CN111334766A - 一种磁电复合薄膜材料及其制备方法 - Google Patents

一种磁电复合薄膜材料及其制备方法 Download PDF

Info

Publication number
CN111334766A
CN111334766A CN201811551786.0A CN201811551786A CN111334766A CN 111334766 A CN111334766 A CN 111334766A CN 201811551786 A CN201811551786 A CN 201811551786A CN 111334766 A CN111334766 A CN 111334766A
Authority
CN
China
Prior art keywords
film
sputtering
fegab
electrode layer
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811551786.0A
Other languages
English (en)
Other versions
CN111334766B (zh
Inventor
连紫薇
门阔
朱婧
魏峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIMN Engineering Technology Research Institute Co Ltd
Original Assignee
GRIMN Engineering Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRIMN Engineering Technology Research Institute Co Ltd filed Critical GRIMN Engineering Technology Research Institute Co Ltd
Priority to CN201811551786.0A priority Critical patent/CN111334766B/zh
Publication of CN111334766A publication Critical patent/CN111334766A/zh
Application granted granted Critical
Publication of CN111334766B publication Critical patent/CN111334766B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明公开了一种磁电复合薄膜材料及其制备方法。该磁电复合薄膜材料包括依次沉积于硅片上的电极层、AlN薄膜和FeGaB薄膜,FeGaB薄膜的化学式为Fe10‑x‑yGaxBy,其中1.778≤x≤3.0,0<y≤2.0。其制备方法包括以下步骤:(1)将硅片清洗干净后,在正面沉积电极层薄膜;(2)采用磁控溅射法在电极层薄膜上沉积AlN薄膜;(3)采用磁控溅射共溅法在AlN薄膜上沉积FeGaB薄膜,其中,溅射靶材为Fe1‑zGaz的化学计量比的原料通过熔融铸造合成的FeGa靶,0.23≤z≤0.30,以及纯度为99.99%的B靶。本发明的磁电复合薄膜材料具有优良的磁电性能,高频涡流损耗小,可应用于小型化或微型化的多功能电磁器件上。

Description

一种磁电复合薄膜材料及其制备方法
技术领域
本发明涉及一种磁电复合薄膜材料及其制备方法,属于功能复合材料制备技术领域。
背景技术
随着薄膜材料在微电子技术中的广泛应用,功能复合材料成为新材料的研究重点。磁电复合薄膜材料因其独特的压电、光电及磁学等性能,使其在小型化及微型化的多功能电磁器件上有很大的应用潜力。磁电复合薄膜材料是由铁电薄膜/压电薄膜和铁磁薄膜构成的复合材料,具有磁电转换功能。磁电效应是指材料在外磁场作用下产生介电极化或者在外磁场作用下产生磁极化的特性。对于磁电复合薄膜材料,磁电效应是以压电效应和磁致伸缩效应两者的乘积效应实现的。
磁电复合薄膜材料在室温下的显著磁电效应推动了其在技术领域中的应用,可被用于传感器、换能器、滤波器、震荡器、存储器等领域。例如用于高压输电、宽波段磁探测、磁场感应器、高压输电系统中的电流测量等领域。
发明内容
本发明的目的在于提供一种磁电复合薄膜材料,该磁电复合薄膜材料具有优良的磁电性能,可应用于小型化或微型化的多功能电磁器件上。
本发明的另一目的在于提供一种所述磁电复合薄膜材料的制备方法。
为实现上述目的,本发明采用以下技术方案:
一种磁电复合薄膜材料,包括依次沉积于硅片上的电极层、AlN薄膜和FeGaB薄膜,FeGaB薄膜的化学式为Fe10-x-yGaxBy,其中1.778≤x≤-3.0,0<y≤2.0。
其中,所述电极层的厚度为50-100nm,所述AlN薄膜的厚度为400-1000nm,所述FeGaB薄膜的厚度为400-1000nm。
其中,所述的电极层为Ag、Pt和Mo中的任一种。
一种所述磁电复合薄膜材料的制备方法,包括以下步骤:
(1)将硅片清洗干净后,在正面沉积电极层薄膜;
(2)采用磁控溅射法在电极层薄膜上沉积AlN薄膜,其中,溅射靶材为纯度为99.99%的铝靶,工作气压0.3Pa-0.7Pa,溅射功率为100W-250W,采用氮气和氩气的混合气,其中氮气和氩气的体积比为3∶7,溅射时间为0.5h-2h;
(3)采用磁控溅射共溅法在AlN薄膜上沉积FeGaB薄膜,其中,溅射靶材为Fe1-zGaz的化学计量比的原料通过熔融铸造合成的FeGa靶材,0.23≤z≤0.30,以及纯度为99.99%的B靶;工作气压为0.6Pa-1.5Pa,FeGa靶的溅射功率为50W-80W,B靶的溅射功率为50-70W,保护气体为惰性气体,溅射过程中提供大小为100-300Oe的平行于硅片方向的外加磁场,溅射时间为0.5h-2h。
本发明的优点在于:
1、本发明通过在沉积电极的硅片上磁控溅射具有压电性能的AlN薄膜和具有磁致伸缩性能的FeGaB薄膜,其中B原子作为小原子与FeGa共溅得到FeGaB薄膜,B原子不仅提高了薄膜非晶形成能力,使材料更易形成均匀的非晶团簇,同时提高了材料的低磁场响应能力。通过对AlN薄膜和FeGaB薄膜的厚度及FeGaB材料中原子比例的不断调整和试验,得到了性能优良的磁电薄膜。
2、本发明的磁电复合薄膜材料具有优良的磁电性能,高频涡流损耗小,可应用于小型化或微型化的多功能电磁器件上。
附图说明
图1为本发明的磁电复合薄膜材料的结构示意图。
具体实施方式
以下结合附图和实施例对本发明进行进一步详细说明,但并不意味着对本发明保护范围的限制。
图1为本发明的磁电复合薄膜材料的结构示意图。如图1所示,本发明的磁电复合薄膜材料包括依次沉积于硅片1上的电极层2,AlN薄膜3和FeGaB薄膜4,其中,FeGaB薄膜的化学式为Fe10-x-yGaxBy,其中1.778≤x≤3.0,0<y≤2.0。
实施例1
一种新型的磁电复合薄膜材料的制备方法,包括以下步骤:
(1)按照Fe0.74Ga0.26(z=0.26)的化学计量比通过熔融铸造的方法得到铁镓靶材;
(2)选取市售的纯度为99.99%的AlN靶材和纯度为99.99%的B靶材;
(3)选取5×5mm的硅片作为衬底,将硅片进行RCA清洗;
(4)将硅片清洗干净后,根据需要在正面沉积电极层薄膜;
(5)在得到的电极层薄膜上采用磁控溅射法沉积AlN薄膜层,其中,溅射靶材为纯度为99.99%的铝靶,工作气压为0.3Pa,溅射功率为100W,加热温度为200度,氮氩气体比为3∶7,溅射时间为1h。
(6)在得到的AlN薄膜层上采用磁控溅射法沉积FeGaB薄膜层,其中,溅射靶材为步骤(1)得到的FeGa靶和纯度为99.99%的B靶,工作气压为0.6Pa,FeGa靶的溅射功率为50W,B靶的溅射功率为50W,保护气体为氩气,溅射过程中提供大小为150Oe的平行于硅片方向的外加磁场,溅射时间为1h;即可得到所述磁电薄膜材料。
材料制备完成后,通过俄歇电子能谱测得FeGaB薄膜的化学式为Fe7Ga1.6B1.4。在偏置磁场300Oe、交变磁场1Oe、交变磁场频率200kHZ条件下测量材料的磁电转换系数为20mV/cm·Oe。
实施例2
本实施例与实施例1的区别在于:步骤(1)中铁镓靶材为Fe0.77Ga0.23(z=0.23)的化学计量比通过熔融铸造的方法得到铁镓靶材。其余步骤与实施例1相同。
材料制备完成后,通过俄歇电子能谱测得FeGaB薄膜的化学式为Fe7.4Ga1.2B1.4。在偏置磁场300Oe、交变磁场1Oe、交变磁场频率200kHZ条件下,测量材料的磁电转换系数为10mV/cm·Oe。
实施例3
本实施例与实施例1的区别在于:步骤(6)中在得到的AlN薄膜层上采用磁控溅射法沉积FeGa薄膜层,其中,溅射靶材为步骤(1)得到的FeGa靶,工作气压为0.6Pa,溅射功率为50W,保护气体为氩气,溅射过程中提供大小为150Oe的平行于硅片方向的外加磁场,溅射时间为1h;即可得到所述磁电薄膜材料。其余步骤与实施例1相同。
材料制备完成后,通过俄歇电子能谱测得FeGa薄膜的化学式为Fe8.2Ga1.8。在偏置磁场300Oe、交变磁场1Oe、交变磁场频率200kHZ条件下,测量材料的磁电转换系数为0.9mV/cm·Oe。

Claims (4)

1.一种磁电复合薄膜材料,其特征在于,包括依次沉积于硅片上的电极层、AlN薄膜和FeGaB薄膜,FeGaB薄膜的化学式为Fe10-x-yGaxBy,其中1.778≤x≤3.0,0<y≤2.0。
2.根据权利要求1所述的磁电复合薄膜材料,其特征在于,所述电极层的厚度为50-100nm,所述AlN薄膜的厚度为200-300nm,所述FeGaB薄膜的厚度为200-300nm。
3.根据权利要求1所述的磁电复合薄膜材料,其特征在于,所述的电极层为Ag、Pt和Mo中的任一种。
4.一种权利要求1-3中任一项所述的磁电复合薄膜材料的制备方法,其特征在于,包括以下步骤:
(1)将硅片清洗干净后,在正面沉积电极层薄膜;
(2)采用磁控溅射法在电极层薄膜上沉积AlN薄膜,其中,溅射靶材为纯度为99.99%的铝靶,工作气压0.3Pa-0.7Pa,溅射功率为100W-250W,采用氮气和氩气的混合气,其中氮气和氩气的体积比为3∶7,溅射时间为0.5h-2h;
(3)采用磁控溅射共溅法在AlN薄膜上沉积FeGaB薄膜,其中,溅射靶材为Fe1-zGaz的化学计量比的原料通过熔融铸造合成的FeGa靶材,0.23≤z≤0.30,以及纯度为99.99%的B靶材;工作气压为0.6Pa-1.5Pa,FeGa靶的溅射功率为50W-80W,B靶的溅射功率为50-70W,保护气体为惰性气体,溅射过程中提供大小为100-300Oe的平行于硅片方向的外加磁场,溅射时间为0.5h-2h。
CN201811551786.0A 2018-12-18 2018-12-18 一种磁电复合薄膜材料及其制备方法 Active CN111334766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811551786.0A CN111334766B (zh) 2018-12-18 2018-12-18 一种磁电复合薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811551786.0A CN111334766B (zh) 2018-12-18 2018-12-18 一种磁电复合薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111334766A true CN111334766A (zh) 2020-06-26
CN111334766B CN111334766B (zh) 2021-11-09

Family

ID=71179724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811551786.0A Active CN111334766B (zh) 2018-12-18 2018-12-18 一种磁电复合薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111334766B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406541A (zh) * 2021-06-18 2021-09-17 中国科学院苏州纳米技术与纳米仿生研究所 谐振式双轴磁传感器及双轴磁传感器测试系统
CN115612988A (zh) * 2022-10-18 2023-01-17 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种高磁性能FeGaB磁电薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154186A (zh) * 2016-06-20 2016-11-23 瑞声声学科技(常州)有限公司 声表面波磁传感器及其制备方法
US9822442B2 (en) * 2013-02-28 2017-11-21 The United States Of America, As Represented By The Secretary Of The Navy Manufacturing a crucible for containment using non-wetting materials
CN107576922A (zh) * 2017-08-22 2018-01-12 重庆大学 一种可弯曲磁场测量装置及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9822442B2 (en) * 2013-02-28 2017-11-21 The United States Of America, As Represented By The Secretary Of The Navy Manufacturing a crucible for containment using non-wetting materials
CN106154186A (zh) * 2016-06-20 2016-11-23 瑞声声学科技(常州)有限公司 声表面波磁传感器及其制备方法
CN107576922A (zh) * 2017-08-22 2018-01-12 重庆大学 一种可弯曲磁场测量装置及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
尹冠博: "AlN/FeGaB磁电复合材料的制备与性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406541A (zh) * 2021-06-18 2021-09-17 中国科学院苏州纳米技术与纳米仿生研究所 谐振式双轴磁传感器及双轴磁传感器测试系统
CN113406541B (zh) * 2021-06-18 2023-03-14 中国科学院苏州纳米技术与纳米仿生研究所 谐振式双轴磁传感器及双轴磁传感器测试系统
CN115612988A (zh) * 2022-10-18 2023-01-17 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种高磁性能FeGaB磁电薄膜及其制备方法

Also Published As

Publication number Publication date
CN111334766B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
Barker et al. Room-temperature rf magnetron sputtered ZnO for electromechanical devices
CN111334766B (zh) 一种磁电复合薄膜材料及其制备方法
CN106449971B (zh) 一种基于NdFeB的电控磁结构及其制备方法和应用
CN101286545B (zh) 具有磁电效应的复合薄膜异质结及其制备方法
CN107488833B (zh) 一种磁电薄膜材料及其制备方法
CN114497362B (zh) 基于全氧化物单晶薄膜材料的磁隧道结及其制备方法
US4836867A (en) Anisotropic rare earth magnet material
US8671531B2 (en) Manufacturing method for a zinc oxide piezoelectric thin-film with high C-axis orientation
Yang et al. Influence of N2/Ar-flow ratio on crystal quality and electrical properties of ScAlN thin film prepared by DC reactive magnetron sputtering
Fujii et al. Preparation of Nb doped PZT film by RF sputtering
Das et al. Strain induced FCC to BCC structural change in sputtered molybdenum thin films
CN103276360B (zh) 一种磁性纳米线阵列薄膜及其制备方法
Li et al. Structural and electrical properties of highly oriented Pb (Zr, Ti) O3 thin films deposited by facing target sputtering
Iljinas et al. Thin ferromagnetic films deposition by facing target sputtering method
CN110703167B (zh) 一种获得Fe3GeTe2的磁致伸缩系数的方法
US20040130238A1 (en) Composite material, for the production thereof and its use
Guo et al. The ferroelectric and ferromagnetic characterization of CoFe2O4/Pb (Mg1/3Nb2/3) O3–PbTiO3 multilayered thin films
CN108251799B (zh) 基于非晶SmCo的磁电耦合异质结结构及其制备方法和应用
Sado et al. Magnetoelectric effect of Fe70Pd30 ferromagnetic shape memory alloy film: lead zirconate titanate trilayer composites at low and high magnetic field frequencies
JP4919310B2 (ja) 超磁歪薄膜素子の製造方法
Pawar et al. Enhanced Magnetodielectric Response in c-Axis AlN Based Magnetoelectric Multilayer Encapsulating a Highly Magnetostrictive Thin Film
JP4771398B2 (ja) 超磁歪薄膜素子及びその製造方法
Kucherenko et al. Influence of pressure, temperature, and magnetic field on the resistivity and magnetoresistive effect of lanthanum manganite ceramics and films with the composition La 0.7 Mn 1.3 O 3±δ
Pawar et al. Dielectric enhancement of AlN based multiferroic heterostructure via insertion of NiMnIn thin layer between AlN film
Prasad et al. Optimization of AlN deposition parameters for a high frequency 1D pMUT Array

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant