CN111341864A - 基于超薄锗量子点薄膜太阳能电池及其制备方法 - Google Patents

基于超薄锗量子点薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN111341864A
CN111341864A CN202010258351.8A CN202010258351A CN111341864A CN 111341864 A CN111341864 A CN 111341864A CN 202010258351 A CN202010258351 A CN 202010258351A CN 111341864 A CN111341864 A CN 111341864A
Authority
CN
China
Prior art keywords
layer
thin film
solar cell
germanium
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010258351.8A
Other languages
English (en)
Inventor
钱松
单丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou Polytechnic Institute
Original Assignee
Yangzhou Polytechnic Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou Polytechnic Institute filed Critical Yangzhou Polytechnic Institute
Priority to CN202010258351.8A priority Critical patent/CN111341864A/zh
Publication of CN111341864A publication Critical patent/CN111341864A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本案涉及一种基于超薄锗量子点薄膜太阳能电池及其制备方法,其至少包括有:衬底层;形成于所述衬底层上的硼掺杂氢化非晶富硅碳化硅薄膜层;形成于所述硼掺杂氢化非晶富硅碳化硅薄膜层上的纳米锗薄膜层;以及形成于纳米锗薄膜层上的磷掺杂氢化非晶富硅碳化硅薄膜层;采用PECVD工艺在衬底层依次制备硼掺杂氢化非晶富硅碳化硅薄膜层、纳米锗薄膜层和磷掺杂氢化非晶富硅碳化硅薄膜层。本案制备的基于超薄锗量子点薄膜太阳能电池相较于传统的薄膜太阳能电池具有更高的转换效率。

Description

基于超薄锗量子点薄膜太阳能电池及其制备方法
技术领域
本发明涉及薄膜太阳能电池领域,特别涉及一种基于超薄锗量子点薄膜太阳能电池及其制备方法。
背景技术
随着新一代太阳能电池的不断发展,纳米硅结构被认为是一种能够较好地调节禁带宽度实现宽光谱响应的材料,其中,利用纳米硅结构与单晶硅衬底构成的异质结太阳能电池一直是人们广泛关注的研究热点。但是,由于纳米硅有源层的厚度相对于单晶硅衬底而言很薄,其对太阳光的吸收有限,因此绝大部分的光生载流子来自于单晶硅衬底而非纳米硅有源层,纳米硅的作用并不能完全显示出来。另一方面,新一代薄膜太阳电池的发展方向是低成本、高效率和柔性应用,考虑到进一步减小材料成本,便于在柔性衬底上生长。
对于传统的纳米硅-非晶硅异质结太阳能电池而言,有源层(纳米硅薄膜)的厚度比较小,影响了其光吸收性能,从而导致纳米硅-非晶硅异质结太阳能电池光电转换效率比较低下(2-3%)。所以,如何解决这样的问题是当前我们面临的一个困难。
发明内容
与硅(Si)相比,锗(Ge)的带隙较小,其间接带隙和直接带隙分别为0.67eV和0.80eV,对应的波长恰好落在可见光长波段。同时,由于其具有较小的有效质量和较大的介电常数,使得Ge具有比Si大得多的激子玻尔半径(~24.3nm),这意味着在具有较大晶粒尺寸的纳米锗(nc-Ge)材料中即可观察到量子限制效应,因而也就更容易通过能带工程对nc-Ge的能带结构进行调控以设计和制备出相应的光伏器件。与nc-Si相比,nc-Ge还具有较高的电子和空穴迁移率,在可见光波段范围内的光吸收系数以及相对较低的制备温度,这使得Ge量子点在太阳能电池方面有很大的潜力。
但是,现阶段制约着Ge量子点应用的最大问题就是nc-Ge一般很难形成高质量的薄膜材料,B.Zhang等人通过磁控溅射的方法制备出250~300nm厚度的nc-Ge薄膜,发现其材料具有大量类受主的表面态,导致未掺杂的nc-Ge薄膜在室温附近的载流子类型呈现p型。在制备150nm左右的nc-Ge薄膜后,发现了样品的导电类型为p型,原因也是nc-Ge表面的表面态钉扎了费米能级,使之靠近价带所造成的。针对以上的问题,一种解决的途径就是控制薄膜的厚度,通过降低薄膜的厚度来控制薄膜中的缺陷态,得到高质量的薄膜材料。减小薄膜的厚度,不仅能够严格控制薄膜的质量,更重要的是能够节约材料,缩短材料的沉积时间,控制器件的制作成本。
但是,在考虑降低薄膜厚度的同时也要考虑到厚度的降低对其光学性能的影响。对于超薄的薄膜材料来说,特别是当薄膜材料厚度降低到了原子层量级时,超薄薄膜材料可以增加其载流子的注入能力以及提高薄膜材料内部载流子的输运,但同时降低了薄膜材料的光吸收、能量转换效率以及非线性光响应,影响了器件的性能。所以如何解决超薄薄膜材料厚度对其光学性能的影响也是超薄锗量子点薄膜能否作薄膜太阳能电池的有源层(吸收层)的关键。
针对上述不足之处,本发明提供了一种基于超薄锗量子点薄膜太阳能电池及其制备方法,本案利用planar nanocavities(平面纳米腔)的干涉机制,通过该干涉机制,光可以在谐振腔内进行多次反射,从而增加光吸收的光路,提高光吸收效率。将磷掺杂氢化非晶富硅碳化硅薄膜(a-SiC:H-P)/纳米锗薄膜(nc-Ge)/硼掺杂氢化非晶富硅碳化硅薄膜(a-SiC:H-B)设计为整个纳米谐振腔来获得共振吸收的条件,通过改变掺杂a-SiC:H薄膜的厚度来增强超薄锗量子点薄膜的光吸收,提高太阳能电池的转换效率。
为实现上述目的,本发明的技术方案如下:
一种基于超薄锗量子点薄膜太阳能电池,其至少包括有:
衬底层;
形成于所述衬底层上的硼掺杂氢化非晶富硅碳化硅薄膜层;
形成于所述硼掺杂氢化非晶富硅碳化硅薄膜层上的纳米锗薄膜层;以及
形成于纳米锗薄膜层上的磷掺杂氢化非晶富硅碳化硅薄膜层。
优选的是,所述的基于超薄锗量子点薄膜太阳能电池,其中,在所述衬底层和所述硼掺杂氢化非晶富硅碳化硅薄膜层之间还设有金属反射层。
优选的是,所述的基于超薄锗量子点薄膜太阳能电池,其中,所述金属反射层为铝层或银层。
优选的是,所述的基于超薄锗量子点薄膜太阳能电池,其中,所述金属反射层为银层。
优选的是,所述的基于超薄锗量子点薄膜太阳能电池,其中,所述纳米锗薄膜层的厚度为10-20nm。
优选的是,所述的基于超薄锗量子点薄膜太阳能电池,其中,所述纳米锗薄膜层的厚度为15nm。
优选的是,所述的基于超薄锗量子点薄膜太阳能电池,其中,所述纳米锗薄膜层上通过热退火工艺形成有5-10nm的锗量子点。
优选的是,所述的基于超薄锗量子点薄膜太阳能电池,其中,所述衬底层为石英衬底层。
一种基于超薄锗量子点薄膜太阳能电池的制备方法,其至少包含以下步骤:
通过磁控溅射在所述衬底层上镀上所述金属反射层;
采用PECVD(等离子体增强化学气相沉积)工艺在所述金属反射层上依次制备所述硼掺杂氢化非晶富硅碳化硅薄膜层、纳米锗薄膜层和磷掺杂氢化非晶富硅碳化硅薄膜层。
优选的是,所述的基于超薄锗量子点薄膜太阳能电池的制备方法,其中,所述衬底层的温度维持在250±5℃。
本发明的有益效果是:本案采用了磷、硼掺杂氢化非晶富硅碳化硅(a-SiC:H)薄膜作为了p-i-n结构的p层和n层(窗口层);相比于氧化硅和氮化硅等材料,碳化硅(SiC)禁带宽度较低,吸收系数较小,电导率较大,与纳米锗形成较低的势垒,有利于其间载流子的输运;并且可以通过调节富硅碳化硅中的碳硅比来获得所需要的窗口层的禁带宽度,同时也可以改变其掺杂浓度来获得较好的电导率,有利于载流子的输运,提高太阳能电池的转换效率。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1的结构示意图。
图2为实施例2的结构示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
参见图1,其提供了一实施例的基于超薄锗量子点薄膜太阳能电池,其至少包括有:
衬底层1;
形成于衬底层1上的硼掺杂氢化非晶富硅碳化硅薄膜层2;
形成于硼掺杂氢化非晶富硅碳化硅薄膜层2上的纳米锗薄膜层3;以及
形成于纳米锗薄膜层3上的磷掺杂氢化非晶富硅碳化硅薄膜层4。
制备方法:采用PECVD工艺在衬底层1依次制备硼掺杂氢化非晶富硅碳化硅薄膜层2、纳米锗薄膜层3和磷掺杂氢化非晶富硅碳化硅薄膜层4。
实施例2
参见图2,其提供了另一实施例的基于超薄锗量子点薄膜太阳能电池,其至少包括有:
衬底层1;
形成于衬底层1上的金属反射层5;
形成于金属反射层5上的硼掺杂氢化非晶富硅碳化硅薄膜层2;
形成于硼掺杂氢化非晶富硅碳化硅薄膜层2上的纳米锗薄膜层3;以及
形成于纳米锗薄膜层3上的磷掺杂氢化非晶富硅碳化硅薄膜层4。
制备方法:首先,通过磁控溅射在衬底层1上镀上金属反射层5,石英衬底温度维持在250±5℃;随后,采用PECVD工艺在金属反射层5上依次制备硼掺杂氢化非晶富硅碳化硅薄膜层2、纳米锗薄膜层3和磷掺杂氢化非晶富硅碳化硅薄膜层4。
通过分解硅烷气体、磷烷气体以及硼烷气体来沉积硼掺杂以及磷掺杂氢化非晶富硅碳化硅薄膜,通过分解锗烷气体来沉积非晶纳米锗薄膜层,按顺序依次生长,最后制备得到a-SiC:H-P/nc-Ge/a-SiC:H-B三明治结构的薄膜,可以通过控制硅烷、磷烷、硼烷以及锗烷分解的时间,来分别控制硼掺杂氢化非晶富硅碳化硅薄膜层、纳米锗薄膜层和磷掺杂氢化非晶富硅碳化硅薄膜层的厚度。
本案主要描述薄膜太阳能电池的核心器件,作为一个完整的薄膜太阳能电池,它自然会包含一些已经公知的常规部件(非本案发明点),本案在此不再赘述,例如图2中的电极6(金属反射层5可作为另一电极),在磷掺杂氢化非晶富硅碳化硅薄膜层4上通过蒸镀的方式制备电极6(铝电极),最终形成铝电极/a-SiC:H-P/nc-Ge/a-SiC:H-B/金属反射层(银电极)/石英衬底结构的p-i-n型太阳能电池原型器件。
纳米锗薄膜(nc-Ge)尺寸和密度的不同,不但会引起薄膜太阳能电池结构的变化,也会对其光学及电学特性产生重要影响,可以通过制备具有不同nc-Ge尺寸和密度的样品(这里是通过沉积不同厚度的非晶锗薄膜以及不同温度下的高温退火晶化来实现),确定量子限制效应和界面态对薄膜光学及电学特性的影响,最终确定nc-Ge薄膜作为有源层的厚度优选为10-20nm,进一步优选是15nm,且nc-Ge薄膜上通过热退火形成有5-10nm的锗量子点,具体退火温度为1000℃,保护气氛为氮气氛,退火时间为一小时。
在制备具有不同掺杂浓度的掺磷(P)以及掺硼(B)的氢化非晶碳化硅薄膜(a-SiC:H)时,掺杂浓度的不同,会对其光学及电学性能产生重要影响,可以通过制备具有不同掺杂浓度的掺P以及掺B的a-SiC:H薄膜,来判断不同掺杂组合和不同掺杂浓度对其光学带隙以及电导率的影响,从而最终确定合适的掺杂浓度的掺P以及掺B的a-SiC:H薄膜作为p-i-n结构的p层和n层(窗口层),纳米锗(nc-Ge)薄膜作为p-i-n结构的i层(有源层);
制备掺磷(P)以及掺硼(B)的a-SiC:H时,将SiH4以及CH4和磷烷(PH3)或乙硼烷(B2H6)一起反应,来获得P掺杂或B掺杂的非晶层。
纳米谐振腔为a-SiC:H-P/nc-Ge(15nm)/a-SiC:H-B三明治结构,由于碳化硅与锗有比较相近的反射率,所以将a-SiC:H-P/nc-Ge(15nm)/a-SiC:H-B三明治结构作为纳米谐振腔,并选择金属铝或者银作为金属反射层,形成a-SiC:H-P/nc-Ge(15nm)/a-SiC:H-B/Ag(Al)结构,由于银或铝的合金化温度和非晶碳化硅的晶化温度要远高于非晶锗的晶化温度,所以在非晶锗完全晶化后将不影响非晶碳化硅层以及金属反射层。
当需要对太阳能电池的能量转换效率进行研究时,可以利用Solar Simulator太阳电池能量转换效率测试系统测量电池的效率。在AM1.5(100mW/cm2)的模拟太阳光照射下测量太阳能电池样品的电流-电压(I-V)曲线,得到电池的开路电压、短路电流、填充因子和光电转换效率等参数。例如:本案实施例2得到电池的开路电压为422mV,短路电流为22.4mA,光电转换效率能达到7.3%。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (10)

1.一种基于超薄锗量子点薄膜太阳能电池,其特征在于,其至少包括有:
衬底层;
形成于所述衬底层上的硼掺杂氢化非晶富硅碳化硅薄膜层;
形成于所述硼掺杂氢化非晶富硅碳化硅薄膜层上的纳米锗薄膜层;
以及形成于纳米锗薄膜层上的磷掺杂氢化非晶富硅碳化硅薄膜层。
2.根据权利要求1所述的基于超薄锗量子点薄膜太阳能电池,其特征在于,在所述衬底层和所述硼掺杂氢化非晶富硅碳化硅薄膜层之间还设有金属反射层。
3.根据权利要求2所述的基于超薄锗量子点薄膜太阳能电池,其特征在于,所述金属反射层为铝层或银层。
4.根据权利要求3所述的基于超薄锗量子点薄膜太阳能电池,其特征在于,所述金属反射层为银层。
5.根据权利要求1所述的基于超薄锗量子点薄膜太阳能电池,其特征在于,所述纳米锗薄膜层的厚度为10-20nm。
6.根据权利要求5所述的基于超薄锗量子点薄膜太阳能电池,其特征在于,所述纳米锗薄膜层的厚度为15nm。
7.根据权利要求1所述的基于超薄锗量子点薄膜太阳能电池,其特征在于,所述纳米锗薄膜层上通过热退火工艺形成有5-10nm的锗量子点。
8.根据权利要求1所述的基于超薄锗量子点薄膜太阳能电池,其特征在于,所述衬底层为石英衬底层。
9.一种如权利要求2所述的基于超薄锗量子点薄膜太阳能电池的制备方法,其特征在于,至少包含以下步骤:
通过磁控溅射在所述衬底层上镀上所述金属反射层;
采用PECVD工艺在所述金属反射层上依次制备所述硼掺杂氢化非晶富硅碳化硅薄膜层、纳米锗薄膜层和磷掺杂氢化非晶富硅碳化硅薄膜层。
10.根据权利要求9所述的基于超薄锗量子点薄膜太阳能电池的制备方法,其特征在于,所述衬底层的温度维持在250±5℃。
CN202010258351.8A 2020-04-03 2020-04-03 基于超薄锗量子点薄膜太阳能电池及其制备方法 Pending CN111341864A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010258351.8A CN111341864A (zh) 2020-04-03 2020-04-03 基于超薄锗量子点薄膜太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010258351.8A CN111341864A (zh) 2020-04-03 2020-04-03 基于超薄锗量子点薄膜太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN111341864A true CN111341864A (zh) 2020-06-26

Family

ID=71187534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010258351.8A Pending CN111341864A (zh) 2020-04-03 2020-04-03 基于超薄锗量子点薄膜太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111341864A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1747130A (zh) * 2005-08-18 2006-03-15 南京大学 基于金属诱导结晶工艺的新型Si基Ge量子点结构制备方法
CN101356627A (zh) * 2005-12-09 2009-01-28 美光科技公司 具有共振隧道势垒的增强的多位非易失性存储器装置
US20100059119A1 (en) * 2008-09-09 2010-03-11 Electronics And Telecommunications Research Institute Solar cell and method of manufacturing the same
KR20110077752A (ko) * 2009-12-30 2011-07-07 주식회사 효성 적층형 박막 태양전지 및 그의 제조방법
JP2012109380A (ja) * 2010-11-17 2012-06-07 Sumitomo Metal Mining Co Ltd 表面電極付透明導電基板の製造方法及び薄膜太陽電池の製造方法
DE102012101448A1 (de) * 2011-02-23 2012-08-23 Electronics And Telecommunications Research Institute Dünnschichtsolarzelle und Verfahren zur Herstellung derselben
US20120285532A1 (en) * 2011-05-12 2012-11-15 Electronics And Telecommunications Research Institute Transparent color solar cells
US20130061915A1 (en) * 2011-09-09 2013-03-14 Seung-Yeop Myong Thin film solar cells and manufacturing method thereof
JP2014209651A (ja) * 2014-06-24 2014-11-06 セイコーエプソン株式会社 光電変換装置、電子機器、光電変換装置の製造方法および電子機器の製造方法
CN105280736A (zh) * 2014-07-23 2016-01-27 北京有色金属研究总院 一种具有双层界面带隙缓冲层的非晶硅锗薄膜太阳能电池
CN110416336A (zh) * 2019-08-05 2019-11-05 扬州工业职业技术学院 新型纳米结构薄膜太阳能电池及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1747130A (zh) * 2005-08-18 2006-03-15 南京大学 基于金属诱导结晶工艺的新型Si基Ge量子点结构制备方法
CN101356627A (zh) * 2005-12-09 2009-01-28 美光科技公司 具有共振隧道势垒的增强的多位非易失性存储器装置
US20100059119A1 (en) * 2008-09-09 2010-03-11 Electronics And Telecommunications Research Institute Solar cell and method of manufacturing the same
KR20110077752A (ko) * 2009-12-30 2011-07-07 주식회사 효성 적층형 박막 태양전지 및 그의 제조방법
JP2012109380A (ja) * 2010-11-17 2012-06-07 Sumitomo Metal Mining Co Ltd 表面電極付透明導電基板の製造方法及び薄膜太陽電池の製造方法
DE102012101448A1 (de) * 2011-02-23 2012-08-23 Electronics And Telecommunications Research Institute Dünnschichtsolarzelle und Verfahren zur Herstellung derselben
US20120285532A1 (en) * 2011-05-12 2012-11-15 Electronics And Telecommunications Research Institute Transparent color solar cells
US20130061915A1 (en) * 2011-09-09 2013-03-14 Seung-Yeop Myong Thin film solar cells and manufacturing method thereof
JP2014209651A (ja) * 2014-06-24 2014-11-06 セイコーエプソン株式会社 光電変換装置、電子機器、光電変換装置の製造方法および電子機器の製造方法
CN105280736A (zh) * 2014-07-23 2016-01-27 北京有色金属研究总院 一种具有双层界面带隙缓冲层的非晶硅锗薄膜太阳能电池
CN110416336A (zh) * 2019-08-05 2019-11-05 扬州工业职业技术学院 新型纳米结构薄膜太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUJIAN JIA ET AL: "Ge quantum dot enhanced hydrogenated amorphous silicon germanium solar cells on flexible stainless steel substrate", 《SOLAR ENERGY》 *
曹蕴清: "硅量子点/非晶碳化硅多层结构太阳能电池的制备与特性探索", 《中国硕士学位论文电子期刊》 *

Similar Documents

Publication Publication Date Title
Tsakalakos et al. Silicon nanowire solar cells
JP4208281B2 (ja) 積層型光起電力素子
Ding et al. Highly transparent ZnO bilayers by LP-MOCVD as front electrodes for thin-film micromorph silicon solar cells
US8551558B2 (en) Techniques for enhancing efficiency of photovoltaic devices using high-aspect-ratio nanostructures
Schropp et al. Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells
CN102804392A (zh) 半导体光学检测器结构
CN111628032B (zh) 一种硅异质结太阳电池本征钝化层的结构及其制作方法
US20090217971A1 (en) Photovoltaic Devices with Enhanced Efficiencies Using High-Aspect-Ratio Nanostructures
Prathap et al. Thin film silicon solar cells by AIC on foreign substrates
EP2253021B1 (en) Photovoltaic devices with high-aspect-ratio nanostructures
JPH04266066A (ja) 光起電力素子
Shawky et al. Performance analysis and simulation of c-Si/SiGe based solar cell
Li et al. Hydrogen annealed ZnO: B film grown by LPCVD technique as TCO for enhancing conversion efficiency of a-Si: H/μc-Si: H tandem solar cells
Wang et al. Heteroepitaxial growth of Cu2O films on Nb-SrTiO3 substrates and their photovoltaic properties
Kumagai et al. Bayesian optimization of hydrogen plasma treatment in silicon quantum dot multilayer and application to solar cells
Matsuyama et al. Polycrystalline Si thin-film solar cell prepared by solid phase crystallization (SPC) method
CN111341864A (zh) 基于超薄锗量子点薄膜太阳能电池及其制备方法
Mukherjee et al. Growth of device quality p-type μc-Si: H films by hot-wire CVD for a-Si pin and c-Si heterojunction solar cells
JPH11186574A (ja) シリコン系薄膜光電変換装置
KR20140110911A (ko) 방사형 접합 반도체 나노구조의 저온 제조 방법, 방사형 접합 디바이스 및 방사형 접합 나노구조를 포함하는 태양 전지
Alami et al. Second-generation photovoltaics: thin-film technologies
US11670729B2 (en) Solar cell apparatus and method for forming the same for single, tandem and heterojunction systems
Goswami Three generations of solar cells
Ma et al. Microstructure and photoelectric properties of P-doped silicon-rich SiNx film as an n-type layer for PIN-type amorphous silicon thin film solar cells
CN103107227B (zh) 非晶硅薄膜太阳能电池及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200626