脱氨塔(4)进口连接;汽提脱氨塔(4)气相出口通过管线与氨气冷凝器(5)气相进口连接,氨气冷凝器(5)液相出口与冷凝氨水回流罐(6)进口连接,冷凝氨水回流罐(6)液相出口经冷凝氨水回流采出泵(7)分别与汽提脱氨塔(4)回流管线及稀氨水中转罐(15)进口连接;稀氨水中转罐(15)出口与稀氨水转运泵(16)进口连接,一级尾气吸收塔(11)吸收液出口与一级尾气吸收塔采出循环泵(12)进口连接,一级尾气吸收塔采出循环泵(12)出口与汽提脱氨塔(4)回流管线连接,汽提脱氨塔(4)塔釜底部液相出口与脱氨氧化液采出循环泵(10)进口连接,脱氨氧化液采出循环泵(10)出口通过管线分别与再沸器进口和氧化液进料板式换热器(3)热源进口连接,氧化液进料板式换热器(3)热源出口与脱氨氧化液出料泵(1)连接;再沸器出口与塔釜通过管线连接。
2.根据权利要求1所述的氨水资源化利用装置,其特征在于,氨气冷凝器(5)气相出口以及冷凝氨水回流罐(6)气相出口分别与一级尾气吸收塔(11)连接;一级尾气吸收塔(11)气相出口与二级尾气吸收塔(13)气相进口连接,二级尾气吸收塔(13)吸收液出口经管线与二级尾气吸收塔采出循环泵(14)进口连接,二级尾气吸收塔采出循环泵(14)出口通过管线与一级尾气吸收塔(11)连接。
3.根据权利要求1或2所述的氨水资源化利用装置进行氨水资源化利用工艺,其特征在于,包括如下步骤:
(1):将含氨氮氧化液通过氧化液进料泵(2)与脱氨氧化液在氧化液进料板式换热器(3)中进行热交换升温;
(2):升温后的含氨氮氧化液通进入汽提脱氨塔(4)内与塔釜产生的蒸汽进行热交换,含氨氮气体分离后进入汽提脱氨塔上部精馏段提浓,并从塔顶馏出含氨蒸气;
(3):从汽提脱氨塔(4)顶出来的含氨蒸气经氨气冷凝器(5)冷凝,冷凝氨水进入冷凝氨水回流罐(6),再经冷凝氨水回流采出泵将一部分氨水进入汽提脱氨塔(4)顶部回流,一部分冷凝氨水进入稀氨水中转罐(15),经稀氨水转运泵(16)转运回用,经氨气冷凝器(5)冷凝后的不凝气体进入一级尾气吸收塔(11)吸收,再进入二级尾气吸收塔(13)吸收,二级尾气吸收塔(13)吸收液经二级尾气吸收塔采出循环泵(14)进入一级尾气吸收塔顶部进入一级尾气吸收塔(11),一级尾气吸收塔(11)吸收液经采出后以体积比30%~50%汽提脱氨塔(4)顶部回流,以体积比50%~70%从一级尾气吸收塔顶部进入一级尾气吸收塔(11),形成外循环继续吸收不凝尾气;所述的一级尾气吸收塔采出流量为1m3/h~12m3/h,二级尾气吸收塔采出流量为1m3/h~12m3/h。
4.根据权利要求3所述的氨水资源化利用工艺,其特征在于,汽提脱氨塔(4)塔釜底部脱氨氧化液从塔底采出,以体积比80%~90%脱氨氧化液去脱氨氧化液储罐,以体积比10%~20%脱氨氧化液通过再沸器汽化后进入汽提脱氨塔(4)塔釜液位上方,并在汽提脱氨塔(4)中进行气液分离,脱氨氧化液采出流量为40m3/h~60m3/h,控制蒸汽压力在0.3MPa~1.0MPa范围内,控制再沸器内温度控制为120℃~130℃。
5.根据权利要求3所述的氨水资源化利用工艺,其特征在于,步骤(1)中含氨氮氧化液经质量浓度为28-34%的液碱调节pH 值至8±0.5,氧化液进料板式换热器(3)中进行热交换,将含氨氮氧化液升温至70~80℃;含氨氮氧化液进入汽提脱氨塔(4)的流量为40m3/h~50m3/h;汽提脱氨塔(4)蒸汽压力控制在0.3MPa~1MPa范围内,控制塔底温度85℃-90℃,控制塔顶温度75℃-80℃。
6.根据权利要求3所述的氨水资源化利用工艺,其特征在于,步骤(3)中,冷凝氨水回流罐(6)内的冷凝氨水采出以体积比10%~20%进入汽提脱氨塔(4)顶部回流,以体积比80%~90%进入稀氨水中转罐(15)。
CN202010286354.2A 2020-04-13 2020-04-13 一种氨水资源化利用工艺及装置 Active CN111392947B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010286354.2A CN111392947B (zh) 2020-04-13 2020-04-13 一种氨水资源化利用工艺及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010286354.2A CN111392947B (zh) 2020-04-13 2020-04-13 一种氨水资源化利用工艺及装置

Publications (2)

Publication Number Publication Date
CN111392947A CN111392947A (zh) 2020-07-10
CN111392947B true CN111392947B (zh) 2022-03-18

Family

ID=71427887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010286354.2A Active CN111392947B (zh) 2020-04-13 2020-04-13 一种氨水资源化利用工艺及装置

Country Status (1)

Country Link
CN (1) CN111392947B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113827992A (zh) * 2021-10-20 2021-12-24 镇江江南化工有限公司 草甘膦生产过程碱母液精馏塔顶馏分水回收利用方法
CN115608135B (zh) * 2022-10-08 2023-05-12 湖北泰盛化工有限公司 一种含盐废水和含盐酸废气自洽式资源化处理方法
CN116832601A (zh) * 2023-07-27 2023-10-03 新乡化纤股份有限公司 一种粘胶纤维行业锅炉烟气、压洗废水的综合处理方法
CN117003324A (zh) * 2023-10-07 2023-11-07 北京赛科康仑环保科技有限公司 一种氨氮废水处理人工智能控制方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4333859B2 (ja) * 2000-07-18 2009-09-16 大阪市 アンモニア含有水の処理方法
CN202201718U (zh) * 2011-08-25 2012-04-25 佛山市邦普循环科技有限公司 一种高效蒸馏回收氨的装置
CN103285614B (zh) * 2013-05-13 2015-01-21 南京格洛特环境工程有限公司 一种apt生产过程中含氨蒸汽的气相精馏方法和设备
KR101528530B1 (ko) * 2014-09-24 2015-06-15 (주) 테크윈 폐수를 이용하여 생산된 산화제를 사용하는 자원 재이용 방식 산업폐수 처리 방법 및 장치
CN104445475B (zh) * 2014-10-31 2016-08-24 湖南裕华科技集团股份有限公司 一种蒸氨二次蒸汽的回收利用方法
CN206915922U (zh) * 2017-06-30 2018-01-23 湖北泰盛化工有限公司 一种草甘膦结晶液去除氨氮的装置
CN107469575A (zh) * 2017-09-01 2017-12-15 湖北合加环境设备有限公司 一种适用于mvr蒸发器二次蒸汽的脱氨塔
CN212050954U (zh) * 2020-04-13 2020-12-01 湖北泰盛化工有限公司 一种氨水资源化利用装置

Also Published As

Publication number Publication date
CN111392947A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
CN111392947B (zh) 一种氨水资源化利用工艺及装置
CN103223292B (zh) 酸性尾气氨法烟气治理方法及装置
CN104058538B (zh) 一种废水汽提脱酸脱氨的工艺方法
CN104190220B (zh) 焦炉烟气脱硝装置及方法
CN212864613U (zh) 一种合成革废水处理及dmf回收系统
CN212050954U (zh) 一种氨水资源化利用装置
CN110054164B (zh) 一种稀硫酸浓缩回收系统
CN108117214A (zh) 页岩气开采压裂返排废液循环列管蒸发减量化处理方法及设备
CN111825145A (zh) 一种氨氮废水处理和回收氨的方法及装置
CN104030514B (zh) 一种双效节能废水汽提脱酸脱氨的工艺方法
CN104843816A (zh) 一种热泵闪蒸汽提脱氨联产硫酸铵及氨水的方法
CN111943865A (zh) 一种合成革废水处理及dmf回收系统
CN105692563B (zh) Swsr-7硫回收工艺及装置
CN212222702U (zh) 一种高效低温负压氨氮废水汽提系统
CN104860465A (zh) 一种双塔催化热耦合逆流脱氨方法及其脱氨装置
CN201280447Y (zh) 一种循环气提脱氧装置
CN107758964B (zh) 一种用于废碱液处理的系统及其处理方法
CN108786397A (zh) 一种Claus装置尾气的处理方法和系统
CN217163255U (zh) 一种用于n-甲基苯胺生产中甲醇回收的精馏设备
CN110963507A (zh) 一种用于焦炉烟气脱硝的氨水制氨系统及工艺
CN206823499U (zh) 一种Claus装置尾气的处理系统
CN214031795U (zh) 一种高效节能的双热泵脱氨装置
CN112452109B (zh) 一种提高脱硫吸收剂解吸so2效率的工艺
CN212687820U (zh) 一种电厂凝结水再生废水膜法脱氨处理系统
CN210736435U (zh) 一种实现自动控制的脱氨系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant