CN111370523B - 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器 - Google Patents

一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器 Download PDF

Info

Publication number
CN111370523B
CN111370523B CN202010183235.4A CN202010183235A CN111370523B CN 111370523 B CN111370523 B CN 111370523B CN 202010183235 A CN202010183235 A CN 202010183235A CN 111370523 B CN111370523 B CN 111370523B
Authority
CN
China
Prior art keywords
graphene
ferroelectric
photoelectric detector
terahertz wave
ferroelectric domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010183235.4A
Other languages
English (en)
Other versions
CN111370523A (zh
Inventor
黄文�
林霖
龚天巡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202010183235.4A priority Critical patent/CN111370523B/zh
Publication of CN111370523A publication Critical patent/CN111370523A/zh
Application granted granted Critical
Publication of CN111370523B publication Critical patent/CN111370523B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器,包括基底:如半导体硅(Si)或氧化物钛酸锶(STO)、底电极:如镧锶锰氧(LSMO)、铁电材料:如铁酸铋(BFO)或掺铪的氧化锆(HfZrO)、以及上层的二维材料:如石墨烯。发明提出的光电探测器,利用铁电材料不同的极化方向引起二维材料电化学势的差异,通过设计铁电畴的形状,改变铁电畴的大小,利用表面等离子共振效应,得到了一种能对光电探测器吸收波段进行调控的、大面积的二维材料的光电探测器的结构。本发明的光电探测器具有结构简单、便于集成、可在室温下工作的优点,并且还可以通过在纳米尺度下简易且精确的改变铁电畴从而对传感器的响应波段进行调控。本发明提供的光电探测器可用于中远红外以及太赫兹波段。

Description

一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器
方法领域
本发明属于光通信技术领域,具体涉及一种光电探测器。
背景方法
太赫兹是介于毫米波与红外光之间的电磁波波谱区域,通常是指电磁波谱中频率从100GHz到10THz(1THz=1012Hz),对应的波长从3毫米到30微米。在过去的很长一段时间中,由于缺乏有效的太赫兹源和高灵敏度的探测器,这一频段一度被称为“太赫兹空白”。近年来,随着纳米科学领域和光电子学的不断发展与革新,新型的太赫兹源和探测器不断出现,以及太赫兹技术在安检、成像、物质鉴定等方面具有巨大的潜力,关于太赫兹的相关研究也得到重视。
二维材料是指电子仅可在两个维度的非纳米尺度(1-100nm)上自由运动的材料,其中石墨烯是一种典型的二维材料。石墨烯是单层碳原子以蜂窝状结构排列的二维材料,因其在光学、电学、热学、力学等诸多方面存在优异的性质,引起了全球研究者的广泛关注。石墨烯厚度仅为0.33nm,但与光有强的相互作用。未掺杂的石墨烯从近红外到可见光具有一致的响应,没有在某个波段具有独特的响应,对垂直入射的光的吸收率约为2.3%。但是,石墨烯对光的绝对吸收率不高且对光的波段不具有选择性。
发明内容
有鉴于此,本发明提出一种波长可调谐的基于图形化铁电畴的二维材料太赫兹波探测器,以铁酸铋(BFO)作为铁电材料、石墨烯作为二维材料的实例中,在远红外到太赫兹波段具有响应,且吸收波段可调。
本发明提供了一种基于铁电材料和石墨烯的光电探测器,包括:
以钛酸锶(STO)为基底,以镧锶锰氧(LSMO)为底电极,利用外延法生长一层BFO。
BFO为铁电材料,利用压电力显微镜(PFM)或水印法获得具有特定形状和大小的局域极化电畴。
单层石墨烯层,转移至上述极化的铁电材料BFO之上。
通过放置光源,即平面波,通过放置监视器,用于计算石墨烯材料的透射率、反射率、吸收率、以及表面电场强度和光生载流子数量。
更具体地,铁电材料以BFO为例,材料所使用的相关参数为Kumar等人所报道的参数。
更具体地,在模型中铁电畴的表现形式为石墨烯电化学势的变化,而铁电畴大小的变化体现在不同电化学势石墨烯的大小的不同。
本发明的优点主要有:
1.本发明证明了石墨烯可以在特定的铁电畴的影响下,体现出对某些波段具有响应的特性。
2.本发明器件具有对吸收光可调控的特性,可以通过改变铁电畴的形状以及大小来调控器件的光吸收的特性,并且器件结构简单,易于实现。
3.本发明方法具有通用性,适用于所有铁电材料的极化对石墨烯在光吸收方面的影响。
附图说明
图1为仿真器件的结构图以及BFO畴的形状和极化方向示意图
图2为在固定铁电畴的大小的条件下,器件光吸收波段和吸收率随石墨烯电化学势变化的曲线
图3为在固定石墨烯电化学势的条件下,器件光吸收波段和吸收率随铁电畴大小变化的曲线
图4为在铁电畴边长为100nm,石墨烯电化学势分别为0.001eV和0.4eV的条件下,在不同波段下的电场变化图
图5为在铁电畴边长为100nm,石墨烯电化学势分别为0.001eV和0.4eV的条件下,在特定波段的光生载流子的分布
具体实施方式
为了便于理解,下面结合附图对本发明作进一步的说明。显然,所描述的实例是本发明的一部分实例,而不是全部实例。基于本发明中的实例,本领域普通方法人员在没有做出创造性劳动的前提下获得的所有其他实例,都属于本发明的保护范围。
图1为仿真器件的结构图以及BFO局域电畴的形状和极化方向示意图。在图1中所示方位,从上至下分别为石墨烯、BFO、LSMO、STO。在图1左所示棋盘状为铁电畴的形状,其中浅色区域代表极化方向垂直石墨烯表面向上,后简述为方向向上,深色区域代表极化方向垂直石墨烯表面向下,后简述为方向向下。在利用时域有限差分法(FDTD)仿真中,具体体现在铁电畴对石墨烯电化学势上的变化。以每个极化方向相同的小方块的边长为100nm,设定极化方向向下区域所在的石墨烯的电化学势为0.001eV为例,仿真区域为长宽均为200nm的以上述区域为中心、高度为400nm的长方体为仿真区域。设置长宽边界为周期性边界条件,设置顶部和底部边界条件为完美匹配层(PML),将吸收所有电磁波。
图2为在固定每个极化方向相同的小方块的边长为100nm,并且将极化方向向上的区域的石墨烯的电化学势固定在0.001eV的情况下,极化方向向下区域的石墨烯的电化学势从0.1eV到0.7eV对应的光吸收曲线。可以看出不同铁电材料、在底电极施加栅压的情况下,器件对光吸收的波段具有可调控的性质。对应吸收波段从低频率往高频率偏移。
图3为在将极化方向向上区域和向下区域的石墨烯的电化学势分别固定在0.001eV和0.4eV的情况下,每个极化方向相同的小方块的边长为从100nm到1μm对应的光吸收曲线。在仿真中,应当相应地设置仿真区域、源和监视器的大小。可以看出小方块的边长越大,对应的吸收波段从高频率往低频率偏移。
图4中(a)(b)(c)分别对应的是在固定每个极化方向相同的电畴的边长为100nm,并且将极化方向向上区域和向下区域的石墨烯的电化学势固定在0.001eV和0.4eV的情况下,光频率在7.532THz、14.702THz和24.281THz对应的电场分布图。可以看出固定铁电畴的大小和石墨烯的电化学势的情况下,在特定波段中不同极化方向的铁电畴的交界处存在表面等离子共振效应,体现为极强的电场强度。图5中则代表在同等条件下,在14.702THz波段中的光生载流子的分布,其中颜色坐标中的数字代表的是以10为底的对数坐标。可以看出在光生载流子数量越多的情况下,对应的电场强度也越高。
由上述图片可知,在特定需求下,可以通过使用不同的铁电材料、设置不同的铁电畴的大小来改变器件对光的选择性吸收,并由此可推知,可通过集成各种大小不同的铁电使器件对某一个波段范围具有响应性。

Claims (2)

1.一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器,其特征在于:包括基底:氧化物钛酸锶(STO),底电极:镧锶锰氧(LSMO),铁电材料:铁酸铋(BFO),以及上层的二维材料:石墨烯;所述底电极LSMO置于STO之上;所述铁电材料置于STO之上,二维材料之下;所述石墨烯为大面积单层的石墨烯;其中图形化极化的铁电材料铁酸铋(BFO),其极化图案为周期性的极化方向向上的正方形畴和极化方向向下的正方形畴交错形成的棋盘状的图案。
2.按照权利要求1所述的一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器,其特征在于:所述的正方形畴,其边长范围在100nm-1μm之间。
CN202010183235.4A 2020-03-16 2020-03-16 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器 Active CN111370523B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010183235.4A CN111370523B (zh) 2020-03-16 2020-03-16 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010183235.4A CN111370523B (zh) 2020-03-16 2020-03-16 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器

Publications (2)

Publication Number Publication Date
CN111370523A CN111370523A (zh) 2020-07-03
CN111370523B true CN111370523B (zh) 2023-05-12

Family

ID=71207598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010183235.4A Active CN111370523B (zh) 2020-03-16 2020-03-16 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器

Country Status (1)

Country Link
CN (1) CN111370523B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113985500B (zh) * 2021-09-27 2022-10-28 上海师范大学 一种基于钛酸锶球壳结构的可调太赫兹波超材料吸收器
CN114093977A (zh) * 2021-11-25 2022-02-25 成都大学 一种低功耗可调谐室温中红外光电探测器及制作方法
CN114038927B (zh) * 2021-12-01 2023-12-29 电子科技大学 一种高响应的铁电集成石墨烯等离子体太赫兹探测器
WO2023112751A1 (ja) * 2021-12-13 2023-06-22 三菱電機株式会社 電磁波検出器及び電磁波検出器アレイ
CN114300569B (zh) * 2021-12-28 2024-04-30 成都大学 一种双波段可调谐室温红外光电探测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795411A (zh) * 2015-04-15 2015-07-22 重庆大学 栅控石墨烯纳米带阵列THz探测器及调谐方法
CN104916732A (zh) * 2014-03-12 2015-09-16 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯太赫兹波探测器及其制作方法
CN106129167A (zh) * 2016-07-20 2016-11-16 电子科技大学 一种石墨烯太赫兹探测器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016140946A1 (en) * 2015-03-02 2016-09-09 University Of Maryland, College Park Plasmon-enhanced terahertz graphene-based photodetector and method of fabrication
CN110416349B (zh) * 2019-07-10 2024-05-07 中国科学院上海技术物理研究所 一种可调控的室温石墨烯太赫兹探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916732A (zh) * 2014-03-12 2015-09-16 中国科学院苏州纳米技术与纳米仿生研究所 石墨烯太赫兹波探测器及其制作方法
CN104795411A (zh) * 2015-04-15 2015-07-22 重庆大学 栅控石墨烯纳米带阵列THz探测器及调谐方法
CN106129167A (zh) * 2016-07-20 2016-11-16 电子科技大学 一种石墨烯太赫兹探测器及其制备方法

Also Published As

Publication number Publication date
CN111370523A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN111370523B (zh) 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器
Huang et al. Amorphous MoS2 photodetector with ultra-broadband response
Tang et al. Scalable fabrication of infrared detectors with multispectral photoresponse based on patterned colloidal quantum dot films
Yu et al. A novel high-performance self-powered UV-vis-NIR photodetector based on a CdS nanorod array/reduced graphene oxide film heterojunction and its piezo-phototronic regulation
US8507890B1 (en) Photoconversion device with enhanced photon absorption
Mukherjee et al. Solution-processed, hybrid 2D/3D MoS2/Si heterostructures with superior junction characteristics
Fang et al. Self-powered ultrabroadband photodetector monolithically integrated on a PMN–PT ferroelectric single crystal
Liu et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry
Cai et al. Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction
Liu et al. Ultra-sensitive near-infrared graphene photodetectors with nanopillar antennas
Kumar et al. Recent advances in UV photodetectors based on 2D materials: A review
Guo et al. WSe2/MoS2 van der Waals heterostructures decorated with Au nanoparticles for broadband plasmonic photodetectors
Panwar et al. Self-powered ZnO-based pyro-phototronic photodetectors: impact of heterointerfaces and parametric studies
Seidel et al. Shedding light on nanoscale ferroelectrics
Guo et al. Simulation of tuning graphene plasmonic behaviors by ferroelectric domains for self-driven infrared photodetector applications
CN114038927B (zh) 一种高响应的铁电集成石墨烯等离子体太赫兹探测器
Guo et al. Realization of in-plane GaN microwire array based ultraviolet photodetector with high responsivity on a Si (100) substrate
Singh et al. Highly Responsive Near-Infrared Si/Sb2Se3 Photodetector via Surface Engineering of Silicon
Wang et al. Layer-dependent ultrafast dynamics of α-In2Se3 nanoflakes
Hu et al. Improved photoelectric performance with self-powered characteristics through TiO2 surface passivation in an α-Ga2O3 nanorod array deep ultraviolet photodetector
Yang et al. Bi2S3 Electron Transport Layer Incorporation for High-Performance Heterostructure HgTe Colloidal Quantum Dot Infrared Photodetectors
Zhang et al. Narrowband photoresponse of a self-powered CuI/SrTiO 3 purple light detector with an ultraviolet-shielding effect
Liu et al. ReS2 on GaN Photodetector Using H+ Ion-Cut Technology
Elsharif The effect of the electron tunneling on the photoelectric hot electrons generation in metallic-semiconductor nanostructures
Sun et al. Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant