CN111339623B - 一种功率模块温度估算方法 - Google Patents

一种功率模块温度估算方法 Download PDF

Info

Publication number
CN111339623B
CN111339623B CN201811455463.1A CN201811455463A CN111339623B CN 111339623 B CN111339623 B CN 111339623B CN 201811455463 A CN201811455463 A CN 201811455463A CN 111339623 B CN111339623 B CN 111339623B
Authority
CN
China
Prior art keywords
loss
specified
temperature
igbt
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811455463.1A
Other languages
English (en)
Other versions
CN111339623A (zh
Inventor
蔡磊
彭再武
杨洪波
陈慧民
石高峰
凌岳伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Electric Vehicle Co Ltd
Original Assignee
CRRC Electric Vehicle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Electric Vehicle Co Ltd filed Critical CRRC Electric Vehicle Co Ltd
Priority to CN201811455463.1A priority Critical patent/CN111339623B/zh
Priority to PCT/CN2019/112503 priority patent/WO2020108172A1/zh
Publication of CN111339623A publication Critical patent/CN111339623A/zh
Application granted granted Critical
Publication of CN111339623B publication Critical patent/CN111339623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

一种功率模块温度估算方法,包括:步骤一、获取待分析功率模块的损耗,并根据损耗确定待分析功率模块的网络模型中首层的输入热量;步骤二、根据首层的输入热量确定网络模型中各层的单层温差;步骤三、根据各层的单层温差和环境温度确定待分析功率模块的结温。本方法通过迭代计算的方式来对功率模块的结温进行估算,其方便在微处理器中实现。同时,本方法在计算功率模块的损耗时引入了温度、栅极电阻等参数,其能够有效提高损耗计算的精度,从而有助于提高结温估算的精度,进而使得电机控制器能够在得到保护的前提下最大限度的提升输出能力。

Description

一种功率模块温度估算方法
技术领域
本发明涉及一种电力电子技术领域,具体地说,涉及一种功率模块温度估算方法。
背景技术
近年来,大功率电力电子变流系统广泛应用于柔性直流输电、新能源发电和新能源汽车等领域。大容量IGBT模块作为大功率变流系统中的重要组成部分,其运行状态和可靠性越来越受到行业的高度重视。
根据调查表明,变流器失效中约34%的案例是由器件失效所导致,且55%的系统故障主要是由温度引发。据研究表明,结温每升高10℃,功率器件失效概率将增加一倍。由此可见,过温是IGBT模块可靠运行的主要制约因素之一。
利用IGBT模块内部的NTC温度传感器进行过温保护是功率器件常用的保护策略。但是NTC响应时间慢,不能及时反映出结温的瞬态波动,且在堵转等极端工况下,热能分布不均匀,容易致使IGBT过热而永久失效,因此通过NTC对IGBT进行过温保护的技术方案存在局限性。
发明内容
为解决上述问题,本发明提供了一种功率模块温度估算方法,所述方法包括:
步骤一、获取待分析功率模块的损耗,并根据所述损耗确定所述待分析功率模块的网络模型中首层的输入热量;
步骤二、根据所述首层的输入热量确定所述网络模型中各层的单层温差;
步骤三、根据所述各层的单层温差和环境温度确定所述待分析功率模块的结温。
根据本发明的一个实施例,所述待分析功率模块包括IGBT模块,在所述步骤一中,获取所述IGBT模块的电流数据,并基于预设损耗功率-电流关系函数来根据所述电流数据确定所述IGBT模块的损耗。
根据本发明的一个实施例,所述待分析功率模块包括IGBT模块,在所述步骤一中,分别获取所述IGBT模块的IGBT通态损耗、IGBT开通损耗、IGBT关断损耗、FWD通态损耗、FWD关断损耗以及IGBT模块线损耗,并根据上述损耗确定所述IGBT模块的损耗。
根据本发明的一个实施例,在所述步骤一中,根据所述待分析IGBT模块的给定性能数据,通过拟合的方式拟合得到各个损耗成分所对应的损耗曲线,并根据各个损耗曲线确定各个损耗成分。
根据本发明的一个实施例,确定所述待分析IGBT模块的IGBT通态损耗功率所对应的损耗曲线的步骤包括:
根据所述待分析IGBT模块的给定性能数据,拟合得到指定结温和指定GE电压下通态损耗功率与通态电流之间的函数关系;
根据所述指定结温和指定GE电压下通态损耗功率与通态电流之间的函数关系以及预设温度-通态损耗系数确定所述IGBT通态损耗功率所对应的损耗曲线。
根据本发明的一个实施例,所述通态损耗功率所对应的损耗曲线包括:
Figure BDA0001887653360000021
其中,PI表示IGBT通态损耗功率,temp表示前一轮估算过程中所得到的结温,temp′表示指定结温,Ic和Imax分别表示通态电流和极限电流,
Figure BDA0001887653360000022
表示预设温度-通态损耗系数,PI_temp′表示指定结温所对应的IGBT通态损耗功率,k表示常数。
根据本发明的一个实施例,确定所述IGBT模块的IGBT开通损耗所对应的损耗曲线的步骤包括:
根据所述IGBT模块的给定性能数据,拟合得到指定结温、指定栅极电阻、指定GE电压以及指定CE电压下开通损耗与通态电流之间的函数关系,并拟合得到指定温度、指定GE电压、指定CE电压以及指定通态电流下开通损耗与栅极电阻之间的函数关系;
根据所述开通损耗与通态电流之间的函数关系以及开通损耗与栅极电阻之间的函数关系,确定栅极电阻-开通损耗系数;
根据所述开通损耗与通态电流之间的函数关系以及栅极电阻-开通损耗系数确定所述IGBT开通损耗所对应的损耗曲线。
根据本发明的一个实施例,所述IGBT开通损耗所对应的损耗曲线包括:
Figure BDA0001887653360000031
其中,Eon表示IGBT开通损耗,temp表示前一轮估算过程中所得到的结温,temp′表示指定结温,Ic和Imax分别表示通态电流和极限电流,Eon_temp′表示指定结温所对应的IGBT开通损耗,
Figure BDA0001887653360000032
表示栅极电阻-开通损耗系数,Rg表示栅极电阻。
根据本发明的一个实施例,确定所述IGBT模块的IGBT关断损耗功率所对应的损耗曲线的步骤包括:
根据所述IGBT模块的给定性能数据,拟合得到指定温度、指定栅极电阻、指定GE电压以及指定CE电压下开通损耗与通态电流之间的函数关系,并拟合得到指定温度、指定GE电压、指定CE电压以及指定通态电流下关断损耗与栅极电阻之间的函数关系;
根据所述关断损耗与通态电流之间的函数关系以及关断损耗与栅极电阻之间的函数关系,确定栅极电阻-关断损耗系数;
根据所述关断损耗与栅极电阻之间的函数关系以及栅极电阻-关断损耗系数确定所述IGBT关断损耗所对应的损耗曲线。
根据本发明的一个实施例,所述IGBT关断损耗所对应的损耗曲线包括:
Figure BDA0001887653360000033
其中,Eoff表示IGBT关断损耗,temp表示前一轮估算过程中所得到的结温,temp′表示指定结温,Ic和Imax分别表示通态电流和极限电流,Eoff_temp′表示参考温度所对应的IGBT关断损耗,
Figure BDA0001887653360000034
表示栅极电阻-开通损耗系数,Rg表示栅极电阻。
根据本发明的一个实施例,确定所述IGBT模块的FWD通态损耗所对应的损耗曲线的步骤包括:
根据所述IGBT模块的给定性能数据,分别拟合得到第一指定温度、第二指定温度和第三指定温度下续流二极管的正向电流与正向电压之间的函数关系,其中,所述第三指定温度、第一指定温度和第二指定温度依次增大;
根据所述正向电流与正向电压之间的函数关系分别确定第一指定温度、第二指定温度和第三指定温度下所述续流二极管的通态损耗与正向电流之间的函数关系;
根据所述第一指定温度、第二指定温度和第三指定温度下所述续流二极管的通态损耗与正向电流之间的函数关系,确定FWD通态损耗所对应的损耗曲线。
根据本发明的一个实施例,如果前一轮估算过程中所得到的结温大于或等于所述第一指定温度,则根据如下表达式确定FWD通态损耗所对应的损耗曲线:PD(temp,If)=(temp-temp1)/(temp2-temp1)*(PD_temp2-PD_temp1)+PD_temp1
如果前一轮估算过程中所得到的结温小于所述第一指定温度,则根据如下表达式确定FWD通态损耗所对应的损耗曲线:
PD(temp,If)=(temp1-temp)/(temp1-temp3)*(PD_temp3-PD_temp1)+PD_temp1
其中,PD表示FWD通态损耗,temp表示前一轮估算过程中所得到的结温,PD_temp1、PD_temp2和PD_temp3分别表示第一指定温度temp1、第二指定温度temp2和第三指定温度temp3所对应的FWD通态损耗。
根据本发明的一个实施例,确定所述IGBT模块的FWD关断损耗所对应的损耗曲线的步骤包括:
根据所述IGBT模块的给定性能数据,分别拟合得到第一指定温度和第二指定温度下续流二极管的正向电流与关断损耗之间的函数关系;
根据所述IGBT模块的给定性能数据,拟合得到第一指定温度、指定CE电压和指定正向电流下关断损耗与栅极电阻之间的函数关系,进而得到栅极电阻-反向恢复系数;
根据所述第一指定温度和第二指定温度下所述续流二极管的关断损耗与正向电流之间的函数关系,以及所述栅极电阻-反向恢复系数,确定FWD关断损耗所对应的损耗曲线。
根据本发明的一个实施例,根据如下表达式确定FWD关断损耗所对应的损耗曲线:
Figure BDA0001887653360000041
其中,ED表示FWD关断损耗,temp表示前一轮估算过程中所得到的结温,temp1和temp2分别表示第一指定温度和第二指定温度,If表示正向电流,ED_temp1和ED_temp2分别表示第一指定温度和第二指定温度所对应的续流二极管的关断损耗,
Figure BDA0001887653360000042
表示栅极电阻-反向恢复系数,Rg表示栅极电阻。
根据本发明的一个实施例,根据如下表达式确定栅极电阻-反向恢复系数
Figure BDA0001887653360000043
Figure BDA0001887653360000044
其中,f(Rg)表示第一指定温度、指定CE电压和指定正向电流下关断损耗与栅极电阻之间的函数关系。
根据本发明的一个实施例,在所述步骤二中,根据获取到的所述网络模型中各层前一次的温差以及所述首层的输入热量,确定各层当前的单层温差。
根据本发明的一个实施例,对于所述网络模型中的任一层,根据如下表达式确定该层当前的单层温差:
Figure BDA0001887653360000051
其中,
Figure BDA0001887653360000052
表示网络模型中第m层第i次的单层温差,rm表示第m层的热阻,τm表示第m层的热时间常数,T表示预设时间间隔,
Figure BDA0001887653360000053
表示第m层第i次的输入热量,
Figure BDA0001887653360000054
表示第m层第i-1次的单层温差。
根据本发明的一个实施例,对于所述网络模型中的任一层的输出热量等于其下一层的输入热量,其中,根据如下表达式确定任一层的输出热量:
Figure BDA0001887653360000055
其中,
Figure BDA0001887653360000056
表示第m层第i次的输出热量。
根据本发明的一个实施例,在所述步骤三中,根据如下表达式确定所述待分析功率模块的结温:
Figure BDA0001887653360000057
其中,Tj表示待分析功率模块的结温,Ta表示环境温度,N表示网络模型所包含的层数,Δtempm表示网络模型中第m层的单层温差。
本发明所提供的功率模块温度估算方法通过迭代计算的方式来对功率模块的结温进行估算,其方便在微处理器中实现。
同时,本方法在计算功率模块的损耗时引入了温度、栅极电阻等参数,其能够有效提高损耗计算的精度,从而有助于提高结温估算的精度,进而使得电机控制器能够在得到保护的前提下最大限度的提升输出能力。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要的附图做简单的介绍:
图1是根据本发明一个实施例的功率模块温度估算方法的实现流程示意图;
图2是根据本发明一个实施例的Foster网络模型示意图;
图3是根据本发明一个实施例的确定单层温差的实现流程示意图;
图4是根据本发明一个实施例的单层温差计算原理示意图;
图5是根据本发明一个实施例的确定IGBT通态损耗功率随对应的损耗曲线的实现流程示意图;
图6是根据本发明一个实施例的英飞凌FF600R12ME4A_B11所拟合得到的不同温度下的通态损耗功率;
图7是根据本发明一个实施例的英飞凌FF600R12ME4A_B11引入温度系数后25℃和150摄氏度所对应的功率误差曲线;
图8是根据本发明一个实施例的确定IGBT开通损耗所对应的损耗曲线的实现流程示意图;
图9是根据本发明一个实施例的栅极电阻Rg为0.51Ω、150℃下的开通损耗误差;
图10是根据本发明一个实施例的确定IGBT关断损耗所对应的损耗曲线的实现流程示意图;
图11是根据本发明一个实施例的栅极电阻Rg为0.51Ω、150℃下的关断损耗误差曲线;
图12是根据本发明一个实施例的确定IGBT模块的FWD通态损耗的实现流程示意图;
图13和图14是根据本发明一个实施例的前一轮估算过程中所得到的结温为65℃时IGBT模块的FWD通态损耗功率的曲线
图15是根据本发明一个实施例的确定IGBT模块的FWD关断损耗的实现流程示意图;
图16是根据本发明一个实施例的栅极电阻Rg为0.51Ω、温度为135℃时的FWD关断损耗曲线。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
同时,在以下说明中,出于解释的目的而阐述了许多具体细节,以提供对本发明实施例的彻底理解。然而,对本领域的技术人员来说显而易见的是,本发明可以不用这里的具体细节或者所描述的特定方式来实施。
另外,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
发明人通过研究发现,根据实时采集的一些控制器参数,以热网络模型实现对IGBT的结温估算具有三个优势。其一,能实时监测IGBT模块的瞬时结温,即便是在堵转的极限工况下也能进行过温保护;其二,能够减小过温保护的裕量,有效提高IGBT模块的输出能力,从而使整车动力性更强;其三,能检测功率模块的损耗功率,为整车电耗优化提供参数支持。
现有技术中存在一种用于风电变流器可靠性评估的结温数值计算方法,该方法提出了一种结温迭代数值计算方案。该方法基于电热比拟理论讨论了IGBT模块在一个开关周期内的结温计算方法,并通过迭代算法计算了IGBT模块的工频周期结温。但是该方法提供的结温计算方案存在一些缺点。例如,该方法在进行IGBT的热损耗的计算过程中并未引入结温参数,这样也就影响了结温计算精度。IGBT的结温与其损耗直接相关,而结温反过来影响损耗,即IGBT在同等电参数不同结温下,其损耗是不同的,因此损耗必须与IGBT当前的结温相关。另外,该方法的计算过程存在复杂的矩阵运算,不适应于一般的电机控制器处理芯片。此外,该方法在进行IGBT的结温计算时忽略了散热器热参数的考虑,同样也影响结温计算精度。
现有技术中还存在一种IGBT结温检测装置及其方法,该方法首先检测IGBT的开关频率和IGBT导通时的电流,然后根据预定模型计算IGBT的结温温升,最后将IGBT的结温温升加上IGBT散热器的温度作为IGBT的结温。而该方法同样存在诸多缺点。例如,该方法在实施过程中,电流检测单位、频率检测单元和隔离单元等带来了额外硬件成本开销,并且可能引入检测误差。另外,该方法所使用的损耗计算模型为简单的线性计算公式,难以匹配IGBT损耗非线性曲线,从而导致损耗计算不准确。同时,该方法对于IGBT的热损耗的计算没有引入结温参数,从而影响结温计算精度。另外,该方法将结温计算简化为两阶计算,即结温等于散热器温度加IGBT温升,其难以模拟IGBT与散热器构成的多层热模型。
此外,现有技术中还存在一种基于饱和压降测量IGBT功率模块结温的在线检测装置,该装置选取小电流下集电极和发射极的电压VCE作为温度敏感参数,通过预先的温箱实验确定饱和压降VCE与结温之间的函数关系,然后在功率循环条件下通过开关IGBT模块控制大电流关断,监测IGBT关断瞬间的压降VCE的变化,最终代入预先求出的函数关系得到结温。该方法在实施中由于需要使用小电流检测单元等,因而带来了额外的硬件成本,且需要对该单元增加其他隔离电路。同时该方法由于需要进行预先的温箱试验,因此较为耗时。
针对现有技术中所存在的上述问题,本发明提供了一种新的功率模块温度估算方法,该方法特别适用于对于电机控制器功率模块的结温的估算。
图1示出了本实施例所提供的功率模块温度估算方法的实现流程示意图。
如图1所示,本实施例所所提供的功率模块温度估算方法首先会在步骤S101中获取待分析功率模块的损耗功率,并根据所确定出的损耗功率来得到待分析功率模块的网络模型中首层的输入热量。
具体地,如图2所示,本方法将功率模块等效为如图2所示的Foster网络模型。热量由IGBT芯片和FWD芯片产生,然后流经多个材料层后由散热器带走。由于IGBT芯片和FWD芯片共基板,因此本实施例中将IGBT芯片和FWD芯片视为具有相同的壳温Tc
本实施例中,在Foster网络模型中,芯片与基板之间优选地存在焊接层、铜箔层、陶瓷层等,因此在Foster网络模型中,芯片产生的热量通过4对热容热阻传至基板以模拟这些物理层,但是这4层的热容、热阻和温度与实际结构层的热容热阻没有关系。
在Foster网络模型中,基板与散热介质之间存在导热胶、散热器两个物理层,为了更加精细的对结温进行估算,本实施例中,这两层用到了3对热容热阻来表示。
前4层的热容热阻参数一般从IGBT模块的数据手册得到,而后3层的热容热阻参数则可以通过测量控制器散热器的散热曲线来得到。
本实施例中,通过获取待分析功率模块的损耗功率,也就可以得到网络模型中首层的输入热量。即网络模型中首层的输入热量等于待分析功率模块的损耗功率。
如图1所示,本实施例中,在得到网络模型中首层的输入热量后,该方法会在步骤S102中根据首层的输入热量确定网络模型中各层的单层温差。随后再在步骤S103中根据各层的单层温差以及获取到的环境温度Ta来估算出待分析功率模块的结温Tj
具体地,本实施例中,该方法根据如下表达式估算待分析功率模块的结温Tj
Figure BDA0001887653360000091
其中,N表示网络模型所包含的层数,Δtempm表示网络模型中第m层的单层温差。需要指出的是,在本发明的不同该实施例中,根据实际情况,网络模型的所包含的层数N可以为不同的合理值,本发明并不对N的具体取值进行限定。
本实施例中,该方法优选地采用迭代的方式来确定确定网络模型中各层的单层温差。图3示出了本实施例中确定单层温差的实现流程示意图。
如图3所示,本实施例中,对于网络模型中的任一层,该方法会在步骤S301中获取该层第i次(即本次估算过程)的输入热量,并在步骤S302中根据该层前一次的温差以及步骤S301中所获取到的输入分量来确定该层的当前温差。
如图4所示,对于网络模型中的任一层,其单层温差可以表征为图4所示。在图4中,Δtemp表示该层的单层温差,Ein表示输入热量(能量),Eout表示输出热量(能量),那么该层的热路模型可以表示为:
Figure BDA0001887653360000092
其中,Pin表示输入热流量(功率),Pr表示热阻r上的热流量,Pc表示热容c上的热流量。
简化表达式(2)也就可以得到单层温差的计算表达式:
Figure BDA0001887653360000101
其中,
Figure BDA0001887653360000102
表示网络模型中第m层第i次的单层温差,rm表示第m层的热阻,τm表示第m层的热时间常数,T表示预设时间间隔,
Figure BDA0001887653360000103
表示第m层第i次的输入热量,
Figure BDA0001887653360000104
表示第m层第i-1次的单层温差。
对于表达式(3)来说,如果网络模型所包含的层数为N,那么m的取值也就为[1,N]。
其中,第m层的热时间常数τm可以采用如下表达式确定:
τm=rmcm (4)
其中,cm表示第m层的热容。
而第m层的输出热量
Figure BDA0001887653360000105
可以通过如下表达式确定:
Figure BDA0001887653360000106
其中,T表示预设时间间隔。本实施例中,预设时间间隔T优选的配置为控制器的开关周期。
如果需要确定网络模型中各层的单层温差,也就需要确定出本次估算过程中网络模型中首层的输入热量
Figure BDA0001887653360000107
而本实施例中,首层的输入热量
Figure BDA0001887653360000108
优选地等于功率模块的损耗。
本实施例中,待分析功率模块优选地包括IGBT模块,而IGBT模块的损耗优选地包括:IGBT通态损耗、IGBT开通损耗、IGBT关断损耗、FWD通态损耗、FWD关断损耗以及IGBT模块线损耗6部分。
由于IGBT模块的损耗不仅取决于流经的电流大小,还与芯片结温、栅极电阻、驱动电压等有关系,而且这些都是非线性的,这样也就使得对于IGBT模块的损耗的计算较为复杂。
本实施例所提供的方法优选地根据IGBT模块的给定性能数据,通过拟合的方式拟合得到各个损耗成分(即IGBT通态损耗、IGBT开通损耗、IGBT关断损耗、FWD通态损耗、FWD关断损耗以及IGBT模块线损耗6部分)所对应的损耗曲线,并根据各个损耗曲线确定各个损耗成分。这样也就不仅保留了结温、栅极电阻等输入参数,还提高了计算精度。
当然,在本发明的其他实施例中,根据实际需要,该方法还可以采用其他合理方式来确定待分析IGBT模块的损耗,本发明不限于此。例如,在本发明的一个实施例中,该方法还可以将结温、栅极电阻、驱动电压这些影响相对较小的参数直接忽略掉,在损耗计算时只引入电流一个输入参数,并且将损耗与电流关系线性化,从而简化了计算过程。但是这种方式在线性化时需要将损耗计算最大化来留足保护裕量,使得大部分情况下损耗计算值偏大。
为了更加清楚地阐述本发明所提供的功率模块温度估算方法确定各个损耗成分的原理以及过程,以下以英飞凌FF600R12ME4A_B11为例进行说明。需要指出的是,由于拟合的多项式计算量较大导致程序开销较大,因此可以根据实际需要可以降低拟合多项式阶数来减少计算时间。
图5示出了本实施例中确定IGBT通态损耗功率随对应的损耗曲线的实现流程示意图。
通过对英飞凌FF600R12ME4A_B11的数据手册中的传输特性进行分析,发明人发现IGBT通态损耗与通态电流Ic、GE电压VGE和结温Tj有关。因此,如图5所示,本实施例中,该方法会在步骤S501中根据待分析IGBT模块的给定性能数据,拟合得到指定结温Tj和指定GE电压VGE下通态损耗功率与通态电流之间的函数关系。
具体地,本实施例中,该方法在步骤S501中首先会根据待分析IGBT模块的数据手册中所提供的性能数据来在指定结温Tj和指定GE电压VGE下,拟合得到CE电压VCE与通态电流Ic的函数关系,即存在:
VCE=f(Ic) (6)
根据上述函数关系,该方法可以进一步得到该指定结温Tj下IGBT通态损耗功率与通态电流Ic之间的函数关系,即存在:
Figure BDA0001887653360000111
其中,
Figure BDA0001887653360000112
表示指定结温Tj以及通态电流Ic下IGBT通态损耗功率。
如图5所示,本实施例中,在得到指定结温Tj下IGBT通态损耗功率与通态电流Ic之间的函数关系PI_Tj后,该方法会在步骤S502中根据指定结温Tj和指定GE电压VGE下通态损耗功率与通态电流之间的函数关系
Figure BDA0001887653360000113
以及预设温度-通态损耗系数确定IGBT通态损耗功率所对应的损耗曲线。
具体地,本实施例中,该方法所确定出的IGBT通态损耗功率所对应的损耗曲线可以表示为:
Figure BDA0001887653360000114
其中,PI表示IGBT通态损耗功率,temp表示前一轮估算过程中所得到的结温,temp′表示参考温度,Ic和Imax分别表示通态电流和极限电流,
Figure BDA0001887653360000121
表示预设温度-通态损耗系数,PI_temp′表示参考温度所对应的IGBT通态损耗功率,k表示常数。
本实施例中,前一轮估算过程中所得到的结温temp的取值范围优选为[25,150]。其中,如果结温temp的取值超过150,那么其取值将会按照150计算;而如果结温temp的取值小于25,那么其取值则会按照25计算。
通态电流Ic的取值范围优选地为[0.5,Imax]。其中,如果通态电流Ic的取值超过极限电流Imax,那么其取值将会按照Imax计算;而如果通态电流Ic的取值小于极限电流0.5,那么其取值将会按照0.5计算。本实施例中,极限电流Imax的取值优选地为1200。当然,在本发明的其他实施例中,根据实际情况,极限电流Imax的取值还可以配置为其他合理值,本发明并不对极限电流Imax的具体取值进行限定。
例如,对于英飞凌FF600R12ME4A_B11来说,在GE电压VGE为15V、结温Tj为125℃的情况下,可以拟合得到如下IGBT通态损耗功率与通态电流Ic之间的函数关系:
Figure BDA0001887653360000122
通过调整温度-功率系数
Figure BDA0001887653360000123
的取值,使得PI_25=f(25,PI_125)并且PI_150=f(150,PI_125)。经过计算,调整温度-功率系数
Figure BDA0001887653360000124
优选地取值为2.14279E-3。这样也就存在:
Figure BDA0001887653360000125
图6示出了英飞凌FF600R12ME4A_B11所拟合得到的不同温度下的通态损耗功率,图7则示出了英飞凌FF600R12ME4A_B11引入温度系数后25℃和150摄氏度所对应的功率误差曲线。
图8示出了本实施例中确定IGBT开通损耗所对应的损耗曲线的实现流程示意图。
通过对英飞凌FF600R12ME4A_B11的数据手册中的传输特性进行分析,发明人发现IGBT通态损耗与通态电流Ic、栅极电阻Rg和结温Tj有关。如图8所示,本实施例中,该方法会在步骤S801中根据IGBT模块的给定性能数据,拟合得到指定温度、指定栅极电阻、指定GE电压以及指定CE电压下开通损耗与通态电流之间的函数关系。
同时,该方法还会在步骤S802中根据IGBT模块的给定性能数据,拟合得到指定温度、指定GE电压、指定CE电压以及指定通态电流下开通损耗与栅极电阻之间的函数关系。
例如,对于英飞凌FF600R12ME4A_B11来说,在指定温度125℃、指定栅极电阻0.51Ω、指定GE电压15V以及指定CE电压600V下,IGBT开通损耗与通态电流之间的函数关系可以表示为:
Figure BDA0001887653360000131
而在指定温度125℃、指定GE电压15V、指定通态电流600A以及指定CE电压600V下,IGBT开通损耗与栅极电阻之间的函数关系可以表示为:
Eon_125=f(Rg) (12)
如图8所示,本实施例中,在得到IGBT开通损耗与通态电流之间的函数关系以及IGBT开通损耗与栅极电阻之间的函数关系后,该方法会在步骤S803中根据上述关系得到栅极电阻-开通损耗系数
Figure BDA0001887653360000132
具体地,本实施例中,该方法优选地根据如下表达式确定栅极电阻-开通损耗系数
Figure BDA0001887653360000133
Figure BDA0001887653360000134
例如,对于英飞凌FF600R12ME4A_B11来说,其栅极电阻-开通损耗系数
Figure BDA0001887653360000135
可以根据如下表达式确定得到:
Figure BDA0001887653360000136
当然,在本发明的其他实施例中,该方法还可以采用其他合理方式来确定栅极电阻-开通损耗系数
Figure BDA0001887653360000137
本发明不限于此。
如图8所示,在得到栅极电阻-开通损耗系数
Figure BDA0001887653360000138
后,该方法则可以在步骤S804中根据开通损耗与通态电流之间的函数关系以及栅极电阻-开通损耗系数
Figure BDA0001887653360000139
来确定IGBT开通损耗所对应的损耗曲线。
具体地,本实施例中,该方法优选地根据如下表达式确定IGBT开通损耗所对应的损耗曲线:
Figure BDA00018876533600001310
其中,Eon表示IGBT开通损耗,temp表示前一轮估算过程中所得到的结温,temp′表示参考温度,Ic和Imax分别表示通态电流和极限电流,Eon_temp′表示参考温度所对应的IGBT开通损耗,
Figure BDA0001887653360000141
表示栅极电阻-开通损耗系数。
对于英飞凌FF600R12ME4A_B11来说,当栅极电阻-开通损耗系数
Figure BDA0001887653360000142
的取值为8.37949E-03时,存在:
Figure BDA0001887653360000143
图9示出了栅极电阻Rg为0.51Ω、150℃下的开通损耗误差。本实施例中,在确定IGBT开通损耗所对应的损耗曲线的过程中,前一轮估算过程中所得到的结温temp的取值范围优选为[125,150]。其中,如果结温temp的取值超过150,那么其取值将会按照150计算;而如果结温temp的取值小于125,那么其取值则会按照125计算。栅极电阻Rg的取值范围优选地为[0.51,4.95]。
通态电流Ic的取值范围优选地为[62,Imax]。其中,如果通态电流Ic的取值超过极限电流Imax,那么其取值将会按照Imax计算;而如果通态电流Ic的取值小于极限电流62,那么其取值将会按照62计算。本实施例中,极限电流Imax的取值优选地为1180。当然,在本发明的其他实施例中,根据实际情况,极限电流Imax的取值还可以配置为其他合理值,本发明并不对极限电流Imax的具体取值进行限定。
图10示出了本实施例中确定IGBT关断损耗所对应的损耗曲线的实现流程示意图。
通过对英飞凌FF600R12ME4A_B11的数据手册中的传输特性进行分析,发明人发现IGBT通态损耗与通态电流Ic、栅极电阻Rg和结温Tj有关。如图10所示,本实施例中,该方法会在步骤S1001中根据IGBT模块的给定性能数据,拟合得到指定温度、指定栅极电阻、指定GE电压以及指定CE电压下关断损耗与通态电流之间的函数关系。
同样的,该方法还会在步骤S1002中根据IGBT模块的给定性能数据,拟合得到拟合得到指定温度、指定GE电压、指定CE电压以及指定通态电流下关断损耗与栅极电阻之间的函数关系。
例如,对于英飞凌FF600R12ME4A_B11来说,在指定温度125℃、指定栅极电阻0.51Ω、指定GE电压15V以及指定CE电压600V下,IGBT关断损耗与通态电流之间的函数关系可以表示为:
Figure BDA0001887653360000144
而在指定温度125℃、指定GE电压15V、指定通态电流600A以及指定CE电压600V下,IGBT开通损耗与栅极电阻之间的函数关系可以表示为:
Eoff_125=f(Rg) (18)
如图10所示,在得到关断损耗与通态电流之间的函数关系以及关断损耗与栅极电阻之间的函数关系后,该方法会在步骤S1003中会根据所得到的关断损耗与通态电流之间的函数关系以及关断损耗与栅极电阻之间的函数关系,确定栅极电阻-关断损耗系数
Figure BDA0001887653360000151
具体地,本实施例中,该方法优选地根据如下表达式确定栅极电阻-关断损耗系数
Figure BDA0001887653360000152
Figure BDA0001887653360000153
例如,对于英飞凌FF600R12ME4A_B11来说,其栅极电阻-关断损耗系数
Figure BDA0001887653360000154
可以根据如下表达式确定得到:
Figure BDA0001887653360000155
当然,在本发明的其他实施例中,该方法还可以采用其他合理方式来确定栅极电阻-关断损耗系数
Figure BDA0001887653360000156
本发明不限于此。
如图10所示,在得到栅极电阻-关断损耗系数
Figure BDA0001887653360000157
后,该方法会在步骤S1004中根据关断损耗与通态电流之间的函数关系以及栅极电阻-关断损耗系数
Figure BDA0001887653360000158
确定IGBT关断损耗所对应的损耗曲线。
具体地,本实施例中,该方法优选地根据如下表达式确定IGBT关断损耗所对应的损耗曲线:
Figure BDA0001887653360000159
其中,Eoff表示IGBT关断损耗,temp表示前一轮估算过程中所得到的结温,temp′表示参考温度,Ic和Imax分别表示通态电流和极限电流,Eoff_temp′表示参考温度所对应的IGBT关断损耗。
对于英飞凌FF600R12ME4A_B11来说,栅极电阻-开通损耗系数
Figure BDA00018876533600001510
的取值为4.99710E-03时,存在:
Figure BDA00018876533600001511
图11示出了栅极电阻Rg为0.51Ω、150℃下的关断损耗误差曲线。本实施例中,在确定IGBT关断损耗所对应的损耗曲线的过程中,前一轮估算过程中所得到的结温temp的取值范围优选为[125,150]。其中,如果结温temp的取值超过150,那么其取值将会按照150计算;而如果结温temp的取值小于125,那么其取值则会按照125计算。栅极电阻Rg的取值范围优选地为[0.51,4.95]。
通态电流Ic的取值范围优选地为[62,Imax]。其中,如果通态电流Ic的取值超过极限电流Imax,那么其取值将会按照Imax计算;而如果通态电流Ic的取值小于极限电流62,那么其取值将会按照62计算。本实施例中,极限电流Imax的取值优选地为1800。当然,在本发明的其他实施例中,根据实际情况,极限电流Imax的取值还可以配置为其他合理值,本发明并不对极限电流Imax的具体取值进行限定。
正如前述内容所分析的那样,IGBT模块的损耗功率还包括FWD通态损耗和FWD关断损耗。图12示出了本实施例中确定IGBT模块的FWD通态损耗的实现流程示意图。
发明人通过对IGBT模块进行分析发现,从IGBT模块的FWD的正向特性来看,FWD通态损耗与FWD流过的正向电流If以及温度Tj有关。如图12所示,本实施例中,该方法在确定IGBT模块的FWD通态损耗时,优选地会在步骤S1201中根据IGBT模块的给定性能数据,分别拟合得到第一指定温度、第二指定温度和第三指定温度下续流二极管的正向电流与正向电压之间的函数关系。其中,第三指定温度、第一指定温度和第二指定温度依次增大。
随后,该方法会在步骤S1202中根据上述正向电流与正向电压之间的函数关系分别确定第一指定温度、第二指定温度和第三指定温度下续流二极管的通态损耗与正向电流之间的函数关系。
具体地,本实施例中,对于一指定温度,其续流二极管的正向电流与正向电压之间的函数关系可以表征为Vf=f(If),因此该温度下的通态损耗也就可以表示为:
PD(temp,If)=Vf*If=f(If)*If (23)
例如,本实施例中,第三指定温度可以设定为25℃,第一指定温度可以设定为125℃,第二指定温度可以设定为150℃。
当然,在本发明的其他实施例中,上述第一指定温度、第二指定温度和第三指定温度还可以配置为其他合理值,本发明并不对上述第一指定温度、第二指定温度和第三指定温度的具体取值进行限定。
例如,对于英飞凌FF600R12ME4A_B11来说,在第一指定温度temp1为125℃的情况下,可以拟合得到该温度下续流二极管的通态损耗与正向电流之间的函数关系,即存在:
Figure BDA0001887653360000171
同样地,也可以分别得到第二指定温度temp2为150℃的情况下以及第三指定温度temp3为25℃的情况下,续流二极管的通态损耗与正向电流之间的函数关系,即存在:
Figure BDA0001887653360000172
Figure BDA0001887653360000173
该方法在步骤S1203中则可以根据上述第一指定温度、第二指定温度和第三指定温度下续流二极管的通态损耗与正向电流之间的函数关系,确定FWD通态损耗所对应的损耗曲线。
本实施例中,该方法会将温度作为参数之一来确定IGBT的FWD通态损耗。具体地,该方法在步骤S1203中会判断前一轮估算过程中所得到的结温是否大于或等于上述第一指定温度。其中,如果前一轮估算过程中所得到的结温大于或等于上述第一指定温度,该方法则会根据如下表达式确定FWD通态损耗:
PD(temp,If)=(temp-temp1)/(temp2-temp1)*(PD_temp2-PD_temp1)+PD_temp1 (27)
而如果前一轮估算过程中所得到的结温小于第一指定温度,该方法则会根据如下表达式确定FWD通态损耗:
PD(temp,If)=(temp1-temp)/(temp1-temp3)*(PD_temp3-PD_temp1)+PD_temp1 (28)
其中,PD表示FWD通态损耗,temp表示前一轮估算过程中所得到的结温,PD_temp1、PD_temp2和PD_temp3分别表示第一指定温度temp1、第二指定温度temp2和第三指定温度temp3所对应的FWD通态损耗。
其中,图13和图14示出了本实施例中前一轮估算过程中所得到的结温为65℃时IGBT模块的FWD通态损耗功率的曲线。
本实施例中,前一轮估算过程中所得到的结温的取值区间优选地为[25,125],其中,温度超过125℃则按照125℃计算,而温度如果低于25℃则按照25℃计算。
当然,在本发明的其他实施例中,该方法还可以采用其他合理方式来确定IGBT模块的FWD通态损耗,本发明不限于此。
发明人通过对IGBT模块进行分析发现,从IGBT模块的传输特性来看,FWD关断损耗ED与流过的正向电流If、温度Tj以及栅极电阻Rg有关。图15示出了本实施例中确定IGBT模块的FWD关断损耗的实现流程示意图。
如图15所示,本实施例中,该方法会在步骤S1501中根据IGBT模块的给定性能数据,分别拟合得到第一指定温度和第二指定温度下续流二极管的正向电流与关断损耗之间的函数关系。
同时,该方法还会在步骤S1502中根据IGBT模块的给定性能数据,拟合得到第一指定温度、指定CE电压和指定正向电流下关断损耗与栅极电阻之间的函数关系。
随后,该方法会在步骤S1503中根据第一指定温度和第二指定温度下续流二极管的关断损耗与正向电流之间的函数关系,以及关断损耗与栅极电阻之间的上述关系,来确定FWD关断损耗所对应的损耗曲线。
具体地,本实施例中,该方法在步骤S1503中首先会根据步骤S1502中所得到的关断损耗与栅极电阻之间的函数关系以及第一指定温度下正向电流与关断损耗之间的函数关系来确定出栅极电阻-反向恢复系数
Figure BDA0001887653360000181
其中,栅极电阻-反向恢复系数
Figure BDA0001887653360000182
优选地可以根据如下表达式确定:
Figure BDA0001887653360000183
其中,I1表示指定正向电流。
本实施例中,指定正向电流I1优选地配置为600A。当然,在本发明的其他实施例中,指定正向电流I1还可以根据实际需要配置为其他合理值,本发明并不对指定正向电流I1的具体取值进行限定。
例如,对于英飞凌FF600R12ME4A_B11来说,在第一指定温度为125℃、指定CE电压为600V、指定栅极电阻为0.51Ω的情况下,可以拟合得到续流二极管的正向电流与关断损耗之间的函数关系为:
Figure BDA0001887653360000184
同样可以得到在第二指定温度为150℃、指定CE电压为600V、指定栅极电阻为0.51Ω的情况下,可以拟合得到续流二极管的正向电流与关断损耗之间的函数关系为:
Figure BDA0001887653360000185
本实施例中,在第一指定温度为125℃、指定CE电压为600V以及正向电流If为600A的情况下,可以拟合得到续流二极管的FWD关断损耗与栅极电阻Rg之间的函数关系ED_125=f(Rg),这样也就可以得到栅极电阻-反向恢复系数
Figure BDA0001887653360000191
本实施例中,经过尝试,可以得到栅极电阻-反向恢复系数
Figure BDA0001887653360000192
与栅极电阻Rg存在如下关系:
Figure BDA0001887653360000193
续流二极管的关断损耗同样与温度有关,引入温度的FWD关断损耗ED优选地可以根据如下表达式确定:
Figure BDA0001887653360000194
其中,ED表示FWD关断损耗,temp表示前一轮估算过程中所得到的结温,temp1和temp2分别表示第一指定温度和第二指定温度,If表示正向电流,ED_temp1和ED_temp2分别表示第一指定温度和第二指定温度所对应的续流二极管的关断损耗,
Figure BDA0001887653360000195
表示栅极电阻-反向恢复系数,Rg表示栅极电阻。
本实施例中,前一轮估算过程中所得到的结温的取值区间优选地为[25,125],其中,温度超过125℃则按照125℃计算,而温度如果低于25℃则按照25℃计算。栅极电阻Rg的取值为范围优选地为[0.51,4.95]。正向电流If的取值范围优选的为[62,1200],其中,如果实际正向电流超过1200,则按照1200进行计算,而如果实际正向电流低于62,则按照62进行计算。
图16示出了本实施例中栅极电阻Rg为0.51Ω、温度为135℃时的FWD关断损耗曲线。
当然,在本发明的其他实施例中,该方法还可以采用其他合理方式来确定IGBT模块的FWD关断损耗,本发明不限于此。
IGBT模块在运行的过程中,传输线路同样存在损耗。本实施例中,该方法还会根据IGBT模块的引线电阻(即端子到芯片之间的电阻)来确定GIBT模块线损耗。
具体地,本实施例中,该方法优选地根据如下表达式来确定IGBT模块线损耗:
Figure BDA0001887653360000196
其中,PL表示IGBT模块线损耗,RCCEE表示引线电阻,IL表示IGBT模块的模块电流。
从上述描述中可以看出,本实施例所提供的功率模块温度估算方法通过迭代计算的方式来对功率模块的结温进行估算,其方便在微处理器中实现。
同时,本方法在计算功率模块的损耗时引入了温度、栅极电阻等参数,其能够有效提高损耗计算的精度,从而有助于提高结温估算的精度,进而使得电机控制器能够在得到保护的前提下最大限度的提升输出能力。
应该理解的是,本发明所公开的实施例不限于这里所公开的特定结构或处理步骤,而应当延伸到相关领域的普通技术人员所理解的这些特征的等同替代。还应当理解的是,在此使用的术语仅用于描述特定实施例的目的,而并不意味着限制。
说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。
虽然上述示例用于说明本发明在一个或多个应用中的原理,但对于本领域的技术人员来说,在不背离本发明的原理和思想的情况下,明显可以在形式上、用法及实施的细节上作各种修改而不用付出创造性劳动。因此,本发明由所附的权利要求书来限定。

Claims (12)

1.一种功率模块温度估算方法,其特征在于,所述方法包括:
步骤一、获取待分析功率模块的损耗,并根据所述损耗确定所述待分析功率模块的网络模型中首层的输入热量;
步骤二、根据所述首层的输入热量确定所述网络模型中各层的单层温差;
步骤三、根据所述各层的单层温差和环境温度确定所述待分析功率模块的结温,其中,所述待分析功率模块包括IGBT模块,在所述步骤一中,分别获取所述IGBT模块的IGBT通态损耗、IGBT开通损耗、IGBT关断损耗、FWD通态损耗、FWD关断损耗以及IGBT模块线损耗,并根据上述损耗确定所述IGBT模块的损耗,其中,根据所述待分析IGBT模块的给定性能数据,通过拟合的方式拟合得到各个损耗成分所对应的损耗曲线,并根据各个损耗曲线确定各个损耗成分,其中,
在确定所述待分析IGBT模块的IGBT通态损耗功率所对应的损耗曲线的步骤中,包括:
根据所述待分析IGBT模块的给定性能数据,拟合得到指定结温和指定GE电压下通态损耗功率与通态电流之间的函数关系;
根据所述指定结温和指定GE电压下通态损耗功率与通态电流之间的函数关系以及预设温度-通态损耗系数确定所述IGBT通态损耗功率所对应的损耗曲线;
在确定所述IGBT模块的IGBT开通损耗所对应的损耗曲线的步骤中,包括:
根据所述IGBT模块的给定性能数据,拟合得到指定结温、指定栅极电阻、指定GE电压以及指定CE电压下开通损耗与通态电流之间的函数关系,并拟合得到指定温度、指定GE电压、指定CE电压以及指定通态电流下开通损耗与栅极电阻之间的函数关系;
根据所述开通损耗与通态电流之间的函数关系以及开通损耗与栅极电阻之间的函数关系,确定栅极电阻-开通损耗系数;
根据所述开通损耗与通态电流之间的函数关系以及栅极电阻-开通损耗系数确定所述IGBT开通损耗所对应的损耗曲线;
在确定所述IGBT模块的IGBT关断损耗功率所对应的损耗曲线的步骤中,包括:
根据所述IGBT模块的给定性能数据,拟合得到指定温度、指定栅极电阻、指定GE电压以及指定CE电压下开通损耗与通态电流之间的函数关系,并拟合得到指定温度、指定GE电压、指定CE电压以及指定通态电流下关断损耗与栅极电阻之间的函数关系;
根据所述关断损耗与通态电流之间的函数关系以及关断损耗与栅极电阻之间的函数关系,确定栅极电阻-关断损耗系数;
根据所述关断损耗与栅极电阻之间的函数关系以及栅极电阻-关断损耗系数确定所述IGBT关断损耗所对应的损耗曲线;
在确定所述IGBT模块的FWD通态损耗所对应的损耗曲线的步骤中,包括:
根据所述IGBT模块的给定性能数据,分别拟合得到第一指定温度、第二指定温度和第三指定温度下续流二极管的正向电流与正向电压之间的函数关系,其中,所述第三指定温度、第一指定温度和第二指定温度依次增大;
根据所述正向电流与正向电压之间的函数关系分别确定第一指定温度、第二指定温度和第三指定温度下所述续流二极管的通态损耗与正向电流之间的函数关系;
根据所述第一指定温度、第二指定温度和第三指定温度下所述续流二极管的通态损耗与正向电流之间的函数关系,确定FWD通态损耗所对应的损耗曲线;
在确定所述IGBT模块的FWD关断损耗所对应的损耗曲线的步骤中,包括:
根据所述IGBT模块的给定性能数据,分别拟合得到第一指定温度和第二指定温度下续流二极管的正向电流与关断损耗之间的函数关系;
根据所述IGBT模块的给定性能数据,拟合得到第一指定温度、指定CE电压和指定正向电流下关断损耗与栅极电阻之间的函数关系,进而得到栅极电阻-反向恢复系数;
根据所述第一指定温度和第二指定温度下所述续流二极管的关断损耗与正向电流之间的函数关系,以及所述栅极电阻-反向恢复系数,确定FWD关断损耗所对应的损耗曲线。
2.如权利要求1所述的方法,其特征在于,所述待分析功率模块包括IGBT模块,在所述步骤一中,获取所述IGBT模块的电流数据,并基于预设损耗功率-电流关系函数来根据所述电流数据确定所述IGBT模块的损耗。
3.如权利要求1所述的方法,其特征在于,所述通态损耗功率所对应的损耗曲线包括:
Figure FDA0003516923410000031
其中,PI表示IGBT通态损耗功率,temp表示前一轮估算过程中所得到的结温,temp′表示指定结温,Ic和Imax分别表示通态电流和极限电流,
Figure FDA0003516923410000032
表示预设温度-通态损耗系数,PI_temp′表示指定结温所对应的IGBT通态损耗功率,k表示常数。
4.如权利要求1所述的方法,其特征在于,所述IGBT开通损耗所对应的损耗曲线包括:
Figure FDA0003516923410000033
其中,Eon表示IGBT开通损耗,temp表示前一轮估算过程中所得到的结温,temp′表示指定结温,Ic和Imax分别表示通态电流和极限电流,Eon_temp′表示指定结温所对应的IGBT开通损耗,
Figure FDA0003516923410000034
表示栅极电阻-开通损耗系数,Rg表示栅极电阻。
5.如权利要求1所述的方法,其特征在于,所述IGBT关断损耗所对应的损耗曲线包括:
Figure FDA0003516923410000035
其中,Eoff表示IGBT关断损耗,temp表示前一轮估算过程中所得到的结温,temp′表示指定结温,Ic和Imax分别表示通态电流和极限电流,Eoff_temp′表示参考温度所对应的IGBT关断损耗,
Figure FDA0003516923410000036
表示栅极电阻-开通损耗系数,Rg表示栅极电阻。
6.如权利要求1所述的方法,其特征在于,如果前一轮估算过程中所得到的结温大于或等于所述第一指定温度,则根据如下表达式确定FWD通态损耗所对应的损耗曲线:
PD(temp,If)=(temp-temp1)/(temp2-temp1)*(PD_temp2-PD_temp1)+PD_temp1
如果前一轮估算过程中所得到的结温小于所述第一指定温度,则根据如下表达式确定FWD通态损耗所对应的损耗曲线:
PD(temp,If)=(temp1-temp)/(temp1-temp3)*(PD_temp3-PD_temp1)+PD_temp1
其中,PD表示FWD通态损耗,temp表示前一轮估算过程中所得到的结温,PD_temp1、PD_temp2和PD_temp3分别表示第一指定温度temp1、第二指定温度temp2和第三指定温度temp3所对应的FWD通态损耗,If表示正向电流。
7.如权利要求1所述的方法,其特征在于,根据如下表达式确定FWD关断损耗所对应的损耗曲线:
Figure FDA0003516923410000041
其中,ED表示FWD关断损耗,temp表示前一轮估算过程中所得到的结温,temp1和temp2分别表示第一指定温度和第二指定温度,If表示正向电流,ED_temp1和ED_temp2分别表示第一指定温度和第二指定温度所对应的续流二极管的关断损耗,
Figure FDA0003516923410000042
表示栅极电阻-反向恢复系数,Rg表示栅极电阻。
8.如权利要求7所述的方法,其特征在于,根据如下表达式确定栅极电阻-反向恢复系数
Figure FDA0003516923410000043
Figure FDA0003516923410000044
其中,f(Rg)表示第一指定温度、指定CE电压和指定正向电流下关断损耗与栅极电阻之间的函数关系。
9.如权利要求1~8中任一项所述的方法,其特征在于,在所述步骤二中,根据获取到的所述网络模型中各层前一次的温差以及所述首层的输入热量,确定各层当前的单层温差。
10.如权利要求9所述的方法,其特征在于,对于所述网络模型中的任一层,根据如下表达式确定该层当前的单层温差:
Figure FDA0003516923410000045
其中,
Figure FDA0003516923410000046
表示网络模型中第m层第i次的单层温差,rm表示第m层的热阻,τm表示第m层的热时间常数,T表示预设时间间隔,
Figure FDA0003516923410000047
表示第m层第i次的输入热量,
Figure FDA0003516923410000048
表示第m层第i-1次的单层温差。
11.如权利要求10所述的方法,其特征在于,对于所述网络模型中的任一层的输出热量等于其下一层的输入热量,其中,根据如下表达式确定任一层的输出热量:
Figure FDA0003516923410000049
其中,
Figure FDA0003516923410000051
表示第m层第i次的输出热量。
12.如权利要求1~8中任一项所述的方法,其特征在于,在所述步骤三中,根据如下表达式确定所述待分析功率模块的结温:
Figure FDA0003516923410000052
其中,Tj表示待分析功率模块的结温,Ta表示环境温度,N表示网络模型所包含的层数,△tempm表示网络模型中第m层的单层温差。
CN201811455463.1A 2018-11-30 2018-11-30 一种功率模块温度估算方法 Active CN111339623B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811455463.1A CN111339623B (zh) 2018-11-30 2018-11-30 一种功率模块温度估算方法
PCT/CN2019/112503 WO2020108172A1 (zh) 2018-11-30 2019-10-22 一种功率模块温度估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811455463.1A CN111339623B (zh) 2018-11-30 2018-11-30 一种功率模块温度估算方法

Publications (2)

Publication Number Publication Date
CN111339623A CN111339623A (zh) 2020-06-26
CN111339623B true CN111339623B (zh) 2022-09-23

Family

ID=70852696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811455463.1A Active CN111339623B (zh) 2018-11-30 2018-11-30 一种功率模块温度估算方法

Country Status (2)

Country Link
CN (1) CN111339623B (zh)
WO (1) WO2020108172A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670962B (zh) * 2020-12-23 2023-03-24 日立楼宇技术(广州)有限公司 一种igbt过温保护方法、系统、装置及存储介质
CN112765786B (zh) * 2020-12-31 2024-04-26 联合汽车电子有限公司 功率器件的结温估算方法、功率器件、电机控制器及计算机可读存储介质
CN113776693A (zh) * 2021-09-16 2021-12-10 浙江吉利控股集团有限公司 一种车辆电机的控制器温度估算方法、系统及汽车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848961A (zh) * 2015-05-14 2015-08-19 哈尔滨工业大学 基于饱和导通压降测量igbt结温的温度定标平台及实现igbt结温测量的方法
CN105574285A (zh) * 2015-12-31 2016-05-11 杭州士兰集成电路有限公司 功率模块的损耗与结温仿真系统
CN106960085A (zh) * 2017-03-07 2017-07-18 株洲中车时代电气股份有限公司 一种在线预估igbt元件结温的方法
CN107219016A (zh) * 2017-05-24 2017-09-29 湖南大学 计算igbt模块瞬态结温的方法和系统
CN107525990A (zh) * 2017-09-18 2017-12-29 天津农学院 多电平功率变换器状态监测系统及功率器件损耗计算方法
CN107643777A (zh) * 2016-07-20 2018-01-30 湖南中车时代电动汽车股份有限公司 用于电路板试验的环境温度调整方法及装置
CN108319763A (zh) * 2018-01-09 2018-07-24 全球能源互联网研究院有限公司 Igbt多层热传导建模方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170089179A (ko) * 2016-01-26 2017-08-03 엘에스산전 주식회사 고온 차단 기능이 내장된 igbt 모듈

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848961A (zh) * 2015-05-14 2015-08-19 哈尔滨工业大学 基于饱和导通压降测量igbt结温的温度定标平台及实现igbt结温测量的方法
CN105574285A (zh) * 2015-12-31 2016-05-11 杭州士兰集成电路有限公司 功率模块的损耗与结温仿真系统
CN107643777A (zh) * 2016-07-20 2018-01-30 湖南中车时代电动汽车股份有限公司 用于电路板试验的环境温度调整方法及装置
CN106960085A (zh) * 2017-03-07 2017-07-18 株洲中车时代电气股份有限公司 一种在线预估igbt元件结温的方法
CN107219016A (zh) * 2017-05-24 2017-09-29 湖南大学 计算igbt模块瞬态结温的方法和系统
CN107525990A (zh) * 2017-09-18 2017-12-29 天津农学院 多电平功率变换器状态监测系统及功率器件损耗计算方法
CN108319763A (zh) * 2018-01-09 2018-07-24 全球能源互联网研究院有限公司 Igbt多层热传导建模方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Assessment of Thermal Network Models for Estimating IGBT Junction Temperature of a Buck Converter";Omid Alavi .etc;《8th Power Electronics, Drive Systems & Technologies Conference》;20170427;102-107 *
"IGBT 损耗和结温计算研究";杨洪波等;《大功率变流技术》;20160229(第1期);30-33,52 *
"基于传热动力学作用特征的IGBT结温预测数学模型";刘宾礼;《电工技术学报》;20170630;第32卷(第12期);79-87 *

Also Published As

Publication number Publication date
WO2020108172A1 (zh) 2020-06-04
CN111339623A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN111339623B (zh) 一种功率模块温度估算方法
US11215657B2 (en) Real-time online prediction method for dynamic junction temperature of semiconductor power device
EP3203250B1 (en) Method and device for estimating a level of damage or a lifetime expectation of a power semiconductor module
US9601404B2 (en) Thermal resistance measuring method and thermal resistance measuring device
WO2017071365A1 (zh) 数字化驱动的igbt电流检测系统及其检测方法
CN106257251B (zh) 估算车辆的转换器的结温的方法
CN106644142A (zh) 具有电子功率部件及直接检测这种部件的温度的电子器件
JP2012252887A (ja) 外部環境からの熱量を考慮した温調制御システム
US10955297B2 (en) Systems and methods for monitoring junction temperature of a semiconductor switch
CN104596655B (zh) 智能功率模块、功率器件及其温度检测电路和方法
Liu et al. BP neural network for non-invasive IGBT junction temperature online detection
Kascak et al. Method for estimation of power losses and thermal distribution in power converters
CN111103319B (zh) 一种导热硅脂和散热风扇的健康状态监测方法
Sathik et al. Online electro-thermal model for real time junction temperature estimation for insulated gate bipolar transistor (IGBT)
CN108291843A (zh) 具有第一温度测量元件的半导体构件以及用于确定流过半导体构件的电流的方法
Gradinger et al. Thermal networks for time-variant cooling systems: modeling approach and accuracy requirements for lifetime prediction
CN112327127A (zh) 集成铂温度传感器的全控型电力电子器件及结温测量方法
CN116973720A (zh) 一种电动汽车igbt模块结温估算方法及其系统
Nayak et al. Implementation of an Electro-Thermal Model for Junction Temperature Estimation in a SiC MOSFET Based DC/DC Converter
CN112327125A (zh) 功率半导体器件结壳热阻状态监测方法、设备、存储介质
JP2020088884A (ja) 電力変換装置
JP2016116411A (ja) 半導体装置の異常検出方法
US20240044724A1 (en) Thermistor self-heating compensation
CN114034912B (zh) 基于大电流饱和压降的igbt结壳热阻测量方法
KR20050107852A (ko) 반도체 전력소자의 온도 추정장치 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant