CN111349905A - 增强型铜基复合线材的制备方法 - Google Patents

增强型铜基复合线材的制备方法 Download PDF

Info

Publication number
CN111349905A
CN111349905A CN201911040362.2A CN201911040362A CN111349905A CN 111349905 A CN111349905 A CN 111349905A CN 201911040362 A CN201911040362 A CN 201911040362A CN 111349905 A CN111349905 A CN 111349905A
Authority
CN
China
Prior art keywords
copper
wire
graphene
extrusion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911040362.2A
Other languages
English (en)
Other versions
CN111349905B (zh
Inventor
李铁军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Tanrand New Material Technology Co ltd
Original Assignee
Beijing Tanrand New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Tanrand New Material Technology Co ltd filed Critical Beijing Tanrand New Material Technology Co ltd
Priority to CN201911040362.2A priority Critical patent/CN111349905B/zh
Publication of CN111349905A publication Critical patent/CN111349905A/zh
Application granted granted Critical
Publication of CN111349905B publication Critical patent/CN111349905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/045Manufacture of wire or bars with particular section or properties
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4418Methods for making free-standing articles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0006Apparatus or processes specially adapted for manufacturing conductors or cables for reducing the size of conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种增强型铜基复合线材的制备方法,包括步骤:采用常压化学气相沉积方法,在铜或铜合金粉末上生长石墨烯;将该铜或铜合金粉末室温压实成挤压坯;对挤压坯进行热挤压,成挤压棒坯;将挤压棒坯进行室温拉拔,获得拉拔线材;采用常压化学气相沉积方法在拉拔线材表面生长石墨烯;将表面生长石墨烯的拉拔线材切断集束,并对其重复进行热挤压过程和室温拉拔步骤零到多次;对重复处理完毕的集束线材进行快速再结晶和连续退火,制成增强型铜基复合线材。本发明制备的增强型铜基复合线材缺陷率低,能形成界面结合良好的石墨烯增强和微纳铜线互穿结构,达成石墨烯‑铜复合材料高强高导的目标。

Description

增强型铜基复合线材的制备方法
技术领域
本发明涉及金属复合材料制备技术领域,特别涉及一种增强型铜基复合线材的制备方法。
背景技术
采用传统技术手段制备的铜及铜合金材料无法兼具高强度和高导电率,例如目前Cu-Ag合金导电率为97%IACS,但抗拉强度仅有350MPa;Cu-Cr-Zr合金具有较高的强度(大于500MPa),但导电率仅为70%IACS。开发导电率超过70%IACS、强度大于500MPa的高性能铜材对于节能减排、设备器件的小型化等具有重要意义。
通过材料复合提高铜及铜合金强度和导电率的常用方法通常使用颗粒增强方法来提高铜的强度,其具体方法是将所需增强颗粒分布在铜基体中,由于增强颗粒分布在铜晶界处,可以起到钉扎位错的作用,同时可以储存更多的位错能,使得位错大量堆积在颗粒附近,需要更大的应力才可以实现运动过程,这种阻碍作用使得基体的强度、耐磨性等综合性能得到提高。同时,由于颗粒只占基体极小的体积分数,不会大幅度影响铜基体原有的物理化学性能,因此可以保持大部分的导电性能。
常见的颗粒增强相包括陶瓷、玻璃、金刚石、石墨等,然而由于这些增强相本身导电性能较差,在提升铜强度的同时会致使材料的电导率呈现不同程度的下降。目前,石墨烯/铜复合材料得到了越来越多的关注,石墨烯(Graphene)拥有优异的力学性能和超高导电性能,其理论强度高达130GPa,单层石墨烯具有高于铜4-5个数量级的载流子迁移率,与石墨烯接触的铜可以对石墨烯进行有效的电子掺杂,因此,石墨烯是最有潜力的铜基复合材料增强体,最有可能实现对铜基体强度和导电性的协同增强。
有研究者利用氧化石墨烯还原的方法,制备石墨烯铜复合物,但性能并不理想,该氧化还原法所制备的石墨烯含有大量缺陷,质量还有待提高,在进一步的性质研究和功能开发中严重受限。此外,由于石墨烯比表面积大,与金属表面浸润性不佳,机械混合过程中石墨烯经常发生团聚。
发明内容
本发明的目的是为解决以上问题,本发明提供一种增强型铜基复合线材的制备方法。
根据本发明的一个方面,提供一种增强型铜基复合线材的制备方法,包括以下步骤:a.采用常压化学气相沉积方法,使用气态或液态碳源在铜或铜合金粉末上生长同序堆积或交错堆积的石墨烯;b.将生长有石墨烯的铜或铜合金粉末室温压实成挤压坯;c.对挤压坯进行热挤压,获得挤压棒坯;d.将挤压棒坯进行室温拉拔,获得拉拔线材;e.重复步骤a的常压化学气相沉积方法在拉拔线材表面生长石墨烯;f.将表面生长石墨烯的拉拔线材切断并包套集束;g.对集束后的线材重复e步骤和f步骤0次至多次;h.对重复处理后的集束线材进行快速再结晶和连续退火,制成增强型铜基复合线材。
其中,步骤a中,常压化学沉积方法包括:将铜或铜合金粉末送入化学气相沉积炉内,封闭炉管;抽出炉内残留空气后通入定量的氢气和氩气;在室温下开始匀速升温至生长温度,恒温一段时间,然后通入碳源进行保温生长,生长结束后关闭碳源并将温度降至室温,完成沉积。
其中,步骤a的常压化学沉积方法中,生长温度为1000-1070℃,升温生长的时间为40-50min,恒温时间为30-150min,保温生长时间为30-50min,石墨烯的生长层数为1-3层;冷却方式为快速匀速降温或慢速分梯度降温,其中快速匀速降温的时间为50-100min,慢速分梯度降温包括第一降温阶段、保温阶段和第二降温阶段,第一降温阶段的时间为25-50min,保温阶段的时间为60-90min,第二降温阶段的时间为50-100min。
其中,步骤a中,铜或铜合金粉末为颗粒状粉末或者片状粉末,其中颗粒状粉末的粒径为5-100微米,片状粉末的厚度为5-100微米,片状粉末的截面的X轴方向和y轴方向的长度均位于2-500微米以内。
其中,步骤b中,压实前先将生长有石墨烯的铜或铜合金粉末用纯铜包套进行封装,室温压实的单位压力为100-500MPa。
其中,步骤c中,热挤压过程的挤压温度为400~700℃、挤压比10~100。
其中,步骤d中,室温拉拔过程的拉拔道次变形量5~10%,总变形量70~95%。
其中,步骤f中,热挤压过程、室温拉拔过程和石墨烯生长过程的循环操作次数为1-9次。
其中,步骤h中,采用高频感应加热的方式进行快速再结晶和连续退火,其中高频加热频率400~1000kHz,退火温度200~400℃。
根据本发明的另一方面,提供该制备方法制备的增强型铜基复合线材。
本发明中,采用化学气象沉积在铜粉末上原位生长高结晶度大片层单层或少层石墨烯,解决了石墨烯-铜复合材料的组分质量控制问题和石墨烯与铜材料的难以浸润的问题,降低了复合线材的缺陷,提升了质量。
本发明中,经检测,该原位生长方法使石墨烯与铜基底结合良好,能够避免石墨烯团聚形成裂纹源和石墨烯与铜的分散和团聚问题,促进增强型铜基复合线材的组成均匀化。
本发明中,通过调控铜粉末粒度、挤压和拉拔工艺参数、石墨烯循环生长次数,实现石墨烯在复材内含量和取向控制,达成复合材料微观精细结构互穿的空间构型设计。
本发明中,利用拉拔和循环生长的工艺方法,实现大变形位错堆积、铜细晶强化、石墨烯粉末增强、石墨烯/铜界面纳米电荷转移效应的协同作用,从而实现力电性能的共同提升。
本发明的一种增强型铜基复合线材的制备方法,通过采用颗粒状或片状铜粉原位生长的方法获得高质量石墨烯,降低石墨烯增强铜基线材的缺陷率,配以大变形挤压和拉拔实现石墨烯和铜的有效复合,并进一步形成界面结合良好的石墨烯增强和微纳铜线网络互穿结构,达成石墨烯-铜复合材料高强高导的目标,经试验测得,最后制得的铜基线材的抗拉强度能够达到530MPa以上,电导率达到94.9%IACS以上。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1和图2均是根据本发明两种实施方式的增强型铜基复合线材的制备方法的原位生长过程温度控制曲线图;
图3是根据本发明实施方式制备的增强型铜基复合线材的EDS分析结果图;
图4是根据本发明实施方式制备的包套挤压后的石墨烯包覆铜丝与包套挤压后的纯铜的EBSD测试对比图;
图5是根据本发明实施方式制备的挤压拉拔后的石墨烯包覆铜丝与挤压拉拔后的纯铜的EBSD测试对比图;
图6是根据本发明实施方式制备的强度和电导率测试结果图。
具体实施方式
下面将根据实施例更详细地描述本公开的示例性实施方式。虽然说明书中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
实施例1一种增强型铜基复合线材X1的制备方法
本方法采用99.9%的纯铜颗粒状粉末作为基材,其中颗粒状粉末的粒径为75μm。具体步骤如下:
以甲烷(CH4)气体作为碳源,在低压条件下,采用化学气相沉积方法(CVD法)在铜粉末表面原位生长石墨烯,其具体过程为:将颗粒状铜粉末放入适当的容器内,常温下将容器放入CVD炉中,封闭炉管;使用真空泵持续抽出炉内残留空气后关闭真空泵并通入气体,其中氩气量为200Sccm,氢气量为25Sccm;在室温下开始升温,50min至1070℃,保温60min,然后通入碳源,通入的甲烷的量为2Sccm,生长30min后关闭碳源,并开始降温,在80min内将温度匀速降至室温后将样品取出,得到表面生长有一层同序堆积石墨烯的铜粉末。该原位生长过程的温度控制曲线具体附图1所示。
将取出的表面包覆石墨烯的铜粉末装入纯铜包套中进行封装,室温下将铜粉末压实成挤压坯,压实单位压力300MPa,挤压坯料直径80mm,长度100mm。对上述挤压坯进行热挤压,挤压温度550℃、挤压比为28,获得直径15mm挤压棒材。将挤压棒材酸洗处理,去除表面氧化皮,并进行粗磨抛光以消除腐蚀产生的凹坑。表面处理完成后,将棒材进行多道次拉拔,拉拔道次变形量10%,最总获得直径1mm的拉拔线材。继续在拉拔线材的表面生长石墨烯,具体生长过程与铜颗粒表面生长石墨烯的过程保持一致,具体为:将拉拔线材放入适当的容器内,常温下将容器放入CVD炉中,封闭炉管;使用真空泵持续抽出炉内残留空气后关闭真空泵并通入气体,其中氩气量为200Sccm,氢气量为25Sccm;在室温下开始升温50min至1070℃,保温60min,然后通入碳源,通入的甲烷的量为2Sccm,生长30min后关闭碳源,然后在80min内将温度匀速降至室温后将样品取出,然后将石墨烯生长完毕的线材切断并使用包套集束。
对集束线材保持参数相同地重复上述的热挤压-拉拔步骤10次,得到生长完毕的集束线材。然后采用高频感应加热对集束线材进行快速再结晶连续退火,制得增强型铜基复合线材X1,其中高频加热频率1000kHz,退火温度300℃。
相关测试:
将增强型铜基复合线材X1进行X射线能谱分析,分析结果如图3所示。如图1包括的线材表面形貌图、线材铜碳分布分析图、线材铜分布分析图、线材碳分布分析图可以看出,石墨烯质量分数被均匀的分散在铜基体内部。由此可见,原位生长的石墨烯与基体结合力较强,质量高,在处理过程中没有发生团聚现象,在挤压拉拔等大变形过程中会均匀的弥散在铜基体内部,从而实现对强度和导电性能的协同促进作用。
将本制作过程中包套挤压后的石墨烯包覆铜丝与包套挤压的纯铜丝进行EBSD测试。具体结果如图4所示。其中图4a为包套挤压的石墨烯包覆铜丝的相应测试结果,图4b为包套挤压的纯铜测试结果。通过对比可知,包套挤压后生长石墨烯的铜丝的晶粒大小为50-200微米左右,并且由于其在长时间高温生长过程中实现了铜晶粒的再结晶,因此晶粒相对较大。
将本制作过程中包套挤压拉拔后的石墨烯包覆铜丝与包套挤压拉拔的纯铜丝进行EBSD测试。具体结果如图5所示。其中图5a为包套挤压拉拔的石墨烯包覆铜丝的相应测试结果,图5b包套挤压拉拔的纯铜测试结果。通过对比可知,石墨烯包覆铜丝在拉拔过程中实现了对铜晶粒组织的大幅细化,最终晶粒大小为5-20微米。这进一步验证了本方法实现了铜晶粒组织的细化,为强度和导电协同提升提供了理论依据。
将增强型铜基复合线材X1进行强度和电导率测试。测试结果如图6所示,由图6可以看出,复合线材X1的抗拉强度达到530MPa,电导率达到94.9%IACS,在保证超高力学性能的同时,电学性能与纯铜相差无几,处于铜-石墨烯复合材料的先进技术水平。
实施例2一种增强型铜基复合线材X2的制备方法
本方法采用99.9%的纯铜片状粉末作为基材,其中片状粉末的厚度为20微米,截面的X轴方向最长尺寸为50微米,截面的Y轴方向最长尺寸为40微米。具体步骤如下:
以乙炔(C2H2)气体作为碳源,在低压条件下,采用采用化学气相沉积方法(CVD法)在铜粉末表面原位生长石墨烯,其具体过程为:将颗粒状铜粉末放入适当的容器内,常温下将容器放入CVD炉中,封闭炉管;使用真空泵持续抽出炉内残留空气后并通入气体,其中氩气量为200Sccm,氢气量为25Sccm;在室温下开始升温,50min至1020℃,保温60min,然后通入碳源,通入的甲烷的量为2Sccm,生长30min后关闭碳源,然后开始降温,在140min内将温度降至室温后将样品取出,得到表面生长有一层交错堆积石墨烯的铜粉末。该过程的温度控制曲线如附图2所示。如图2所示,具体的降温方式为,先在25min内,将温度由1020℃匀速降至800℃,然后保温65min,接着继续在60min内,将温度降至室温。
将取出的表面包覆石墨烯的铜粉末装入纯铜包套中进行封装,室温下将铜粉末压实成挤压坯,压实单位压力100MPa,挤压坯料直径100mm,长度120mm。对上述挤压坯进行热挤压,挤压温度400℃、挤压比为10,获得直径10mm挤压棒材。将挤压棒材酸洗处理,去除表面氧化皮,并进行粗磨抛光以消除腐蚀产生的凹坑。表面处理完成后,将棒材进行多道次拉拔,拉拔道次变形量5%,最总获得直径1mm的拉拔线材。继续在拉拔线材的表面生长石墨烯,具体生长过程与铜粉末表面生长石墨烯的过程保持一致,具体为:将拉拔线材放入适当的容器内,常温下将容器放入CVD炉中,封闭炉管;使用真空泵持续抽出炉内残留空气后关闭真空泵并通入气体,其中氩气量为200Sccm,氢气量为25Sccm;在室温下开始升温50min至1020℃,保温60min,然后通入碳源,通入的甲烷的量为2Sccm,生长30min后关闭碳源,分梯度降温后将样品取出,然后将石墨烯生长完毕的线材切断并使用包套集束。其中降温方式同样按照图2中的降温曲线进行操作。
对集束线材保持参数相同地重复上述的热挤压-拉拔步骤5次,得到生长完毕的集束线材。然后采用高频感应加热对集束线材进行快速再结晶连续退火,制得增强型铜铝基复合线材X2,其中高频加热频率400kHz,退火温度200℃。
实施例3一种增强型铜镍基复合线材X3的制备方法
本发明采用铜镍合金颗粒作为基材,其中铜铝合金的粒径为100微米。具体步骤如下:
以液态乙醇作为碳源,在低压条件下,采用采用化学气相沉积方法(CVD法)在铜镍合金粉末表面原位生长石墨烯,其具体过程为:将颗粒状铜镍合金粉末放入适当的容器内,常温下将容器放入CVD炉中,封闭炉管;使用真空泵持续抽出炉内残留空气后关闭真空泵并通入气体,其中氩气量为200Sccm,氢气量为25Sccm;在室温下开始升温,40min升温至1000℃,维持恒温150min,然后通入碳源,通入的乙醇的量为1mL/min,生长50min后关闭碳源,然后开始降温,在50min内将温度匀速降至室温后将样品取出,得到表面生长有三层交错堆积石墨烯的铜镍合金粉末。
将取出的表面包覆石墨烯的铜镍合金粉末装入纯铜包套中进行封装,室温下将铜粉末压实成挤压坯,压实单位压力500MPa,挤压坯料直径40mm,长度50mm。对上述挤压坯进行热挤压,挤压温度700℃、挤压比为64,获得直径5mm挤压棒材。将挤压棒材酸洗处理,去除表面氧化皮,并进行粗磨抛光以消除腐蚀产生的凹坑。表面处理完成后,将棒材进行多道次拉拔,拉拔道次变形量10%,最总获得直径0.5mm的拉拔线材。继续在拉拔线材的表面生长石墨烯,具体生长过程与铜颗粒表面生长石墨烯的过程保持一致,具体为:将拉拔后的线材放入适当的容器内,常温下将容器放入CVD炉中,封闭炉管;使用真空泵持续抽出炉内残留空气后并通入气体,其中氩气量为200Sccm,氢气量为25Sccm;在室温下开始升温,40min升温至1000℃,维持恒温150min,然后通入碳源,通入的乙醇的量为1mL/min,生长30min后关闭碳源,然后开始降温,在50min内将温度匀速降至室温后将样品取出,然后将石墨烯生长完毕的线材切断并使用包套集束。
对集束线材保持参数相同地重复上述的热挤压-拉拔步骤,得到生长完毕的集束线材。然后采用高频感应加热对集束线材进行快速再结晶连续退火,制得增强型铜基复合线材X3,其中高频加热频率500kHz,退火温度为300℃。
实施例4一种增强型铜基复合线材X4的制备方法
本发明采用铜镍合金片状粉末作为基材,其中铜镍合金片状粉末的厚度20微米,截面的X轴方向最长尺寸为100微米,截面的Y轴方向最长尺寸为120微米。具体步骤如下:
以液态甲醇作为碳源,在低压条件下,采用采用化学气相沉积方法(CVD法)在铜镍合金粉末表面原位生长石墨烯,其具体过程为:将片状铜镍合金粉末放入适当的容器内,常温下将容器放入CVD炉中,封闭炉管;使用真空泵持续抽出炉内残留空气后关闭真空泵并通入气体,其中氩气量为200Sccm,氢气量为25Sccm;在室温下开始升温,20min升温至1020℃,维持恒温100min,然后通入碳源,通入的甲醇的量为1mL/min,生长50min后关闭碳源,然后开始分梯度降温,在50min内将温度匀速降至600℃,恒温100min,再在100min将温度降至室温。将样品取出,得到表面生长有两层同序堆积石墨烯的铜镍粉末。
将取出的表面包覆石墨烯的铜镍合金粉末装入铜镍包套中进行封装,室温下将铜镍合金粉末压实成挤压坯,压实单位压力200MPa,挤压坯料直径为40mm,长度为50mm。对上述挤压坯进行热挤压,挤压温度700℃、挤压比为100,获得直径2mm挤压棒材。将挤压棒材酸洗处理,去除表面氧化皮,并进行粗磨抛光以消除腐蚀产生的凹坑。表面处理完成后,将棒材进行多道次拉拔,拉拔道次变形量7%,最总获得直径0.3mm的拉拔线材。继续在拉拔线材的表面生长石墨烯,具体生长过程与铜镍合金粉末表面生长石墨烯的过程保持一致,具体为:将片状铜镍合金粉末放入适当的容器内,常温下将容器放入CVD炉中,封闭炉管;使用真空泵持续抽出炉内残留空气后关闭真空泵并通入气体,其中氩气量为200Sccm,氢气量为25Sccm;在室温下开始升温,20min升温至1020℃,维持恒温100min,然后通入碳源,通入的甲醇的量为1mL/min,生长50min后关闭碳源,然后开始分梯度降温,在50min内将温度匀速降至600℃,恒温90min,再在100min将温度降至室温。室温下将样品取出,并将石墨烯生长完毕的线材切断并使用包套集束。
对集束线材保持参数相同地重复上述的热挤压-拉拔步骤,得到生长完毕的集束线材。然后采用高频感应加热对集束线材进行快速再结晶连续退火,制得增强型铜铝基复合线材X4,其中高频加热频率700kHz,退火温度为350℃。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种增强型铜基复合线材的制备方法,其特征在于,包括以下步骤:
a.采用常压化学气相沉积方法,使用气态或液态碳源在铜或铜合金粉末上原位生长石墨烯;
b.将生长有石墨烯的铜或铜合金粉末室温压实成挤压坯;
c.对挤压坯进行热挤压,获得挤压棒坯;
d.将挤压棒坯进行室温拉拔,获得拉拔线材;
e.重复步骤a的常压化学气相沉积方法,在拉拔线材表面生长石墨烯;
f.将表面生长石墨烯的拉拔线材切断并用包套集束;
g.对集束后的线材重复e步骤和f步骤0次至多次;
h.对重复处理后的线材进行快速再结晶和连续退火,制成增强型铜基复合线材。
2.如权利要求1所述的制备方法,其特征在于,
步骤a中,常压化学沉积方法包括:将铜或铜合金粉末送入化学气相沉积炉内,封闭炉管;抽出炉内残留空气后通入定量的氢气和氩气;在室温下开始匀速升温至生长温度,恒温一段时间,然后通入碳源进行保温生长,生长结束后关闭碳源并将温度降至室温,完成沉积。
3.如权利要求2所述的制备方法,其特征在于,
步骤a的常压化学沉积方法中,生长温度为1000-1070℃,升温时间为40-50min,恒温时间为30-150min,保温生长时间为30-50min,石墨烯的生长层数为1-3层;冷却方式为快速匀速降温或慢速分梯度降温,其中快速匀速降温的时间为50-100min,慢速分梯度降温包括第一降温阶段、保温阶段和第二降温阶段,第一降温阶段的时间为25-50min,保温阶段的时间为60-90min,第二降温阶段的时间为50-100min。
4.如权利要求1所述的制备方法,其特征在于,
步骤a中,铜或铜合金粉末为颗粒状粉末或者片状粉末,其中颗粒状粉末的粒径为5-100微米,片状粉末的厚度为5-100微米,片状粉末的截面的X轴方向和y轴方向的长度均位于2-500微米以内。
5.如权利要求1所述的制备方法,其特征在于,
步骤b中,压实前先将生长有石墨烯的铜或铜合金粉末用纯铜包套进行封装,室温压实的单位压力为100-500MPa。
6.如权利要求1所述的制备方法,其特征在于,
步骤c中,热挤压过程的挤压温度为400~700℃、挤压比10~100。
7.如权利要求1所述的制备方法,其特征在于,
步骤d中,室温拉拔过程的拉拔道次变形量5~10%,总变形量70~95%。
8.如权利要求1所述的制备方法,其特征在于,
步骤g中,热挤压过程、室温拉拔过程和石墨烯生长过程的循环操作次数为1-9次。
9.如权利要求1所述的制备方法,其特征在于,
步骤h中,采用高频感应加热的方式进行快速再结晶和连续退火,其中高频加热频率400~1000kHz,退火温度200~400℃。
10.如权利要求1-9任一所述的制备方法制备的增强型铜基复合线材。
CN201911040362.2A 2019-10-29 2019-10-29 增强型铜基复合线材的制备方法 Active CN111349905B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911040362.2A CN111349905B (zh) 2019-10-29 2019-10-29 增强型铜基复合线材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911040362.2A CN111349905B (zh) 2019-10-29 2019-10-29 增强型铜基复合线材的制备方法

Publications (2)

Publication Number Publication Date
CN111349905A true CN111349905A (zh) 2020-06-30
CN111349905B CN111349905B (zh) 2022-03-29

Family

ID=71192788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911040362.2A Active CN111349905B (zh) 2019-10-29 2019-10-29 增强型铜基复合线材的制备方法

Country Status (1)

Country Link
CN (1) CN111349905B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112916630A (zh) * 2021-01-22 2021-06-08 宁波江丰电子材料股份有限公司 一种铝铜合金蒸发料的塑性加工方法
CN114388167A (zh) * 2022-01-18 2022-04-22 远东电缆有限公司 一种石墨烯铜线及其制备方法和电缆
CN114752914A (zh) * 2021-01-11 2022-07-15 上海新池能源科技有限公司 铜基石墨烯及导体的制备方法和电线电缆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773985A (zh) * 2014-02-26 2014-05-07 哈尔滨工业大学 一种高效原位制备石墨烯增强铜基复合材料的方法
CN104024156A (zh) * 2011-11-04 2014-09-03 Jx日矿日石金属株式会社 石墨烯制造用铜箔及其制造方法、以及石墨烯的制造方法
CN109897985A (zh) * 2019-03-05 2019-06-18 天津工业大学 三维连续石墨烯/铜复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024156A (zh) * 2011-11-04 2014-09-03 Jx日矿日石金属株式会社 石墨烯制造用铜箔及其制造方法、以及石墨烯的制造方法
US20140246399A1 (en) * 2011-11-04 2014-09-04 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene, production method thereof and method of producing graphene
CN103773985A (zh) * 2014-02-26 2014-05-07 哈尔滨工业大学 一种高效原位制备石墨烯增强铜基复合材料的方法
CN109897985A (zh) * 2019-03-05 2019-06-18 天津工业大学 三维连续石墨烯/铜复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUERAN LIU等: "Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding", 《MATERIALS SCIENCE & ENGINEERING A》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752914A (zh) * 2021-01-11 2022-07-15 上海新池能源科技有限公司 铜基石墨烯及导体的制备方法和电线电缆
CN112916630A (zh) * 2021-01-22 2021-06-08 宁波江丰电子材料股份有限公司 一种铝铜合金蒸发料的塑性加工方法
CN114388167A (zh) * 2022-01-18 2022-04-22 远东电缆有限公司 一种石墨烯铜线及其制备方法和电缆
CN114388167B (zh) * 2022-01-18 2024-01-26 远东电缆有限公司 一种石墨烯铜线及其制备方法和电缆

Also Published As

Publication number Publication date
CN111349905B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN111349905B (zh) 增强型铜基复合线材的制备方法
Chu et al. Creating defects on graphene basal-plane toward interface optimization of graphene/CuCr composites
Chu et al. Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites
Duan et al. Effect of CNTs content on the microstructures and properties of CNTs/Cu composite by microwave sintering
Kang et al. Microstructure and thermal properties of copper–diamond composites with tungsten carbide coating on diamond particles
Wu et al. Graphene oxide/Al composites with enhanced mechanical properties fabricated by simple electrostatic interaction and powder metallurgy
CN108573763B (zh) 电线电缆导体、石墨烯包覆金属粉体和导体的制备方法
Guo et al. Enhanced mechanical properties and electrical conductivity of graphene nanoplatelets/Cu composites by in situ formation of Mo2C nanoparticles
CN108149046B (zh) 一种高强、高导石墨烯/铜纳米复合材料及其制备方法和应用
Sun et al. Influence of spark plasma sintering temperature on the microstructure and strengthening mechanisms of discontinuous three-dimensional graphene-like network reinforced Cu matrix composites
Xin et al. Effect of extrusion treatment on the microstructure and mechanical behavior of SiC nanowires reinforced Al matrix composites
CN110923662B (zh) 石墨烯-金属复合料的制备方法
Luo et al. Fabrication of W–Cu/La2O3 composite powder with a novel pretreatment prepared by electroless plating and its sintering characterization
CN110904356B (zh) 网络互穿型石墨烯-铜复合材料的制备方法
CN113699405A (zh) 一种铸造原位生长石墨烯增强铜复合材料的制备方法
Lin et al. Ultra-strong nanographite bulks based on a unique carbon nanotube linked graphite onions structure
CN114953620A (zh) 热压烧结和化学气相沉积相结合的石墨烯铜复合材料的制备方法
Sun et al. Microstructure and compression properties of fine Al2O3 particles dispersion strengthened molybdenum alloy
Xiao et al. In-situ synthesis of graphene on surface of copper powder by rotary CVD and its application in fabrication of reinforced Cu-matrix composites
CN114054762A (zh) 基于石墨烯缺陷调控的石墨烯/金属基复合材料制备方法
CN112981176B (zh) 一种三维网状结构原位TiC非连续增强钛基复合材料及其制备方法
Zhao et al. Preparation and properties of Cu/RGO composites via H2 reduction and spark plasma sintering
Xu et al. In situ Al4C3 nanorods and carbon nanotubes hybrid-reinforced aluminum matrix composites prepared by a novel two-step ball milling
Lin et al. Enhanced strength and toughness of Ni/graphene composite via three-dimensional graphene-like nanosheets network
CN110923591B (zh) 一种石墨烯的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant