CN114300569B - 一种双波段可调谐室温红外光电探测器 - Google Patents

一种双波段可调谐室温红外光电探测器 Download PDF

Info

Publication number
CN114300569B
CN114300569B CN202111624685.3A CN202111624685A CN114300569B CN 114300569 B CN114300569 B CN 114300569B CN 202111624685 A CN202111624685 A CN 202111624685A CN 114300569 B CN114300569 B CN 114300569B
Authority
CN
China
Prior art keywords
graphene
source
film
ferroelectric film
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111624685.3A
Other languages
English (en)
Other versions
CN114300569A (zh
Inventor
郭俊雄
陈建波
林霖
李尚栋
吴琬晶
蔡吉
叶菁华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu University
Original Assignee
Chengdu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu University filed Critical Chengdu University
Priority to CN202111624685.3A priority Critical patent/CN114300569B/zh
Publication of CN114300569A publication Critical patent/CN114300569A/zh
Application granted granted Critical
Publication of CN114300569B publication Critical patent/CN114300569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种双波段可调谐室温红外光电探测器,包括导线、源/漏电极、石墨烯、衬底、底电极薄膜和铁电薄膜,所述源/漏电极的顶部为接触金属电极;所述石墨烯与铁电薄膜接触,并且接收被检测的红外光信号;所述源/漏电极与石墨烯接触,并且收集石墨烯接收红外光信号后产生的正负电荷,且通过连接导线形成源/漏电流,本发明涉及红外光电探测器技术领域。该双波段可调谐室温红外光电探测器,使用石墨烯,可与基底以范德华力接触,无需考虑晶格匹配问题,无需复杂的外延生长工艺,大大降低了生产成本,本发明无需对石墨烯图形化,避免了石墨烯加工过程中对材料的损伤及不光滑边缘的产生,简化了加工流程。

Description

一种双波段可调谐室温红外光电探测器
技术领域
本发明涉及红外光电探测器技术领域,具体为一种双波段可调谐室温红外光电探测器。
背景技术
多频谱光电探测系统可以从复杂场景中区分绝对温度和特征信号的能力,还能够通过信号处理算法提高灵敏度,广泛应用于预警、遥感和航空航天等领域,特别地,双波段光电探测器可以屏蔽杂散信息,例如红外区域的背景干扰,然而,现有的多波段红外探测所使用的成像系统冗杂,在空间对准、尺寸缩小和功耗等方面仍面临着诸多挑战,尽管基于HgCdTe的量子阱探测器等替代设备能够使用顺序和同步模式感应中红外波段的光,但它们依赖于昂贵而复杂的生长方法(分子束外延、液相外延和金属有机化学气相沉积),且不可避免地面临极为严苛冷却需求。
最近,新兴的二维材料被用于光电领域,包括显示电极、激光器、光调制器、光伏和等离激元器件,在诸多基于二维材料的光电子器件中,基于石墨烯的等离激元光电探测器因其独特的特性而得到了极大的发展,首先,无带隙的石墨烯使电荷载流子能够产生超宽光谱,可从紫外线延伸到太赫兹频率,第二,石墨烯通过静电掺杂等方式改变载流子行为,第三,可动态调谐的石墨烯表面等离激元的激发能量比贵金属低得多,效率也比贵金属高,第四,因其可以范德华力与任何基底接触,无需复杂的空间对准和昂贵的生长技术,第五,不需要传统多频谱红外系统的冷却设备,基于石墨烯表面等离激元的红外探测器在常温下即可工作,然而,目前所报道的石墨烯等离激元的红外测器的通常基于图形化的石墨烯阵列,其不可避免地受到无序的边缘影响,降低了器件的性能,尽管已经开发出将贵金属等离激元纳米结构与石墨烯集成的替代方法,但通过改变纳米结构的几何形状或施加的栅极电压,它只能在可见光和近红外范围(0.3~3μm)内实现可调谐的选择性滤光和探测。
此外,目前所报道的石墨烯等离激元光电探测器主要关注单波段可调谐性,且面临着高能耗和复杂的图形化工艺等限制,与实际工业要求不相符合。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种双波段可调谐室温红外光电探测器,解决了上述背景技术中所提出的问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种双波段可调谐室温红外光电探测器,包括导线、源/漏电极、石墨烯、衬底、底电极薄膜和铁电薄膜,所述源/漏电极的顶部为接触金属电极;
所述石墨烯与铁电薄膜接触,并且接收被检测的红外光信号;
所述源/漏电极与石墨烯接触,并且收集石墨烯接收红外光信号后产生的正负电荷,且通过连接导线形成源/漏电流。
优选的,所述石墨烯为单层石墨烯,所述红外光源波长为5~50μm,所述源/漏电极为金属电极,并且优选金、钛、钯、镍金属电极,所述导线为金属掉线,并且优选直径为1μm的金、铝导线,所述铁电薄膜为高质量在衬底上外延生长的铁电薄膜及其异质结构。
优选的,所述铁电薄膜为铁酸铋、锆钛酸铅、钛酸钡、铌酸锂、钽铌酸钾、钛酸铅、或钽酸锶铋,并且铁电薄膜的厚度为25nm。
优选的,所述底电极薄膜为镧锶锰氧、钌酸锶或镍酸镧,并且底电极薄膜厚度为25nm,所述衬底为钛酸锶或铝酸镧,所述衬底的厚度为500μm,并且周期极化的铁电薄膜图案为圆环状
优选的,所述底电极薄膜为形成在衬底上的底电极薄膜,所述铁电薄膜为形成在底电极上的周期极化的铁电薄膜铁电薄膜。
(三)有益效果
本发明提供了一种双波段可调谐室温红外光电探测器具备以下有益效果:
(1)、该双波段可调谐室温红外光电探测器,使用石墨烯,可与基底以范德华力接触,无需考虑晶格匹配问题,无需复杂的外延生长工艺,大大降低了生产成本。
(2)、该双波段可调谐室温红外光电探测器,本发明无需对石墨烯图形化,避免了石墨烯加工过程中对材料的损伤及不光滑边缘的产生,简化了加工流程。
(3)、该双波段可调谐室温红外光电探测器,本发明无需复杂纳米金属阵列的制备,简化了器件的制造工艺,降低了大规模生产的成本。
(4)、该双波段可调谐室温红外光电探测器,本发明可采用功函数有差异的金属电极作为源/漏接触电极,可实现零偏压室温探测,大大降低了器件的功耗和制造成本。
(5)、该双波段可调谐室温红外光电探测器,无需对准设备,原位实现可调谐红外探测,避免了复杂的加工工艺。
附图说明
图1为本发明中结构的主视图;
图2为本发明中结构的俯视图
图3为本发明中周期极化的圆环状铁电薄膜俯视示意图;
图4为本发明中周期为200nm,内外圆半径分别为20nm和30nm的器件费米能级与光响应的共振峰位置关系图;
图5为本发明中周期为200nm,石墨烯费米能级为0.54eV,内、外圆半径之比为2:3的器件外圆半径与光响应的共振峰位置关系图;
图6为本发明中周期为200nm,石墨烯费米能级为0.54eV,外圆半径为60nm,器件内圆半径与与光响应的共振峰位置关系图;
图7为本发明中石墨烯费米能级为0.54eV,内、外圆半径比为2:3,外圆与周期为3:10的器件周期与光响应的共振峰位置关系图;
图8为本发明中器件光响应度与共振峰位置关系图。
图中,1-源/漏电极、2-石墨烯、3-衬底、4-底电极薄膜、5-铁电薄膜。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一(请参阅图4)
(1)、选用铁电薄膜为铁酸铋(BFO)、底电极为镧锶锰氧(LSMO)、衬底为钛酸锶(STO);
(2)、BFO厚度为25nm;LSMO厚度为25nm,STO厚度为500μm;
(3)、将铁电薄膜进行周期极化,图案为周期环状,内圆半径为20nm,外圆半径为30nm,周期为200nm,极化向下的铁电畴所掺杂的石墨烯费米能级为0.1~0.7eV,可实现6.1~14.4μm和25.1~44.9μm两个波段的可调谐探测。
实施例二(请参阅图5)
(1)、选用铁电薄膜为铁酸铋(BFO)、底电极为镧锶锰氧(LSMO)、衬底为钛酸锶(STO);
(2)、BFO厚度为25nm;LSMO厚度为25nm,STO厚度为500μm;
(3)、将铁电薄膜进行周期极化,图案为周期环状,内圆半径与外圆半径之比为2:3,外圆半径为15~90nm,周期为200nm,极化向下的铁电畴所掺杂的石墨烯费米能级为0.54eV,可实现9.9~16.3μm和20.8~35.2μm两个波段的可调谐探测。
实施例三(请参阅图6)
(1)、选用铁电薄膜为铁酸铋(BFO)、底电极为镧锶锰氧(LSMO)、衬底为钛酸锶(STO);
(2)、BFO厚度为25nm;LSMO厚度为25nm,STO厚度为500μm;
(3)、将铁电薄膜进行周期极化,图案为周期环状,外圆半径为60nm,内圆半径为10~50nm,周期为200nm,极化向下的铁电畴所掺杂的石墨烯费米能级为0.54eV,可实现5.4~8.8μm和17.3~39.7μm两个波段的可调谐探测。
实施例四(请参阅图7)
(1)、选用铁电薄膜为铁酸铋(BFO)、底电极为镧锶锰氧(LSMO)、衬底为钛酸锶(STO);
(2)、BFO厚度为25nm;LSMO厚度为25nm,STO厚度为500μm;
(3)、将铁电薄膜进行周期极化,图案为周期环状,内圆半径与外圆半径的比例为2:3,外圆半径与周期之比为3:10,周期为50~800nm,极化向下的铁电畴所掺杂的石墨烯费米能级为0.54eV,可实现3.7~13.6μm和15.1~52.1μm两个波段的可调谐探测。
实施例五(请参阅图8)
(1)、选用铁电薄膜为铁酸铋(BFO)、底电极为镧锶锰氧(LSMO)、衬底为钛酸锶(STO);
(2)、BFO厚度为25nm;LSMO厚度为25nm,STO厚度为500μm;
(3)、将铁电薄膜进行周期极化,图案为周期环状,内圆半径为40nm,外圆半径为60nm,周期为200nm,极化向下的铁电畴所掺杂的石墨烯费米能级为0.54eV;
(4)、进一步地,通过计算器件的探测性能,理论上在5~50μm范围内的响应度可达到667~1080A/W。
工作原理
本发明通过调整周期极化铁电畴的圆环状图案与铁电畴极化场大小,以实现器件在5~50μm范围内的双波段可调谐探测,周期极化铁电畴的周期为,外圆与内圆的半径比为,外圆外径为,内圆半径为,通过铁电畴极化场大小调节的石墨烯费米能级为0.1~0.7eV。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (3)

1.一种双波段可调谐室温红外光电探测器,包括导线、源/漏电极(1)、石墨烯(2)、衬底(3)、底电极薄膜(4)和铁电薄膜(5),其特征在于:所述源/漏电极(1)的顶部为接触金属电极;
所述石墨烯(2)与铁电薄膜(5)接触,并且接收被检测的红外光信号;
所述源/漏电极(1)与石墨烯(2)接触,并且收集石墨烯(2)接收红外光信号后产生的正负电荷,且通过连接导线形成源/漏电流;
选用铁电薄膜为铁酸铋(BFO)、底电极为镧锶锰氧(LSMO)、衬底为钛酸锶(STO);
BFO厚度为25nm;LSMO厚度为25nm,STO厚度为500μm;
将铁电薄膜进行周期极化,图案为周期环状,内圆半径为20nm,外圆半径为30nm,周期为200nm,极化向下的铁电畴所掺杂的石墨烯费米能级为0.1~0.7eV,可实现6.1~14.4μm和25.1~44.9μm两个波段的可调谐探测。
2.根据权利要求1所述的一种双波段可调谐室温红外光电探测器,其特征在于:所述石墨烯(2)为单层石墨烯,所述红外光源波长为5~50μm,所述源/漏电极(1)为金、钛、钯、镍金属电极,所述导线为直径为1μm的金、铝导线,所述铁电薄膜(5)为在衬底(3)上外延生长的铁电薄膜(5)及其异质结构。
3.根据权利要求1所述的一种双波段可调谐室温红外光电探测器,其特征在于:所述底电极薄膜(4)为形成在衬底(3)上的底电极薄膜(4),所述铁电薄膜(5)为形成在底电极上的周期极化的铁电薄膜(5)。
CN202111624685.3A 2021-12-28 2021-12-28 一种双波段可调谐室温红外光电探测器 Active CN114300569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111624685.3A CN114300569B (zh) 2021-12-28 2021-12-28 一种双波段可调谐室温红外光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111624685.3A CN114300569B (zh) 2021-12-28 2021-12-28 一种双波段可调谐室温红外光电探测器

Publications (2)

Publication Number Publication Date
CN114300569A CN114300569A (zh) 2022-04-08
CN114300569B true CN114300569B (zh) 2024-04-30

Family

ID=80971836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111624685.3A Active CN114300569B (zh) 2021-12-28 2021-12-28 一种双波段可调谐室温红外光电探测器

Country Status (1)

Country Link
CN (1) CN114300569B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008083445A1 (en) * 2007-01-12 2008-07-17 The Australian National University Optical analysis system and method
CN108389874A (zh) * 2018-01-25 2018-08-10 电子科技大学 一种局域场增强型宽光谱高响应的光电探测器
CN111370523A (zh) * 2020-03-16 2020-07-03 电子科技大学 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器
CN113823702A (zh) * 2021-09-26 2021-12-21 中国科学院上海技术物理研究所 混合维度范德华异质结室温双色红外探测器及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465354B2 (en) * 2005-03-08 2008-12-16 National University Of Singapore Patterned ferroelectric thin films for microwave devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008083445A1 (en) * 2007-01-12 2008-07-17 The Australian National University Optical analysis system and method
CN108389874A (zh) * 2018-01-25 2018-08-10 电子科技大学 一种局域场增强型宽光谱高响应的光电探测器
CN111370523A (zh) * 2020-03-16 2020-07-03 电子科技大学 一种基于图形化铁电畴的石墨烯太赫兹波可调谐探测器
CN113823702A (zh) * 2021-09-26 2021-12-21 中国科学院上海技术物理研究所 混合维度范德华异质结室温双色红外探测器及制备方法

Also Published As

Publication number Publication date
CN114300569A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
Tan et al. Emerging technologies for high performance infrared detectors
Wu et al. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector
Zhao et al. Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire
Dhanabalan et al. Present perspectives of broadband photodetectors based on nanobelts, nanoribbons, nanosheets and the emerging 2D materials
Wang et al. Balanced performance for β-Ga2O3 solar blind photodetectors: The role of oxygen vacancies
US9444002B2 (en) Graphene transistor optical detector based on metamaterial structure and application thereof
Hsu et al. Tunable UV-and visible-light photoresponse based on p-ZnO nanostructures/n-ZnO/glass peppered with Au nanoparticles
Guo et al. Ferro-pyro-phototronic effect in monocrystalline 2D ferroelectric perovskite for high-sensitive, self-powered, and stable ultraviolet photodetector
Wadhwa et al. A strategic review of recent progress, prospects and challenges of MoS2-based photodetectors
KR20140095553A (ko) 전자기 에너지 수집 장치, 시스템 및 방법
Tyagi et al. Fabrication of an efficient GLAD-assisted p-NiO nanorod/n-ZnO thin film heterojunction UV photodiode
Cai et al. Strain-modulated photoelectric responses from a flexible α-In2Se3/3R MoS2 heterojunction
CN110335908B (zh) 异质结分波段探测器及其制备方法与应用
CN111640817B (zh) 一种悬空横向双异质结光探测器及其制作方法
Li et al. Broadband InSb/Si heterojunction photodetector with graphene transparent electrode
Wang et al. Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices
Yadav et al. Review of recent progress, challenges, and prospects of 2D materials-based short wavelength infrared photodetectors
Hu et al. High-sensitivity and fast-speed UV photodetectors based on asymmetric nanoporous-GaN/graphene vertical junction
Alavirad et al. Surface plasmon enhanced photodetectors based on internal photoemission
Dhyani et al. High speed MSM photodetector based on Ge nanowires network
Yadav et al. Double Schottky metal–semiconductor–metal based GaN photodetectors with improved response using laser MBE technique
Hu et al. Improved photoelectric performance with self-powered characteristics through TiO2 surface passivation in an α-Ga2O3 nanorod array deep ultraviolet photodetector
CN114300569B (zh) 一种双波段可调谐室温红外光电探测器
You et al. Nanoscale AgInTe2/Si truncated quasitetrahedrons for heterostructured photodetectors
Wu et al. High-Performance Self-Driven Single GaN-Based p–i–n Homojunction One-Dimensional Microwire Ultraviolet Photodetectors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant