CN111356728A - 包含吸热颗粒的聚合物基质复合材料及其制备方法 - Google Patents

包含吸热颗粒的聚合物基质复合材料及其制备方法 Download PDF

Info

Publication number
CN111356728A
CN111356728A CN201880073928.9A CN201880073928A CN111356728A CN 111356728 A CN111356728 A CN 111356728A CN 201880073928 A CN201880073928 A CN 201880073928A CN 111356728 A CN111356728 A CN 111356728A
Authority
CN
China
Prior art keywords
polymer
solvent
matrix composite
polymer matrix
phase separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880073928.9A
Other languages
English (en)
Inventor
布兰东·A·巴特林
德里克·J·德纳
保尔·T·海因斯
小克林顿·P·沃勒
萨蒂德尔·K·纳亚尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN111356728A publication Critical patent/CN111356728A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/35Composite foams, i.e. continuous macromolecular foams containing discontinuous cellular particles or fragments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • C08J2201/0522Inducing phase separation by thermal treatment, e.g. cooling a solution the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/262Alkali metal carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种聚合物基质复合材料,该聚合物基质复合材料包含多孔聚合物网络;以及分布在聚合物网络结构内的多个吸热颗粒,其中基于吸热颗粒和所述聚合物(不包括任何溶剂)的总重量计,所述吸热颗粒在15重量%至99重量%的范围内存在;并且其中所述聚合物基质复合材料的吸热大于200J/g;及其制备方法。所述聚合物基质复合材料可用作例如填料、热能吸收剂和无源电池安全部件。

Description

包含吸热颗粒的聚合物基质复合材料及其制备方法
相关申请的交叉引用
本申请要求2017年11月16日提交的美国临时专利申请号62/587054的权益,该临时专利申请的公开内容全文以引用方式并入本文。
背景技术
例如,集成电路、有源和无源部件、光盘驱动器、电池、马达在正常使用期间产生热量。为了延长装置长期以及连续的使用,需耗散所产生的热量。含有热管的翅片式金属块和散热器通常用作热沉,以耗散装置在正常使用期间产生的热量。热界面材料可用于在热源和散热器之间提供热连接。在一些系统中,诸如在电池组中,如果存在短路或其他故障,则单个电池单元可能发生热失控,从而导致单元爆炸。一个单元热失控常常加热相邻的电池,从而导致它们也发生热失控。
管理电池系统的充电和放电通常经由电子电池管理系统来完成。热管理通常经由热传递材料以及主动和被动冷却与空气或热传递液体界面的组合来进行。
多孔膜和膜一般经由相分离方法制备,并且因此,通常具有比泡沫更小、更均匀的孔径和不同的孔形态。多孔膜上的孔通常是开放的,使得气体、液体或蒸气可从一个主表面穿过开放孔到达另一个主表面。它们可经由若干相分离方法制备,但最通常经由溶剂诱导相分离或热诱导相分离来制备。
已知吸热材料在某些温度下吸收热量。这通常伴有相变机制。
需要用于在某些温度下吸收热量的替代材料和方法。
发明内容
在一个方面,本公开描述了一种聚合物基质复合材料,该聚合物基质复合材料包含:
多孔聚合物网络;以及
分布在聚合物网络结构内的多个吸热颗粒(即,包含结合水的颗粒,其中所述结合水在至少90℃的温度下解吸),其中基于吸热颗粒和所述聚合物(不包括任何溶剂)的总重量计,所述吸热颗粒在15重量%至99重量%(在一些实施方案中,25重量%至98重量%、50重量%至98重量%、75重量%至98重量%、或甚至93重量%至97重量%)的范围内存在;并且其中所述聚合物基质复合材料具有大于200J/g的吸热。如本文所用,“吸热颗粒”是指包含结合水的颗粒,其中结合水在至少90℃的温度下解吸。
在一些实施方案中,聚合物基质复合材料所吸收的能量通过压缩聚合物基质复合材料从而增加聚合物基质复合材料的密度来提高。
在另一方面,本公开描述了制备本文所述的聚合物基质复合材料的第一方法,所述方法包括:
将热塑性聚合物、溶剂和多个吸热颗粒组合(例如混合或共混)以提供浆液;
使浆液成形为制品(例如层);
在环境中加热制品以在制品中保留基于制品中溶剂的重量计至少90重量%(在一些实施方案中,至少91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%、99重量%或甚至至少99.5重量%)的溶剂,并且使基于热塑性聚合物的总重量计至少50%(在一些实施方案中,至少55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%,或甚至100%)的热塑性聚合物溶解;以及
诱导所述热塑性聚合物与所述溶剂相分离,以提供所述聚合物基质复合材料。
在另一方面,本公开描述了制备本文所述的聚合物基质复合材料的第二方法,所述方法包括:
将热塑性聚合物、用于所述热塑性聚合物的溶剂和多个吸热颗粒组合(例如,混合或共混),以形成吸热颗粒在可混溶的热塑性聚合物-溶剂溶液中的悬浮液;
诱导所述热塑性聚合物与所述溶剂相分离;以及
去除所述溶剂的至少一部分,以提供所述聚合物基质复合材料。
如本文所用,“可混溶的”是指物质以所有比例混合(即,以任何浓度彼此完全溶解)形成溶液的能力,其中对于某些溶剂-聚合物体系,可需要热使聚合物与溶剂混溶。相反,如果很大一部分没有形成溶液,则物质是不混溶的。例如,丁酮在水中是显著可溶的,但这两种溶剂是不可混溶的,因为它们不能以所有比例溶解。
如本文所用,“相分离”是指其中颗粒均匀地分散在均相聚合物-溶剂溶液中的过程,所述均相聚合物-溶剂溶液(例如通过温度或溶剂浓度的变化)转变成连续的三维聚合物基质复合材料。在第一方法中,在聚合物变得可与溶剂混溶之前形成期望制品,并且相分离是热诱导相分离(TIPS)方法。在第二方法中,聚合物可在形成期望制品之前与溶剂混溶。在第二方法中,通过使用湿法或干法的溶剂诱导相分离(SIPS)或热诱导相分离方法实现相分离。
在SIPS湿法中,将溶解聚合物的溶剂与非溶剂交换以诱导相分离。所述体系中的新的交换溶剂成为聚合物的孔形成剂。在SIPS干法中,蒸发溶解聚合物的溶剂以诱导相分离。在干法中,还通过溶解聚合物的溶剂使非溶剂溶解在溶液中。当溶解溶剂蒸发时,聚合物的这种非溶剂变成聚合物的孔形成剂。由于不使用附加的交换液体,因此该方法被视为“干法”。非溶剂通常也是挥发性的,但是沸点比溶剂低至少30℃。
在TIPS方法中,使用升高的温度使非溶剂变成聚合物的溶剂,然后降低温度,使溶剂返回到用于聚合物的非溶剂中。有效地,当去除足够的热时,热溶剂变成孔形成剂,并且失去溶剂化能力。用于热相分离方法中的溶剂可以是挥发性或非挥发性的。
出乎意料的是,在制备聚合物基质复合材料的第一方法中,相对高的颗粒载量允许制备可成型为层的浆液,该浆液在加热溶剂以保持与聚合物可混溶时保持其形式。所用的溶剂通常是挥发性的,并且随后蒸发。在使用TIPS方法制备聚合物基质复合材料的第二方法中,所用溶剂通常是非挥发性的。在通过湿法或干法SIPS方法制备聚合物基质复合材料的第二方法中,溶剂对于湿法通常是非挥发性的,而对于干法是挥发性的。
通常,基于颗粒和粘结剂的体积,可在传统颗粒填充的复合材料(致密聚合物膜、粘合剂等)中实现的最大颗粒负载不超过约40体积%至60体积%。将超过60体积%的颗粒掺入到传统的颗粒填充的复合材料中通常是不可实现的,因为此类高颗粒载量的材料不能经由涂布或挤出方法来加工并且/或者所得复合材料变得非常易碎。传统的复合材料通常还用粘结剂完全包封颗粒,从而防止进入颗粒表面并且最小化潜在的颗粒与颗粒接触。通常,吸热颗粒填充的复合材料所吸收的能量随着颗粒负载的增加而增加,从而使得可期望更高的颗粒负载。令人惊奇的是,用本文所述的方法获得的高含量的溶剂和相分离形态使得能够以相对较低量的高分子量粘结剂实现相对较高的颗粒负载。多通孔的相分离形态还允许样品在相对较低至相对较高的颗粒浓度下是可透气的。高颗粒载量也有助于最小化可在相分离期间形成的薄无孔聚合物层的形成。此外,本文所述的聚合物基质复合材料是相对柔性的,并且倾向于不脱落颗粒。虽然不想受到理论的限制,但据信本文所述的聚合物基质复合材料的实施方案的另一个优点在于,颗粒不用粘结剂完全涂布,从而能够实现高度的颗粒表面接触,而不会由于粘结剂的多孔性质而掩蔽。即使在升高的温度(例如,135℃)下,高分子量粘结剂也不易于在不存在溶剂的情况下流动。
包含吸热颗粒的聚合物基质复合材料可用作例如填料、热能吸收剂和无源电池安全部件。
附图说明
图1为本文所述的示例性聚合物基质复合材料的示意图。
图2为本文所述的另一种示例性聚合物基质复合材料的示意图。
图3为本文所述的另一种示例性聚合物基质复合材料的示意图。
图4-7示出了本文所述的示例性聚合物基质复合材料(分别为实施例1、2、3和4)的横截面的扫描电镜(SEM)显微图。
具体实施方式
基于吸热颗粒和聚合物(不包括任何溶剂)的总重量计,所述吸热颗粒在15重量%至99重量%(在一些实施方案中,15重量%至99重量%、25重量%至98重量%、50重量%至98重量%、75重量%至98重量%、或甚至93重量%至97重量%)的范围内存在。
示例性吸热颗粒包含吸热材料,所述吸热材料包含固相,所述固相在加热时转变成固相和气相,导致吸热。在一些实施方案中,颗粒在吸收期间分解。“吸热材料”是指吸收热量的化合物,通常通过释放水合水、通过经历吸收热量的相变(即,液体到气体)、或通过其中反应需要发生净热量吸收的其他化学变化。通常,吸热颗粒的吸热为至少200J/g。示例性吸热颗粒包含以下中的至少一种:碳酸氢钠、二水合硫酸钙、三水合铝、八水合硫酸镁、草酸铵或硅酸钠。
吸热颗粒的示例性尺寸在数百纳米至数百微米大小的范围内。吸热颗粒的示例性形状包括不规则、板状、针状、球形形状,以及附聚形式。附聚物的尺寸可在例如几微米至最多几毫米(包括几毫米)的范围内。可将颗粒混合以具有多峰尺寸分布,其可例如允许最佳堆积密度。
在一些实施方案中,吸热颗粒的平均粒径(最长尺寸的平均长度)在300nm至700微米的范围内(在一些实施方案中,在5微米至300微米、5微米至150微米、或甚至1微米到300微米的范围内)。
在一些实施方案中,吸热颗粒包括不同(即,不同的组成或微结构,或粒度)的第一吸热颗粒和第二吸热颗粒。在一些实施方案中,第一吸热颗粒包含碳酸氢钠、二水合硫酸钙、三水合铝、八水合硫酸镁、草酸铵或硅酸钠,并且其中第二吸热颗粒包含碳酸氢钠、二水合硫酸钙、三水合铝、八水合硫酸镁、草酸铵或硅酸钠。
在一些实施方案中,第一吸热颗粒具有在300nm至700微米范围内(在一些实施方案中,在5微米至300微米、5微米至150微米、或甚至1微米至300微米范围内)的平均粒度(最长尺寸的平均长度),并且第二吸热颗粒具有在300nm至700微米范围内(在一些实施方案中,在5微米至300微米、5微米至150微米、或甚至1微米至300微米范围内)的平均粒度(最长尺寸的平均长度)。
在一些实施方案中,基于第一吸热颗粒和第二吸热颗粒的总重量计,吸热颗粒在15重量%至99重量%的范围内(在一些实施方案中,在25重量%至98重量%、50重量%至98重量%、75重量%至98重量%、或甚至93重量%至97重量%的范围内)存在,并且第二吸热颗粒在15重量%至99重量%的范围内(在一些实施方案中,在25重量%至98重量%、50重量%至98重量%、75重量%至98重量%、或甚至93重量%至97重量%的范围内)存在。
本文所述的原样制备的聚合物基质复合材料(即,在任何压缩之前)通常具有至少0.3g/cm3(在一些实施方案中,在0.3g/cm3至2g/cm3、0.3g/cm3至1.5g/cm3、或甚至0.3g/cm3至1g/cm3的范围内)的密度。
在一些实施方案中,压缩的聚合物基质复合材料具有0.3g/cm3至2.5g/cm3、或甚至1.5g/cm3至4g/cm3的密度。
在一些实施方案中,本文所述的聚合物基质复合材料具有至少5%(在一些实施方案中,至少10%、20%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%或甚至至少90%;在一些实施方案中,在25%至90%的范围内)的孔隙率。
聚合物网络结构可被描述为多孔聚合物网络或多孔相分离的聚合物网络。一般来讲,(原样制备的)多孔聚合物网络包括互连的多孔聚合物网络结构,所述结构包含多个互连形态(例如,原纤、结节、节点、开孔、闭孔、叶状花边、股线、节点、球体或蜂窝结构中的至少一种)。互连的聚合结构可直接粘附到颗粒的表面,并充当颗粒的粘结剂。就这一点而言,相邻颗粒(例如,颗粒或附聚物颗粒)之间的空间可包括多孔聚合物网络结构,而不是固体基质材料,从而提供期望的孔隙率。
在一些实施方案中,聚合物网络结构可包括三维网状结构,其包括聚合原纤的互连网络。在一些实施方案中,单个原纤的平均宽度在10nm至100nm的范围内(在一些实施方案中,在100nm至500nm的范围内,或甚至在500nm至5微米的范围内)。
在一些实施方案中,颗粒分散在聚合物网络结构内,使得颗粒(例如,单个颗粒或单个附聚物颗粒)的单个单元的外表面大部分不与聚合物网络结构接触或未被涂布。就这一点而言,在一些实施方案中,基于单个颗粒的外表面的总表面积,聚合物网络结构在单个颗粒的外表面上的平均面积覆盖百分比(即,与聚合物网络结构直接接触的外表面面积的百分比)不大于50%(在一些实施方案中,不大于40%、30%、25%、20%、10%、5%或甚至不大于1%)。
在一些实施方案中,聚合物网络结构不渗透各个颗粒的内部孔隙或内表面区域(例如,各个颗粒或各个附聚物颗粒大部分未被聚合物网络结构接触或涂布)。
在一些实施方案中,聚合物网络结构可包括至少一种热塑性聚合物,或者基本上由其组成或由其组成。示例性热塑性聚合物包括以下中的至少一种:聚氨酯、聚酯(例如聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯和聚乳酸)、聚酰胺(例如尼龙6、尼龙6,6、尼龙12和多肽)、聚醚(例如聚环氧乙烷和聚环氧丙烷)、聚碳酸酯(例如双酚A聚碳酸酯)、聚酰亚胺、聚砜、聚醚砜、聚苯醚、聚丙烯酸酯(例如由包含丙烯酸酯官能团的单体的加成聚合形成的热塑性聚合物)、聚甲基丙烯酸酯(例如由包含甲基丙烯酸酯官能团的单体的加成聚合形成的热塑性聚合物)、聚烯烃(例如聚乙烯和聚丙烯)、苯乙烯和苯乙烯基无规和嵌段聚合物、氯化聚合物(例如聚氯乙烯)、含氟聚合物(例如聚偏二氟乙烯;四氟乙烯、六氟丙烯和偏二氟乙烯的共聚物;乙烯和四氟乙烯的共聚物;六氟丙烯;和聚四氟乙烯),以及乙烯和氯三氟乙烯的共聚物。在一些实施方案中,热塑性聚合物包括均聚物或共聚物(例如嵌段共聚物或无规共聚物)。在一些实施方案中,热塑性聚合物包括至少两种热塑性聚合物类型的混合物(例如聚乙烯和聚丙烯的混合物或聚乙烯和聚丙烯酸酯的混合物)。在一些实施方案中,聚合物可为聚乙烯(例如超高分子量聚乙烯)、聚丙烯(例如超高分子量聚丙烯)、聚乳酸、聚(乙烯共氯三氟乙烯)和聚偏二氟乙烯中的至少一种。在一些实施方案中,热塑性聚合物为单一热塑性聚合物(即它不是至少两种热塑性聚合物类型的混合物)。在一些实施方案中,热塑性聚合物基本上由聚乙烯(例如超高分子量聚乙烯)组成或由聚乙烯组成。
在一些实施方案中,用于制备本文所述的聚合物基质复合材料的热塑性聚合物是粒径小于1000微米(在一些实施方案中,在1微米至10微米、10微米至30微米、30微米至100微米、100微米至200微米、200微米至500微米、500微米至1000微米的范围内)的颗粒。
在一些实施方案中,多孔聚合物网络结构包含以下中的至少一种:聚丙烯腈、聚氨酯、聚酯、聚酰胺、聚醚、聚碳酸酯、聚酰亚胺、聚砜、聚苯醚、聚丙烯酸酯、聚甲基丙烯酸酯、聚烯烃、苯乙烯或苯乙烯基无规和嵌段共聚物、氯化聚合物、氟化聚合物或乙烯和氯三氟乙烯的共聚物。
在一些实施方案中,多孔聚合物网络结构包含数均分子量在5×104g/mol至1×107g/mol范围内的聚合物(在一些实施方案中,数均分子量在1×106g/mol至8×106g/mol、2×106g/mol至6×106g/mol,或甚至3×106g/mol至5×106g/mol的范围内)。出于本公开的目的,数均分子量可通过本领域的已知技术测量(例如凝胶渗透色谱法(GPC))。GPC可在用于热塑性聚合物的合适溶剂中进行,连同使用窄分子量分布聚合物标准(例如窄分子量分布聚苯乙烯标准)。热塑性聚合物通常表征为部分结晶的,表现出熔点。在一些实施方案中,热塑性聚合物的熔点可以在120℃至350℃的范围内(在一些实施方案中,在120℃至300、120℃至250℃或甚至120℃至200℃的范围内)。热塑性聚合物的熔点可通过本领域已知的技术测量(例如用5mg至10mg样品在10℃/min的加热扫描速率下的差示扫描量热法(DSC)测试中测量的设定温度,同时样品在氮气气氛下)。
在一些实施方案中,聚合物网络结构是连续的网络结构(即聚合物相包括作为具有连续空隙或在空隙之间形成互连并延伸贯穿整个结构的孔的开孔的结构)。在一些实施方案中,按体积计至少2%(在一些实施方案中,至少5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或甚至100%)的聚合物网络结构可以是连续的聚合物网络结构。应当指出的是,出于本公开的目的,由颗粒构成的聚合物基质复合材料的体积部分不被认为是聚合物网络结构的一部分。在一些实施方案中,聚合物网络在两个颗粒之间延伸,从而形成互连颗粒的网络。
选择溶剂(例如第一溶剂),使得其形成可混溶的聚合物-溶剂溶液。在一些情况下,可需要升高的温度以形成可混溶的聚合物-溶剂溶液。溶剂可以是至少两种单独溶剂的共混物。在一些实施方案中,当聚合物为聚烯烃(例如聚乙烯和聚丙烯中的至少一种)时,溶剂可以是例如以下中的至少一种:矿物油、四氢化萘、十氢化萘、邻二氯苯、环己烷甲苯混合物、十二烷、石蜡油/蜡、煤油、异链烷烃流体、邻二甲苯/环己烷混合物(1/1wt/wt)、莰烯、1,2,4三氯苯、辛烷、橙油、植物油、蓖麻油或棕榈仁油。在一些实施方案中,当聚合物为聚偏二氟乙烯时,溶剂可以是例如碳酸亚乙酯、碳酸亚丙酯或1,2,3-三乙酰氧基丙烷中的至少一种。可以去除溶剂,例如通过蒸发去除。高蒸气压溶剂尤其适于这种去除方法。然而,如果第一溶剂具有低蒸气压,则可期望具有较高蒸气压的第二溶剂来萃取第一溶剂,随后蒸发第二溶剂。例如,在一些实施方案中,当矿物油用作第一溶剂时,处于升高的温度(例如约60℃)的异丙醇或甲基九氟丁基醚(C4F9OCH3)、乙基九氟丁基醚(C4F9OC2H5)和反式-1,2-二氯乙烯(例如可以商品名NOVEC 72DE得自明尼苏达州圣保罗市的3M公司(3M Company,St.Paul,MN))的共混物可用作萃取第一溶剂的第二溶剂,随后蒸发第二溶剂。在一些实施方案中,当将植物油或棕榈仁油中的至少一种用作第一溶剂时,处于升高的温度(例如约60℃)下的异丙醇可用作第二溶剂。在一些实施方案中,当碳酸亚乙酯用作第一溶剂时,水可用作第二溶剂。
在一些实施方案中,可以将少量其他添加剂添加到聚合物基质复合材料中以赋予附加功能或充当加工助剂。这些添加剂包括粘度调节剂(例如热解法二氧化硅、嵌段共聚物和蜡),增塑剂,热稳定剂(例如诸如可以商品名“Irganox 1010”得自德国路德维希港的巴斯夫(BASF,Ludwigshafen,Germany)),抗微生物剂(例如银和季铵),阻燃剂,抗氧化剂,染料,颜料和紫外线(UV)稳定剂。
在一些实施方案中,本文所述的聚合物基质复合材料为层的形式,该层的厚度在50微米至7000微米的范围内,其中该厚度不包括从该层的基底延伸的任何突出部的高度。
在一些实施方案中,通过可混溶的热塑性聚合物-溶剂溶液的诱导相分离来制备多孔聚合物网络结构。在一些实施方案中,诱导相分离为热诱导相分离或溶剂诱导相分离中的至少一者。
第一方法
制备本文所述的聚合物基质复合材料的第一方法包括:
将热塑性聚合物、溶剂和多个吸热颗粒组合(例如混合或共混)以提供浆液;
使浆液成形为制品(例如层);
在环境中加热制品以在制品中保留基于制品中溶剂的重量计至少90重量%(在一些实施方案中,至少91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%、99重量%或甚至至少99.5重量%)的溶剂,并且使基于热塑性聚合物的总重量计至少50%(在一些实施方案中,至少55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%,或甚至100%)的热塑性聚合物溶解;以及
诱导所述热塑性聚合物与所述溶剂相分离,以提供所述聚合物基质复合材料。
如果颗粒致密,则通常将浆液连续混合或共混,以防止或减少聚合物和/或颗粒与溶剂的沉降或分离。在一些实施方案中,使用本领域已知的技术对浆液脱气以去除残留的空气。
可使用本领域已知的技术使浆液形成形为制品,所述技术包括刮涂、辊涂(例如通过限定的辊隙进行辊涂)以及通过具有合适尺寸或轮廓的任何数量的不同模具进行涂布。
在第一方法的一些实施方案中,组合在低于聚合物的熔点且低于溶剂的沸点的至少一个温度下进行。
在第一方法的一些实施方案中,在高于可混溶的热塑性聚合物-溶剂溶液的熔点并且低于溶剂的沸点的至少一个温度下进行加热。
在第一方法的一些实施方案中,诱导相分离在低于浆液中的聚合物的熔点的至少一个温度下进行。虽然不想受到束缚,但据信在一些实施方案中,用于制备与聚合物的可混溶共混物的溶剂可导致聚合物中的熔点降低。本文所述的熔点包括低于聚合物溶剂体系的任何熔点降低。
在第一方法的一些实施方案中,溶剂是至少两种单独溶剂的共混物。在一些实施方案中,当聚合物为聚烯烃(例如聚乙烯或聚丙烯中的至少一种)时,溶剂可以是以下中的至少一种:矿物油、四氢化萘、十氢化萘、1,2-邻二氯苯、环己烷-甲苯混合物、十二烷、石蜡油/蜡、煤油、对二甲苯/环己烷混合物(1/1wt./wt.)、莰烯、1,2,4三氯苯、辛烷、橙油、植物油、蓖麻油或棕榈仁油。在一些实施方案中,当聚合物为聚偏二氟乙烯时,溶剂为碳酸亚乙酯、碳酸亚丙酯或1,2,3-三乙酰氧基丙烷中的至少一种。
在第一方法的一些实施方案中,可在相分离期间形成聚合物网络结构。在一些实施方案中,可通过可混溶的热塑性聚合物-溶剂溶液的诱导相分离来提供聚合物网络结构。在一些实施方案中,(例如,通过淬火至比加热期间使用的温度低的温度的热诱导相分离(TIPS))热诱导相分离。可以例如在空气、液体中或在固体界面上提供冷却,并且冷却可变化以控制相分离。聚合物网络结构可以固有地是多孔的(即,具有孔)。孔结构可以是开放的,使得能够从聚合物网络结构的内部区域到聚合物网络结构的外表面和/或在聚合物网络结构的第一表面和聚合物网络结构的对置的第二表面之间进行流体连通。
在本文所述方法的一些实施方案中,溶剂与聚合物的重量比为至少9:1。在一些实施方案中,颗粒与聚合物的体积比为至少9:1。在一些实施方案中,为了便于制造,可期望在室温下形成层。通常,在使用相分离的层形成期间,相对小的孔特别容易在溶剂萃取期间塌缩。通过本文所述的方法可实现的相对高的颗粒与聚合物载量可减少孔塌缩并产生更均匀的无缺陷聚合物基质复合材料。
在一些实施方案中,第一方法还包括在诱导热塑性聚合物与溶剂相分离之后,从成形制品中去除溶剂的至少一部分(在一些实施方案中,基于成形制品中溶剂的重量计,去除至少5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量%、95重量%、96重量%、97重量%、98重量%、99重量%、99.5重量%或甚至100重量%的溶剂)。
在第一方法的一些实施方案中,基于成形制品中溶剂的重量计,去除至少90重量%的溶剂,其中在基于成形制品中溶剂的重量计去除至少90重量%的溶剂之前,成形制品具有第一体积,其中在基于成形制品中溶剂的重量计去除至少90重量%的溶剂之后,成形制品具有第二体积,并且其中第一体积和第二体积之间的差(即(第一体积减去第二体积)除以第一体积乘以100)小于10%(在一些实施方案中,小于9%、8%、7%、6%、5%、4%、3%、2%、1%、0.75%、0.5%,或甚至小于0.3%)。挥发性溶剂可例如通过使溶剂从聚合物基质复合材料的至少一个主表面蒸发而从聚合物基质复合材料中去除。可以例如通过添加热、真空或气流中的至少一种来辅助蒸发。易燃溶剂的蒸发可在溶剂级烘箱中实现。然而,如果第一溶剂具有低蒸气压,则可使用具有高蒸气压的第二溶剂萃取第一溶剂,随后蒸发第二溶剂。例如,在一些实施方案中,当矿物油用作第一溶剂时,处于升高的温度(例如约60℃)的异丙醇或甲基九氟丁基醚(C4F9OCH3)、乙基九氟丁基醚(C4F9OC2H5)和反式-1,2-二氯乙烯(例如可以商品名NOVEC 72DE得自明尼苏达州圣保罗市的3M公司(3M Company,St.Paul,MN))的共混物可用作萃取第一溶剂的第二溶剂,随后蒸发第二溶剂。在一些实施方案中,当将植物油或棕榈仁油中的至少一种用作第一溶剂时,处于升高的温度(例如约60℃)下的异丙醇可用作第二溶剂。在一些实施方案中,当碳酸亚乙酯用作第一溶剂时,水可用作第二溶剂。
在第一方法的一些实施方案中,制品具有第一主表面和第二主表面,其中端部垂直于第一主表面和第二主表面,并且在去除溶剂期间,端部不受约束(即,在萃取期间不需要约束)。例如,这可以通过在烘箱中不受约束地干燥层的一部分来完成。连续干燥可以例如通过将支撑在带上的层的大部分在输送通过烤箱时干燥来实现。另选地,例如为便于去除非挥发性溶剂,可以将层的大部分连续地输送通过相容性挥发性溶剂浴,从而交换溶剂,并随后对该层进行干燥而不受限制。然而,在溶剂交换期间,并非所有的非挥发性溶剂都需要从层中去除。少量的非挥发性溶剂可保留并充当聚合物的增塑剂。
在第一方法的一些实施方案中,在去除溶剂之后,成形且相分离的制品具有至少5%(在一些实施方案中,至少10%、20%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%或甚至至少90%;在一些实施方案中,在25%至90%的范围内)的孔隙率。该孔隙率是由聚合物与溶剂的相分离引起的,所述相分离最初不留下未填充的空隙,因为聚合物基质复合材料中的孔填充有溶剂。在完全或部分去除溶剂之后,暴露聚合物基质复合材料中的空隙空间。颗粒与颗粒的交互作用可以使多孔聚合物基质复合材料因溶剂干燥过程中毛细管诱导的负压而导致的塌缩或变形最小化。
在第一方法的一些实施方案中,未从成形制品中去除溶剂(即使在诱导热塑性聚合物与溶剂相分离之后)。这可例如通过使用非挥发性溶剂(例如矿物油或蜡)而不是完成萃取/蒸发步骤来实现。
第二方法
制备本文所述的聚合物基质复合材料的第二方法包括:
将热塑性聚合物、用于所述热塑性聚合物的溶剂和多个吸热颗粒组合(例如,混合或共混),以形成吸热颗粒在可混溶的热塑性聚合物-溶剂溶液中的悬浮液;
诱导所述热塑性聚合物与所述溶剂相分离;以及
去除所述溶剂的至少一部分,以提供所述聚合物基质复合材料。
在一些实施方案中,第二方法还包括在相分离之前将吸热颗粒添加到可混溶的聚合物-溶剂溶液中。聚合物网络结构可在该过程的相分离期间形成。在一些实施方案中,聚合物网络结构经由可混溶的热塑性聚合物-溶剂溶液的诱导相分离来制备。在一些实施方案中,热诱导(例如通过淬火至较低温度的热诱导相分离(TIPS))、化学诱导(例如通过用良好的溶剂取代不良的溶剂的溶剂诱导相分离(SIPS))或溶剂比率变化(例如通过蒸发溶剂中的一种)来诱导相分离。也可使用本领域已知的其他相分离或孔形成技术,诸如不连续的聚合物共混(有时也称为聚合物辅助相倒置(PAPI)),水分诱导相分离或蒸气诱导相分离。聚合物网络结构可以固有地是多孔的(即,具有孔)。孔结构可以是开放的,使得能够从聚合物网络结构的内部区域到聚合物网络结构的外表面和/或在聚合物网络结构的第一表面和聚合物网络结构的对置的第二表面之间进行流体连通。
在第二方法的一些实施方案中,可混溶的热塑性聚合物-溶剂溶液中的聚合物具有熔点,其中溶剂具有沸点,并且其中组合在高于可混溶的热塑性聚合物溶液的熔点且低于溶剂的沸点的至少一个温度下进行。
在第二方法的一些实施方案中,可混溶的热塑性聚合物-溶剂溶液中的聚合物具有熔点,并且其中诱导相分离在低于可混溶的热塑性聚合物-溶剂溶液中的聚合物的熔点的至少一个温度下进行。热塑性聚合物溶剂混合物可被加热以有利于热塑性聚合物在溶剂中的溶解。在热塑性聚合物已与溶剂相分离之后,可使用本领域已知的技术将溶剂的至少一部分从聚合物基质复合材料中去除,该技术包括蒸发溶剂或通过较高蒸气压第二溶剂溶剂萃取溶剂,然后蒸发第二溶剂。在一些实施方案中,在溶剂的10重量%至100重量%的范围内(在一些实施方案中,在20重量%至100重量%、30重量%至100重量%、40重量%至100重量%、50重量%至100重量%、60重量%至100重量%、70重量%至100重量%、80重量%至100重量%、90重量%至100重量%、95重量%至100重量%或甚至98重量%至100重量%的范围内),可以从聚合物基质复合材料中去除第二溶剂(如果使用的话)。
通常选择溶剂使得其能够溶解聚合物并形成可混溶的聚合物-溶剂溶液。将溶液加热至升高的温度可有利于聚合物的溶解。在一些实施例中,在20℃至350℃范围内的至少一个温度下进行聚合物与溶剂的组合。可以在聚合物溶解之前,聚合物溶解之后或之间的任何时间以任何或所有组合添加吸热颗粒。
在一些实施方案中,溶剂为至少两种单独溶剂的共混物。在一些实施方案中,当聚合物为聚烯烃(例如聚乙烯或聚丙烯中的至少一种)时,溶剂可以是以下中的至少一种:矿物油、石蜡油/蜡、莰烯、橙油、植物油、蓖麻油或棕榈仁油。在一些实施方案中,当聚合物为聚偏二氟乙烯时,溶剂为碳酸亚乙酯、碳酸亚丙酯或1,2,3-三乙酰氧基丙烷中的至少一种。
在一些实施方案中,溶剂可通过例如蒸发去除,高蒸气压溶剂尤其适于这种去除方法。然而,如果第一溶剂具有低蒸气压,则可使用具有高蒸气压的第二溶剂萃取第一溶剂,随后蒸发第二溶剂。例如,在一些实施方案中,当矿物油用作第一溶剂时,处于升高的温度(例如约60℃)的异丙醇或甲基九氟丁基醚(C4F9OCH3)、乙基九氟丁基醚(C4F9OC2H5)和反式-1,2-二氯乙烯(可以商品名NOVEC 72DE得自明尼苏达州圣保罗市的3M公司(3MCompany,St.Paul,MN))的共混物可用作萃取第一溶剂的第二溶剂,随后蒸发第二溶剂。在一些实施方案中,当将植物油或棕榈仁油中的至少一种用作第一溶剂时,处于升高的温度(例如约60℃)下的异丙醇可用作第二溶剂。在一些实施方案中,当碳酸亚乙酯用作第一溶剂时,水可用作第二溶剂。
通常,在相分离过程中,在聚合物固化之前,使共混的混合物成形为层。将聚合物溶解于溶剂中(其允许形成可混溶的热塑性溶剂溶液),并且将吸热颗粒分散以形成共混的混合物,使共混的混合物成形为制品(例如,层),随后进行相分离(例如,对于TIPS温度降低,对于SIPS溶剂蒸发或与非溶剂进行溶剂交换)。层形成可使用在本领域中已知的技术进行,包括刮涂、辊涂(例如通过限定辊隙的辊涂)和挤出(例如通过模具的挤出,例如通过具有适当的层尺寸(即模具间隙的宽度和厚度)的模具的挤出)。在一个示例性实施方案中,混合物具有糊状稠度并且通过挤出(例如通过具有适当的层尺寸(即模具间隙的宽度和厚度)的模具的挤出)被成形为层。
在使浆液成形为其中热塑性聚合物能够在其溶剂中混溶的层之后,然后诱导聚合物相分离。可使用若干技术来诱导相分离,包括热诱导相分离或溶剂诱导相分离中的至少一者。当进行诱导相分离的温度低于聚合物、溶剂和吸热颗粒的组合温度时,可发生热诱导相分离。如果组合在接近室温下进行,这可通过冷却可混溶的聚合物-溶剂溶液,或通过首先将可混溶的聚合物-溶剂溶液加热至升高的温度(在组合期间或在组合之后),随后降低可混溶的聚合物-溶剂溶液的温度,从而诱导热塑性聚合物的相分离来实现。在这两种情况下,冷却可导致聚合物与溶剂相分离。可通过将对于聚合物而言为不良溶剂的第二溶剂添加到可混溶的聚合物-溶剂溶液来进行溶剂诱导相分离,或者可通过去除可混溶的聚合物-溶剂溶液的溶剂的至少一部分(例如蒸发可混溶的聚合物-溶剂溶液的溶剂的至少一部分),从而诱导聚合物的相分离,来实现溶剂诱导相分离。可采用相分离技术(例如热诱导相分离和溶剂诱导相分离)的组合。热诱导相分离可为有利的,因为当组合在升高的温度下进行时,其还有利于聚合物的溶解。在一些实施方案中,在低于组合温度的5℃至300℃(在一些实施方案中,在5℃至250℃、5℃至200℃、5℃至150℃、15℃至300℃、15℃至250℃、15℃至200℃、15℃至130℃,或甚至25℃至110℃)范围内的至少一个温度下进行热诱导相分离。
在诱导相分离之后,可去除溶剂的至少一部分,从而形成多孔聚合物基质复合材料层,该复合材料层具有聚合物网络结构和分布在热塑性聚合物网络结构内的吸热材料。
溶剂可通过蒸发去除,高蒸气压溶剂尤其适于这种去除方法。然而,如果第一溶剂具有低蒸气压,则可使用具有高蒸气压的第二溶剂萃取第一溶剂,随后蒸发第二溶剂。在一些实施方案中,在溶剂的10重量%至100重量%的范围内(在一些实施方案中,在20重量%至100重量%、30重量%至100重量%、40重量%至100重量%、50重量%至100重量%、60重量%至100重量%、70重量%至100重量%、80重量%至100重量%、90重量%至100重量%、95重量%至100重量%或甚至98重量%至100重量%的范围内),可以从聚合物基质复合材料中去除第二溶剂(如果使用的话)。
在一些实施方案中,第一方法和第二方法还包括压缩聚合物基质复合材料。即,在诱导相分离之后,可压缩所形成的聚合物网络结构,例如以调谐聚合物基质复合材料的气流阻力。聚合物基质复合材料的压缩可例如通过本领域已知的常规压延工艺来实现。
在其中网络结构通过至少压缩力塑性变形的一些实施方案中,可在施加压缩力期间赋予振动能量。在这些实施方案中的一些中,聚合物复合材料为具有无限长度的条带的形式,并且在条带穿过辊隙时执行施加压缩力的步骤。拉伸负载可在穿过此辊隙期间施加。例如,辊隙可在两个辊之间形成,其中至少一个辊施加振动能量;在辊和条之间,其中至少一个施加振动能量;或在两个条之间,其中至少一个条施加振动能量。压缩力和振动能量的施加可以连续的辊对辊方式或以步进和重复的方式来实现。在其他实施方案中,在例如板和台板之间的离散层上执行压缩力步骤,其中板和台板中的至少一个施加振动能量。在一些实施方案中,振动能量在超声范围(例如20kHz)内,但其他范围被认为是合适的。关于使网络结构塑性变形的更多详细信息参见2017年10月30日提交的具有美国序列号62/578,732的共同待审的专利申请,该专利的公开内容以引用方式并入本文中。
在一些实施方案中,本文所述的聚合物基质复合材料可以包在0.5mm(在一些实施方案中为0.6mm、0.7mm、0.8mm、0.9mm、1mm、2mm、3mm、4mm、5mm、1cm、5cm、10cm、25cm、50cm、或甚至1m)的杆周围而不会断裂。
在第一方法和第二方法的一些实施方案中,本文所述的聚合物基质复合材料具有对置的第一平坦主表面和第二平坦主表面。在一些实施方案中,本文所述的聚合物基质复合材料具有对置的第一主表面和第二主表面,其中第一主表面为非平坦的(例如,弯曲的)。参见图1,本文所述的示例性聚合物基质复合材料100具有对置的第一主表面101和第二主表面102。第一主表面101为非平坦的。
平坦和非平坦主表面可例如通过将浆液涂布或挤出到图案化基底(例如,衬垫、带、模具或工具)上来提供。另选地,例如,具有成型狭槽的模具可用于在涂布或挤出过程期间形成非平坦表面。另选地,例如,所述结构可在通过用图案化工具模制或成型所述层之前和/或之后相分离之后形成。
在第一方法和第二方法的一些实施方案中,本文所述的聚合物基质复合材料具有从第一主表面向外延伸的第一突出部,并且在一些实施方案中,具有从第二主表面向外延伸的第二突出部。在一些实施方案中,第一突出部与第一主表面成一整体,并且在一些实施方案中,第二突出部与第二主表面成一整体。示例性突出部包括柱、导轨、钩、锥体、连续轨、连续多向轨、半球、圆柱体或多叶状圆柱体中的至少一者。在一些实施方案中,突出部具有呈以下形状中的至少一种的横截面:圆形、正方形、矩形、三角形、五边形、其他多边形、正弦、人字形或多叶形。
参见图2,本文所述的示例性聚合物基质复合材料200具有从第一主表面201向外延伸的第一突出部205和从第二主表面202向外延伸的任选的第二突出部206。
突出部可例如通过在图案化基底(例如,衬垫、带、模具或工具)之间涂布或挤出来提供。另选地,具有成型狭槽的模具可用于在涂布或挤出过程期间形成突出部。另选地,例如,所述结构可在通过在图案化工具之间模制或成型之前和/或之后相分离之后形成。
在第一方法和第二方法的一些实施方案中,本文所述的聚合物基质复合材料具有延伸到第一主表面中的第一凹陷部,并且在一些实施方案中,具有延伸到第二主表面中的第二凹陷部。示例性凹陷部包括凹槽、狭槽、倒金字塔、孔(包括通孔或盲孔)或凹坑中的至少一者。参见图3,本文所述的示例性聚合物基质复合材料300具有延伸到第一主表面301中的第一凹陷部307和延伸到第二主表面302中的第二凹陷部308。
凹陷部可例如通过在图案化基底(例如,衬垫、带、模具或工具)之间涂布或挤出来提供。另选地,例如,具有成型狭槽的模具可用于在涂布或挤出过程期间形成凹陷部。另选地,例如,所述结构可在通过在图案化工具之间模制或成型之前和/或之后相分离之后形成。
在一些实施方案中,本文所述的聚合物基质复合材料还包含增强材料(例如,附接到聚合物基质复合材料,部分地在其中,和/或在其中)。示例性增强材料包括纤维、股线、非织造织物、织造材料、织物、网片和膜。增强材料可例如通过热、粘接或超声层压到聚合物基质复合材料上。增强材料例如可在涂布或挤出过程期间嵌入聚合物基质复合材料内。增强材料例如可位于复合材料的主表面之间、一个主表面上、或两个主表面上。可使用多于一种类型的增强材料。
包含吸热颗粒的聚合物基质复合材料可用作例如填料(包括作为阻火物、阻燃剂或防火材料的一部分)、热能吸收剂(包括作为阻火物、阻燃剂或防火材料的一部分)和无源电池安全部件。关于阻火物、阻燃剂或防火材料的一般细节,参见例如美国专利5,059,637(Langer)和6,153,674(Landen),这些专利的公开内容以引用方式并入本文。关于热能吸收剂构造和使用的一般细节,参见例如美国专利6,341,384(Claude),其公开内容以引用方式并入本文。关于无源电池安全部件构造和使用的一般细节,参见例如美国专利公开US2017/117598(Yuki等人),其公开内容以引用方式并入本文。
示例性实施方案
1A.一种聚合物基质复合材料,所述聚合物基质复合材料包含:
多孔聚合物网络结构;以及
分布在所述聚合物网络结构内的多个吸热颗粒(即,包含结合水的颗粒,其中所述结合水在至少90℃的温度下解吸),
其中基于吸热颗粒和所述聚合物(不包括任何溶剂)的总重量计,所述吸热颗粒在15重量%至99重量%(在一些实施方案中,25重量%至98重量%、50重量%至98重量%、75重量%至98重量%、或甚至93重量%至97重量%)的范围内存在;并且其中所述聚合物基质复合材料具有大于200J/g的吸热。
2A.根据示例性实施方案1A所述的聚合物基质复合材料,其中所述聚合物基质复合材料具有至少0.3g/cm3(在一些实施方案中,在0.3g/cm3至2g/cm3、0.3g/cm3至1.5g/cm3、或甚至0.3g/cm3至1g/cm3的范围内)的密度。
3A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,其中所述聚合物基质复合材料具有至少5%(在一些实施方案中,至少10%、20%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%,或甚至至少90%;在一些实施方案中,在25%至90%的范围内)的孔隙率。
4A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,其中所述吸热颗粒包含碳酸氢钠、二水合硫酸钙、三水合铝、八水合硫酸镁、草酸铵或硅酸钠。
5A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,其中所述吸热颗粒的平均粒径(最长尺寸的平均长度)在300nm至700微米的范围内(在一些实施方案中,在5微米至300微米、5微米至150微米、或甚至1微米到300微米的范围内)。
6A.根据示例性实施方案1A至3A中任一项所述的聚合物基质复合材料,其中所述吸热颗粒包括不同(即,不同的组成或微结构,或粒度)的第一吸热颗粒和第二吸热颗粒。
7A.根据示例性实施方案6A所述的聚合物基质复合材料,其中所述第一吸热颗粒包含碳酸氢钠、二水合硫酸钙、三水合铝、八水合硫酸镁、草酸铵或硅酸钠,并且其中所述第二吸热颗粒包含碳酸氢钠、二水合硫酸钙、三水合铝、八水合硫酸镁、草酸铵或硅酸钠。
8A.根据示例性实施方案6A或7A所述的聚合物基质复合材料,其中所述第一吸热颗粒具有在300nm至700微米范围内(在一些实施方案中,在5微米至300微米、5微米至150微米、或甚至1微米至300微米范围内)的平均粒度(最长尺寸的平均长度),并且所述第二吸热颗粒具有在300nm至700微米范围内(在一些实施方案中,在5微米至300微米、5微米至150微米、或甚至1微米至300微米范围内)的平均粒度(最长尺寸的平均长度)。
9A.根据示例性实施方案6A至8A中任一项所述的聚合物基质复合材料,其中基于所述第一吸热颗粒和所述第二吸热颗粒的总重量计,所述吸热颗粒在15重量%至99重量%的范围内(在一些实施方案中,在25重量%至98重量%、50重量%至98重量%、75重量%至98重量%、或甚至93重量%至97重量%的范围内)存在,并且其中所述第二吸热颗粒在15重量%至99重量%的范围内(在一些实施方案中,在25重量%至98重量%、50重量%至98重量%、75重量%至98重量%、或甚至93重量%至97重量%的范围内)存在。
10A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,其中所述多孔聚合物网络结构包含以下中的至少一种:聚氨酯、聚酯、聚酰胺、聚醚、聚碳酸酯、聚酰亚胺、聚砜、聚醚砜、聚苯醚、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯腈、聚烯烃、苯乙烯或苯乙烯基无规和嵌段共聚物、氯化聚合物、氟化聚合物或乙烯和氯三氟乙烯的共聚物。
11A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,其中所述多孔聚合物网络结构包含相分离的多个互连形态(例如,原纤、结节、节点、开孔、闭孔、叶状花边、股线、节点、球体或蜂窝结构中的至少一种)。
12A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,其中所述多孔聚合物网络结构包含数均分子量在5×104g/mol至1×107g/mol范围内的聚合物(在一些实施方案中,数均分子量在1×106g/mol至8×106g/mol、2×106g/mol至6×106g/mol,或甚至3×106g/mol至5×106g/mol的范围内)。
13A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,其中所述聚合物基质复合材料呈厚度在50微米至7000微米范围内的层形式。
14A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,其中通过可混溶的热塑性聚合物-溶剂溶液的诱导相分离来制备所述多孔聚合物网络结构。
15A.根据示例性实施方案14A所述的聚合物基质复合材料,其中诱导相分离为热诱导相分离和溶剂诱导相分离中的至少一者。
16A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,具有对置的第一平坦主表面和第二平坦主表面。
17A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,其具有对置的第一主表面和第二主表面,其中所述第一主表面为非平坦的(例如,弯曲的或其间没有平坦表面的突出部)。
18A.根据示例性实施方案16A或17A所述的聚合物基质复合材料,其中所述第一主表面具有从所述第一主表面向外延伸的第一突出部。在一些实施方案中,所述突出部与所述第一主表面成一整体。
19A.根据示例性实施方案18A所述的聚合物基质复合材料,其中所述第一突出部为柱、导轨、钩、锥体、连续轨、连续多向轨、半球、圆柱体或多叶状圆柱体中的至少一者。
20A.根据示例性实施方案16A至19A中任一项所述的聚合物基质复合材料,其中所述第一主表面具有延伸到所述第一主表面中的第一凹陷部。
21A.根据示例性实施方案20A所述的聚合物基质复合材料,其中所述第一凹陷部为凹槽、狭槽、倒金字塔、孔(包括通孔或盲孔)或凹坑中的至少一者。
22A.根据示例性实施方案18A至21A中任一项所述的聚合物基质复合材料,其中所述第二主表面具有从所述第二主表面向外延伸的第二突出部。
23A.根据示例性实施方案22A所述的聚合物基质复合材料,其中所述第二突出部为柱、导轨、钩、锥体、连续轨、连续多向轨、半球、圆柱体或多叶状圆柱体中的至少一者。
24A.根据示例性实施方案18A至23A中任一项所述的聚合物基质复合材料,其中所述第二主表面具有延伸到所述第二主表面中的第二凹陷部。
25A.根据示例性实施方案24A所述的聚合物基质复合材料,其中所述第二凹陷部为凹槽、狭槽、倒金字塔、孔(包括通孔或盲孔)或凹坑中的至少一者。
26A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,还包含增强剂(例如,部分地在其中和/或在其中附接到聚合物基质复合材料)。
27A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,可以包在0.5mm(在一些实施方案中为0.6mm、0.7mm、0.8mm、0.9mm、1mm、2mm、3mm、4mm、5mm、1cm、5cm、10cm、25cm、50cm,甚至1m)的杆周围而不会断裂。
28A.根据任一项前述A示例性实施方案所述的聚合物基质复合材料,所述聚合物基质复合材料包含以下中的至少一种:粘度调节剂(例如热解法二氧化硅、嵌段共聚物和蜡),增塑剂,热稳定剂(例如诸如可以商品名“Irganox 1010”得自德国路德维希港的巴斯夫(BASF,Ludwigshafen,Germany)),抗微生物剂(例如银和季铵),阻燃剂,抗氧化剂,染料,颜料或紫外线(UV)稳定剂。
1B.一种制备根据任一项前述A示例性实施方案所述的聚合物基质复合材料的方法,所述方法包括:
将热塑性聚合物、溶剂和多个吸热颗粒组合(例如混合或共混)以提供浆液;
使浆液成形为制品(例如层);
在环境中加热制品以在制品中保留基于制品中溶剂的重量计至少90重量%(在一些实施方案中,至少91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%、99重量%或甚至至少99.5重量%)的溶剂,并且使基于热塑性聚合物的总重量计至少50%(在一些实施方案中,至少55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%,或甚至100%)的热塑性聚合物溶解;以及
诱导所述热塑性聚合物与所述溶剂相分离,以提供所述聚合物基质复合材料。
2B.根据示例性实施方案1B所述的方法,所述方法还包括在诱导所述热塑性聚合物与所述溶剂相分离之后,从成形制品中去除溶剂的至少一部分(在一些实施方案中,基于所述成形制品中所述溶剂的重量计,去除至少5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量%、95重量%、96重量%、97重量%、98重量%、99重量%、99.5重量%或甚至100重量%的所述溶剂)。
3B.根据示例性实施方案2B所述的方法,其中基于所述成形制品中所述溶剂的重量计,去除至少90重量%的所述溶剂,其中在基于所述成形制品中所述溶剂的重量计去除至少90重量%的所述溶剂之前,所述成形制品具有第一体积,其中在基于所述成形制品中所述溶剂的重量计去除至少90重量%的所述溶剂之后,所述成形制品具有第二体积,并且其中所述第一体积和所述第二体积之间的差(即(所述第一体积减去所述第二体积)除以所述第一体积乘以100)小于10%(在一些实施方案中,小于9%、8%、7%、6%、5%、4%、3%、2%、1%、0.75%、0.5%,或甚至小于0.3%)。
4B.根据示例性实施方案3B所述的方法,其中所述制品具有第一主表面和第二主表面,其中端部垂直于所述第一主表面和所述第二主表面,并且其中所述端部在去除所述溶剂期间不受约束。
5B.根据示例性实施方案3B或4B所述的方法,其中在去除所述溶剂之后,所述成形制品具有至少5%(在一些实施方案中,至少10%、20%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%或甚至至少90%;在一些实施方案中,在25%至90%的范围内)的孔隙率。
6B.根据示例性实施方案1B所述的方法,其中未从所述成形制品中去除溶剂(即使在诱导热塑性聚合物与溶剂相分离之后)。
7B.根据任一项前述B示例性实施方案所述的方法,其中诱导相分离包括热诱导相分离。
8B.根据任一项前述B示例性实施方案所述的方法,其中所述浆液中的所述聚合物具有熔点,其中所述溶剂具有沸点,并且其中组合在低于所述浆液中的所述聚合物的所述熔点下,并且在低于所述溶剂的所述沸点下进行。
9B.根据任一项前述B示例性实施方案所述的方法,其中所述浆液中的所述聚合物具有熔点,并且其中诱导相分离在小于所述浆液中的所述聚合物的所述熔点下进行。
10B.根据任一项前述B示例性实施方案所述的方法,所述方法还包括压缩所述聚合物基质复合材料。
11B.根据示例性实施方案1B至9B中任一项所述的方法,所述方法还包括在施加压缩力的同时向所述聚合物基质复合材料施加振动能量。
12B.根据任一项前述B示例性实施方案所述的方法,其中所述多孔聚合物网络结构包含以下中的至少一种:聚丙烯腈、聚氨酯、聚酯、聚酰胺、聚醚、聚碳酸酯、聚酰亚胺、聚砜、聚醚砜、聚苯醚、聚丙烯酸酯、聚甲基丙烯酸酯、聚烯烃、苯乙烯或苯乙烯基无规和嵌段共聚物、氯化聚合物、氟化聚合物或乙烯和氯三氟乙烯的共聚物。
13B.根据任一项前述B示例性实施方案所述的方法,其中所述多孔聚合物网络结构包含多个互连形态(例如,原纤、结节、节点、开孔、闭孔、叶状花边、股线、节点、球体或蜂窝结构中的至少一种)。
14B.根据任一项前述B示例性实施方案所述的方法,其中通过可混溶的热塑性聚合物-溶剂溶液的诱导相分离来制备所述多孔聚合物网络结构。
15B.根据示例性实施方案14B所述的方法,其中诱导相分离包括热诱导相分离。
1C.一种制备根据任一项前述A示例性实施方案所述的聚合物基质复合材料的方法,所述方法包括:
将热塑性聚合物、用于所述热塑性聚合物的溶剂和多个吸热颗粒组合(例如,混合或共混),以形成指示颗粒在可混溶的热塑性聚合物-溶剂溶液中的悬浮液;
诱导所述热塑性聚合物与所述溶剂相分离;以及
去除所述溶剂的至少一部分,以提供所述聚合物基质复合材料。
2C.根据示例性实施方案1C所述的方法,其中诱导相分离包括热诱导相分离或溶剂诱导相分离中的至少一者。
3C.根据示例性实施方案1C所述的方法,其中所述可混溶的热塑性聚合物-溶剂溶液中的所述聚合物具有熔点,其中所述溶剂具有沸点,并且其中组合在高于所述可混溶的热塑性聚合物-溶剂溶液的所述熔点下,并且在低于所述溶剂的所述沸点下进行。
4C.根据任一项前述C示例性实施方案所述的方法,其中所述可混溶的热塑性聚合物-溶剂溶液中的所述聚合物具有熔点,并且其中诱导相分离在低于所述可混溶的热塑性聚合物-溶剂溶液中的所述聚合物的所述熔点下进行。
5C.根据任一项前述C示例性实施方案所述的方法,所述方法还包括压缩所述聚合物基质复合材料。
6C.根据示例性实施方案1C至4C中任一项所述的方法,所述方法还包括在施加压缩力的同时向所述聚合物基质复合材料施加振动能量。
7C.根据任一项前述C示例性实施方案所述的方法,其中所述多孔聚合物网络结构包含以下中的至少一种:聚丙烯腈、聚氨酯、聚酯、聚酰胺、聚醚、聚碳酸酯、聚酰亚胺、聚砜、聚醚砜、聚苯醚、聚丙烯酸酯、聚甲基丙烯酸酯、聚烯烃、苯乙烯或苯乙烯基无规和嵌段共聚物、氯化聚合物、氟化聚合物或乙烯和氯三氟乙烯的共聚物。
8C.根据任一项前述C示例性实施方案所述的方法,其中所述多孔聚合物网络结构包含多个互连形态(例如,原纤、结节、节点、开孔、闭孔、叶状花边、股线、节点、球体或蜂窝结构中的至少一种)。
1D.一种填料,所述填料包含根据任一项前述A示例性实施方案所述的聚合物基质复合材料。
1E.一种阻火设备,所述阻火设备包含根据任一项前述A示例性实施方案所述的聚合物基质复合材料。
1F.一种热能吸收剂,所述热能吸收剂包含根据任一项前述A示例性实施方案所述的聚合物基质复合材料。
1G.一种阻燃剂,所述阻燃剂包含根据任一项前述A示例性实施方案所述的聚合物基质复合材料。
1H.一种防火材料,所述防火材料包含根据任一项前述A示例性实施方案所述的聚合物基质复合材料。
1I.一种无源电池安全部件,所述无源电池安全部件包含根据任一项前述A示例性实施方案所述的聚合物基质复合材料。
以下实施例进一步说明了本发明的优点和实施方案,但是这些实施例中所提到的具体材料及其量以及其它条件和细节均不应被解释为是对本发明的不当限制。除非另外指明,否则所有份数和百分比均按重量计。
实施例
气流阻力测试
使用密度计(以型号4110获自纽约州特洛伊市的高利精密仪器公司(GurleyPrecision Instruments,Troy,NY))和定时器(以型号4320获自高利精密仪器公司(GurleyPrecision Instruments))测量气流阻力。将样品夹持在测试仪中。复位计时器和光眼,并且释放滚筒,使空气通过具有4.88英寸(12.4cm)水(1215N/m2)的恒定力的1平方英寸(6.5cm2)圆。记录通过50mL空气的时间。
泡点压力测试
泡点压力是表征多孔隔膜中最大孔的常用技术。切割直径为47mm的盘,并且将样品浸泡在矿物油中以完全填充和润湿样品内的孔。然后,将湿样品置于保持器(47mm;来自纽约州华盛顿港市颇尔公司(Pall Corporation,Port Washington,NY)的不锈钢保持器零件#2220)中。使用压力控制器在样品的顶部缓慢增加压力,并且使用气体流量计在底部测量气流。当从基线流量的流量显著增加时,记录压力。这被报告为每平方英寸(psi)的泡点压力磅数(汞柱的厘米数,cm Hg或帕斯卡,Pa)。该技术是对ASTM F316-03(2006)“StandardTest Methods for Pore Size Characteristics of Membrane Filters by BubblePoint and Mean Flow Pore Test(通过泡点和平均流量孔测试测定隔膜过滤器的孔径特性的标准测试方法)”的修改,并且包括自动压力控制器和流量计以定量何时已达到泡点压力,其中ASTM F316-03(2006)的公开内容以引用方式并入本文。使用以下公式根据ASTM计算孔径:
限制孔直径(μm)=(以达因/cm*0.415为单位的表面张力)/(以psi为单位的压力)。
包括因数0.415,因为压力以psi为单位。将34.7达因/cm的表面张力用于矿物油。
密度和孔隙率测试
使用与ASTM F-1315-17(2017)“Standard Test Method for Density of aSheet Gasket Material(密封垫圈材料的密度的标准测试方法)”类似的方法计算样品的密度,所述方法为:切割47mm直径的盘,在合适分辨率(通常为0.0001克)的分析天平上称量盘,以及在自重为7.3psi(50.3KPa)的厚度计(可以型号49-70购自美国特拉华州新城堡的测试机器公司(Testing Machines,Inc.New Castle,DE,US))和0.63英寸(1.6cm)直径的平砧上,以约3秒的保压时间和+/-0.0001英寸的分辨率测量盘,其中ASTM F-1315-17(2017)的公开内容以引用方式并入本文。然后通过将质量除以体积来计算密度,该体积由样品的厚度和直径计算。利用聚合物基质复合材料的组分的已知密度和重量分数,通过混合物规则计算聚合物基质复合材料的理论密度。使用理论密度和测量的密度,孔隙率被计算为:
孔隙率=[1-(测量的密度/理论密度)]×100。
吸热测试
使用差示扫描量热仪(以商品名“DTG-60AH TGA/DTA”获自马里兰州哥伦比亚的岛津科学仪器公司(Shimadzu Scientific Instruments,Columbia,MD))测量材料的吸热特性。该单元先前已使用以10℃/min运行的铟粉参考物进行校准。样品以10℃/分钟的升温速率在20ml/min的氮气流下运行。将10毫克样品置于铜盘中,并使样品在非密封条件下运行。记录吸热反应。曲线下面积的积分允许计算复合材料的每单位重量移除的能量的量(J/g)。
实施例1
向120毫升(4盎司)玻璃瓶中装入1.75克超高分子量聚乙烯(UHMWPE)(以商品名“GUR-2126”获自德克萨斯州欧文的塞拉尼斯公司(Celanese Corporation,Irving,TX)),和23.2克二水合硫酸钙(以商品名“CALCIUM SULFATE DIHYDRATE,ACS,98.0-102.0%POWDER,36700”获自马萨诸塞州沃德希尔市的阿尔法·埃萨尔(Alfa Aesar,Ward Hill,MA)),并用声学混合器(以商品名“LABRAM RESONATACOUSTIC MIXER”获自蒙大拿州比尤特的Resodyn公司(Resodyn Inc.,Butte,MT))在70%的强度下摇动1分钟。将23克低气味煤油(获自阿尔法·埃萨尔公司(Alfa Aesar))添加到该混合物中,并用手用刮刀搅拌直至获得均匀的浆液。在室温(约25℃)下用铲将浆液施加到3密耳(75微米)热稳定的聚对苯二甲酸乙二醇酯(PET)衬垫(以商品名“COATED PET ROLL#33716020500”获自3M公司),然后在顶部施加3密耳(75微米)PET衬垫(“COATED PET ROLL#33716020500”)以夹住浆液。然后通过使用被设置成36密耳(914.4微米)间隙的凹口棒将浆液铺展在PET衬垫之间。凹口棒导轨宽于PET衬垫,以获得30密耳(762微米)的有效湿膜厚度。使用具有增大的凹口棒的向下压力的渐进式多次传递来压平浆液。将夹置的、成形浆液置于铝托盘上并置于135℃(275℉)的实验室烘箱(可以商品名“DESPATCH RFD1-42-2E”购自明尼苏达州明尼阿波利斯市的Despatch公司(Despatch,Minneapolis,MN))中5分钟以活化(即,使UHMWPE溶解到溶剂中从而形成单相)。将具有活化夹置成形浆液的托盘从烘箱中取出,并使其空气冷却至环境温度(约25℃),从而形成溶剂填充的聚合物基质复合材料。去除顶部衬垫和底部衬垫两者,使聚合物基质复合材料暴露于空气。然后将聚合物基质复合材料放回托盘上的PET衬垫(“COATED PET ROLL#33716020500”)上,并在100℃(215℉)的温度下将托盘插入实验室烘箱(“DESPATCH RFD1-42-2E”)中一个小时。在蒸发之后,将聚合物基质复合材料从烘箱中取出,使其冷却至环境温度并进行表征。
参见图4,示出了聚合物基质复合材料的横截面的扫描电镜(SEM)数字图像(以商品名“PHENOM”获自俄亥俄州希尔斯伯勒市的FEI公司(FEI Company,Hillsboro,OR))。通过液氮冷冻压裂,然后用溅射涂布机(可以商品名“EMITECH K550X”购自英国苏塞克斯州莱普顿东斯塞克斯的Quorum技术公司(Quorum Technologies,Laughton East Sussex,England))进行金溅射涂布来制备横截面样品。
所得聚合物基质复合材料的厚度为31.2密耳(792.5微米)且测量密度为0.873g/cm3(如通过“密度和孔隙率测试”所确定),孔隙率为58.4%(如通过“密度和孔隙率测试”所确定),格利气流为223秒/50cm3(如通过“气流阻力测试”所确定),泡点孔径为1.9微米(如通过“泡点压力测试”所确定),并且能量移除为461J/g(如通过“吸热测试”所确定)。
实施例2
如实施例1中所述制备和测试实施例2,不同的是浆液为3.5克UHMWPE(“GUR-2126”)、46.5克碳酸氢钠(以商品名“SODIUM BICARBONATE,7412-12”获自宾夕法尼亚州中心谷的马克龙精细化工公司(Macron Fine Chemicals,Center Valley,PA))和19.5克低气味煤油。
参见图5,示出了聚合物基质复合材料的横截面的SEM数字图像。
所得聚合物基质复合材料厚度为27.6密耳(701微米),且密度为0.664g/cm3,孔隙率为67%,格利气流阻力为58秒/50cm3,泡点孔径为3.3微米,且能量移除为704J/g。
实施例3
如实施例1中所述制备和测试实施例3,不同的是浆液为1.75克UHMWPE(“GUR-2126”)、23.25克二水合硫酸钙(以商品名“TERRA ALBA NO.1,CALCIUM SULFATE”获自伊利诺伊州芝加哥市的美国石膏公司(U.S.Gypsum Company,Chicago,IL))和17.5克低气味煤油。
参见图6,示出了聚合物基质复合材料的横截面的SEM数字图像。
所得聚合物基质复合材料厚度为45.4密耳(1153微米),且密度为0.7729g/cm3,孔隙率为64.2%,格利气流阻力为234秒/50cm3,泡点孔径为1.9微米,且能量移除为211J/g。
实施例4
如实施例1中所述制备和测试实施例4,不同的是浆液为3.5克UHMWPE(“GUR-2126”)、46.5克三水合铝(以商品名“SB30ALUMINIUM TRIHYDRATE”获自乔治亚州亚特兰大的胡伯公司(Huber Corporation,Atlanta,GA))和25克低气味煤油。
参见图7,示出了聚合物基质复合材料的横截面的SEM数字图像。
所得聚合物基质复合材料厚度为46.5密耳(1181微米),且密度为0.995g/cm3,孔隙率为54.3%,格利气流阻力为1秒/50cm3,泡点孔径为24微米,且能量移除为761J/g。
在不脱离本发明的范围和实质的情况下,本公开的可预知的变型和更改对本领域的技术人员来说将显而易见。本发明不应受限于本申请中为了说明目的所示出的实施方案。

Claims (21)

1.一种聚合物基质复合材料,所述聚合物基质复合材料包含:
多孔聚合物网络;以及
分布在聚合物网络结构内的多个吸热颗粒,
其中基于吸热颗粒和所述聚合物的总重量计,所述吸热颗粒在15重量%至99重量%的范围内存在;并且其中所述聚合物基质复合材料具有大于200J/g的吸热。
2.根据权利要求1所述的聚合物基质复合材料,所述聚合物基质复合材料具有至少0.3g/cm3的密度。
3.根据任一项前述权利要求所述的聚合物基质复合材料,其中所述聚合物基质复合材料具有至少5%的孔隙率。
4.根据任一项前述权利要求所述的聚合物基质复合材料,其中所述吸热颗粒包含以下中的至少一种:碳酸氢钠、二水合硫酸钙、三水合铝、八水合硫酸镁、草酸铵或硅酸钠。
5.根据任一项前述权利要求所述的聚合物基质复合材料,其中所述吸热颗粒具有在300纳米至700微米范围内的平均粒度。
6.根据任一项前述权利要求所述的聚合物基质复合材料,其中所述多孔聚合物网络结构包含以下中的至少一种:聚氨酯、聚酯、聚酰胺、聚醚、聚碳酸酯、聚酰亚胺、聚砜、聚醚砜、聚苯醚、聚丙烯酸酯、聚甲基丙烯酸酯、聚丙烯腈、聚烯烃、苯乙烯或苯乙烯基无规和嵌段共聚物、氯化聚合物、氟化聚合物或乙烯和氯三氟乙烯的共聚物。
7.根据任一项前述权利要求所述的聚合物基质复合材料,其中所述多孔聚合物网络结构包含相分离的多个互连形态。
8.根据任一项前述权利要求所述的聚合物基质复合材料,其中所述多孔聚合物网络结构包含数均分子量在5×104g/mol至1×107g/mol范围内的聚合物,并且其中所述聚合物基质复合材料呈厚度在50微米至7000微米范围内的层的形式。
9.一种制备根据任一项前述权利要求所述的聚合物基质复合材料的方法,所述方法包括:
将热塑性聚合物、溶剂和多个吸热颗粒组合以提供浆液;
使所述浆液成形为制品;
在环境中加热所述制品以在所述制品中保留基于所述制品中所述溶剂的重量计至少90重量%的所述溶剂,并且使基于所述热塑性聚合物的总重量计至少50重量%的所述热塑性聚合物溶解在所述溶剂中;以及
诱导所述热塑性聚合物与所述溶剂相分离,以提供所述聚合物基质复合材料。
10.根据权利要求9所述的方法,所述方法还包括在诱导所述热塑性聚合物与所述溶剂相分离之后,从成形制品中去除所述溶剂的至少一部分。
11.根据权利要求10所述的方法,其中未从所述成形制品中去除溶剂。
12.根据权利要求9至11中任一项所述的方法,其中诱导相分离包括热诱导相分离。
13.根据权利要求9至12中任一项所述的方法,其中所述浆液中的所述聚合物具有熔点,其中所述溶剂具有沸点,并且其中组合在低于所述浆液中的所述聚合物的所述熔点下,并且在低于所述溶剂的所述沸点下进行。
14.根据权利要求9至13中任一项所述的方法,其中所述浆液中的所述聚合物具有熔点,并且其中诱导相分离在低于所述浆液中的所述聚合物的所述熔点下进行。
15.根据权利要求9至14中任一项所述的方法,所述方法还包括压缩所述聚合物基质复合材料。
16.一种制备根据权利要求1至8中任一项所述的聚合物基质复合材料的方法,所述方法包括:
将热塑性聚合物、所述热塑性聚合物可溶于其中的溶剂和多个吸热颗粒组合,以形成吸热颗粒在可混溶的热塑性聚合物-溶剂溶液中的悬浮液;
诱导所述热塑性聚合物与所述溶剂相分离;以及
去除所述溶剂的至少一部分,以提供所述聚合物基质复合材料。
17.根据权利要求16所述的方法,其中诱导相分离包括热诱导相分离或溶剂诱导相分离中的至少一者。
18.根据权利要求17所述的方法,其中所述可混溶的热塑性聚合物-溶剂溶液中的所述聚合物具有熔点,其中所述溶剂具有沸点,并且其中组合在高于所述可混溶的热塑性聚合物-溶剂溶液的所述熔点且低于所述溶剂的所述沸点的温度下进行。
19.根据权利要求16至18中任一项所述的方法,其中所述可混溶的热塑性聚合物-溶剂溶液中的所述聚合物具有熔点,并且其中诱导相分离在低于所述可混溶的热塑性聚合物-溶剂溶液中的所述聚合物的所述熔点下进行。
20.根据权利要求16至18中任一项所述的方法,所述方法还包括压缩所述聚合物基质复合材料。
21.一种填料,所述填料包含根据权利要求1至9中任一项所述的聚合物基质复合材料。
CN201880073928.9A 2017-11-16 2018-11-15 包含吸热颗粒的聚合物基质复合材料及其制备方法 Pending CN111356728A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762587054P 2017-11-16 2017-11-16
US62/587,054 2017-11-16
PCT/IB2018/059004 WO2019097451A1 (en) 2017-11-16 2018-11-15 Polymer matrix composites comprising endothermic particles and methods of making the same

Publications (1)

Publication Number Publication Date
CN111356728A true CN111356728A (zh) 2020-06-30

Family

ID=64564933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880073928.9A Pending CN111356728A (zh) 2017-11-16 2018-11-15 包含吸热颗粒的聚合物基质复合材料及其制备方法

Country Status (5)

Country Link
US (1) US20200369847A1 (zh)
EP (1) EP3710519A1 (zh)
JP (1) JP2021503531A (zh)
CN (1) CN111356728A (zh)
WO (1) WO2019097451A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7308828B2 (ja) 2017-11-16 2023-07-14 スリーエム イノベイティブ プロパティズ カンパニー 機能性粒子を含むポリマーマトリックス複合体及びその製造方法
WO2019099603A1 (en) 2017-11-16 2019-05-23 3M Innovative Properties Company Polymer matrix composites comprising dielectric particles and methods of making the same
TW201925296A (zh) 2017-11-16 2019-07-01 美商3M新設資產公司 製造聚合物基質複合物之方法
WO2020229962A1 (en) * 2019-05-15 2020-11-19 3M Innovative Properties Company (co)polymer matrix composites comprising thermally-conductive particles and a nonvolatile diluent and methods of making the same
KR20220009981A (ko) 2019-05-15 2022-01-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 입자들을 상호 연결하는 중합체성 요소를 포함하는 필름
US11450920B2 (en) * 2020-09-30 2022-09-20 GM Global Technology Operations LLC Temperature and spark reduction device
DE102021213867A1 (de) 2021-12-07 2023-06-07 Elringklinger Ag Propagationsschutzelement, Verfahren zur Herstellung eines Propagationsschutzelements und elektrochemisches System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0365111A2 (en) * 1988-10-14 1990-04-25 Minnesota Mining And Manufacturing Company Method of preparing particle-filled microporous articles
EP1141103A1 (en) * 1999-01-15 2001-10-10 3M Innovative Properties Company Flame retardant microporous materials
CN105051941A (zh) * 2013-03-19 2015-11-11 索尼公司 隔膜、电池、电池组、电子设备、电动车辆、电力储存装置以及电力系统
CN105555853A (zh) * 2013-06-04 2016-05-04 沙特基础全球技术有限公司 基于聚碳酸酯的导热阻燃聚合物组合物
CN105745010A (zh) * 2013-10-04 2016-07-06 Ppg工业俄亥俄公司 微孔材料
FR3034771A1 (fr) * 2015-04-13 2016-10-14 Hutchinson Materiaux conducteurs thermiques et/ou electriques et leur procede de preparation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059637A (en) 1987-01-22 1991-10-22 Minnesota Mining And Manufacturing Company Endothermic fire protective material
US6153674A (en) 1998-01-30 2000-11-28 3M Innovative Properties Company Fire barrier material
DE60044465D1 (de) 1999-07-27 2010-07-08 Claude Q C Hayes Wärmeschutzschicht
KR101257967B1 (ko) * 2005-06-24 2013-04-24 다우 글로벌 테크놀로지스 엘엘씨 충전된 tpo 조성물, 이의 제조 방법, 및 이로부터제조된 물품
JP5210317B2 (ja) * 2006-10-25 2013-06-12 ダウ グローバル テクノロジーズ エルエルシー ポリオレフィン分散液、フロスおよびフォーム
JP2010092717A (ja) * 2008-10-08 2010-04-22 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
KR101013827B1 (ko) * 2008-11-25 2011-02-14 주식회사 유니언스 열팽창성 난연 폴리올레핀수지 조성물을 이용한 난연성 복합패널
US9861719B2 (en) * 2010-04-15 2018-01-09 Ppg Industries Ohio, Inc. Microporous material
US8435631B2 (en) * 2010-04-15 2013-05-07 Ppg Industries Ohio, Inc. Microporous material
JP6191673B2 (ja) 2015-10-22 2017-09-06 トヨタ自動車株式会社 電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0365111A2 (en) * 1988-10-14 1990-04-25 Minnesota Mining And Manufacturing Company Method of preparing particle-filled microporous articles
EP1141103A1 (en) * 1999-01-15 2001-10-10 3M Innovative Properties Company Flame retardant microporous materials
CN105051941A (zh) * 2013-03-19 2015-11-11 索尼公司 隔膜、电池、电池组、电子设备、电动车辆、电力储存装置以及电力系统
CN105555853A (zh) * 2013-06-04 2016-05-04 沙特基础全球技术有限公司 基于聚碳酸酯的导热阻燃聚合物组合物
CN105745010A (zh) * 2013-10-04 2016-07-06 Ppg工业俄亥俄公司 微孔材料
FR3034771A1 (fr) * 2015-04-13 2016-10-14 Hutchinson Materiaux conducteurs thermiques et/ou electriques et leur procede de preparation

Also Published As

Publication number Publication date
JP2021503531A (ja) 2021-02-12
US20200369847A1 (en) 2020-11-26
WO2019097451A1 (en) 2019-05-23
EP3710519A1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
CN111356728A (zh) 包含吸热颗粒的聚合物基质复合材料及其制备方法
US11472992B2 (en) Polymer matrix composites comprising thermally conductive particles and methods of making the same
US11866565B2 (en) Polymer matrix composites comprising intumescent particles and methods of making the same
CN111357061B (zh) 包含介电粒子的聚合物基质复合材料及其制备方法
US11926717B2 (en) Polymer matrix composites comprising thermally insulating particles and methods of making the same
KR102397531B1 (ko) 섬유질 기재 및 다공성 중합체성 입자를 포함하는 용품 및 그의 제조 방법
KR20120045001A (ko) 캡슐화된 유기 상변화 물질 입자를 포함하는 발포체 조성물
CN111372677A (zh) 包含可溶性颗粒或可溶胀颗粒中的至少一种的聚合物基质复合材料及其制备方法
US10913834B2 (en) Polymer matrix composites comprising indicator particles and methods of making the same
CN107078259A (zh) 微孔片材产品及制备和使用其的方法
US20220186030A1 (en) (co)polymer matrix composites comprising thermally-conductive particles and a nonvolatile diluent and methods of making the same
US20220213372A1 (en) (co)polymer matrix composites comprising thermally-conductive particles and endothermic particles and methods of making the same
US20220213288A1 (en) (co)polymer matrix composites comprising thermally-conductive particles and intumescent particles and methods of making the same
TW202402901A (zh) 包含聚合物及六方氮化硼粒子之複合材料的片體及用於生產其之方法
US11883792B1 (en) Process for preparing a polypropylene-based sponge-like porous thin film

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200630

RJ01 Rejection of invention patent application after publication