CN111320614A - 具有优异的耐热性和发光性的有机化合物、具有该化合物的有机发光二极管和有机发光装置 - Google Patents

具有优异的耐热性和发光性的有机化合物、具有该化合物的有机发光二极管和有机发光装置 Download PDF

Info

Publication number
CN111320614A
CN111320614A CN201911226440.8A CN201911226440A CN111320614A CN 111320614 A CN111320614 A CN 111320614A CN 201911226440 A CN201911226440 A CN 201911226440A CN 111320614 A CN111320614 A CN 111320614A
Authority
CN
China
Prior art keywords
light emitting
dopant
group
nitro
cyano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911226440.8A
Other languages
English (en)
Other versions
CN111320614B (zh
Inventor
金捘演
洪太良
梁仲焕
洪玩杓
金振珠
尹洪植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
LG Display Co Ltd
Original Assignee
LG Chem Ltd
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd, LG Display Co Ltd filed Critical LG Chem Ltd
Publication of CN111320614A publication Critical patent/CN111320614A/zh
Application granted granted Critical
Publication of CN111320614B publication Critical patent/CN111320614B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开涉及包含具有p型性质的咔唑基部分和具有n型性质并且取代有另一个二苯并呋喃基或二苯并噻吩基部分的二苯并呋喃基或二苯并噻吩基部分的有机化合物,以及包含所述有机化合物的有机发光二极管和有机发光装置。由于多个稠合杂芳环,该有机化合物具有优异的耐热性和高能级。包含所述有机化合物的有机发光二极管和有机发光装置显示出优异的发光效率和改善的发光寿命。

Description

具有优异的耐热性和发光性的有机化合物、具有该化合物的 有机发光二极管和有机发光装置
相关申请的交叉引用
本申请要求于2018年12月14日在韩国提交的韩国专利申请第10-2018-0161946号的权益,通过援引将其完整并入本文。
技术领域
本公开涉及一种有机化合物,更具体地,涉及一种具有增强的耐热性和发光性的有机化合物、包含该化合物的有机发光二极管和有机发光装置。
背景技术
在目前广泛使用的平板显示装置中,有机发光二极管(OLED)作为快速取代液晶显示装置(LCD)的显示装置而备受关注。在OLED中,当电荷注入电子注入电极(即阴极)和空穴注入电极(即阳极)之间的发射层中时,电荷组合成对,然后随着组合的电荷消失而发光。
OLED可以形成为小于
Figure BDA0002302356570000011
的薄膜,并且作为电极配置实现单向或双向图像。另外,甚至可以在柔性透明基板(例如,塑料基板)上形成OLED,使得OLED可以容易地实现柔性或可折叠显示。此外,OLED可以在10V以下的较低电压下驱动。此外,与等离子体显示板和无机电致发光装置相比,OLED具有相对较低的驱动功耗,并且其色纯度非常高。
由于现有技术普通荧光材料中只有单重态激子可以参与发光过程,因此普通荧光材料的发光效率低。相反,与普通荧光材料相比,其中三重态激子以及单重态激子参与发光过程的现有技术磷光材料显示出高发光效率。然而,由于作为代表性磷光材料的金属络合物具有较短的发光寿命,因此其商业应用受到限制。
特别地,为了防止磷光材料的三重态激子能量转移到磷光主体,磷光主体的三重态能级应高于磷光材料的三重态能级。因为有机芳香族化合物随着其共轭结构增加或其芳环稠合而具有显著降低的三重态能级,所以可用作磷光主体的有机材料受到很大限制。
发明内容
因此,本公开涉及有机化合物、包含该有机化合物的有机发光二极管和有机发光装置,所述有机化合物可以减少由相关技术的局限性和缺点而引起的一个或多个问题。
本公开的目的是提供一种有机化合物,其增强其耐热性并且可以防止激子能量作为非发射猝灭。
本公开的另一目的是提供一种提高其发光效率和发光寿命的有机发光二极管和有机发光装置。
本公开的其他特征和优点将在下面的描述中阐述,并且部分将从描述中明白,或者可以通过本公开的实践来学习。本公开的目的和其他优点将通过书面说明书及其权利要求书以及附图中具体指出的结构来实现和获得。
根据一个方面,本公开提供了具有以下化学式1的有机化合物:
化学式1
Figure BDA0002302356570000021
其中,R1至R4各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基,或者R1至R4中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环,其中,C5~C20稠合芳环和C4~C20稠合杂芳环各自分别不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团,a和b各自独立地为1至4的整数;c为1至3的整数,并且d为1或2的整数;R5和R6中的一个是具有以下化学式2的结构的取代基,当R5不是具有化学式2的结构的取代基时,R5与R4相同,并且当R6不是具有化学式2的结构的取代基时,R6为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基;并且X为氧(O)或硫(S);
化学式2
Figure BDA0002302356570000031
其中,R7和R8各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基,或者R7和R8中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环,其中,C5~C20稠合芳环和C4~C20稠合杂芳环各自分别不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团;e为1至3的整数并且f为1至4的整数;Y为氧(O)或硫(S)。
根据另一方面,本公开提供了一种有机发光二极管(OLED),其包括:第一电极;面对第一电极的第二电极;以及至少一个发射单元,所述至少一个发射单元设置在第一和第二电极之间并包括发光材料层,其中,所述发光材料层包括上述有机化合物。
根据又一方面,本公开提供了一种有机发光装置,其包括基板和设置在所述基板上的如上所述的OLED。
应当理解,前述的一般性描述和以下的详细描述均为示例并且是说明性的,并且旨在提供对所要求保护的公开内容的进一步说明。
附图说明
包括附图以提供对本公开的进一步理解,其并入且构成说明书的一部分,示出了本公开的实施方式,并且与说明书一起用于解释本公开的实施方式的原理。
图1是示出本公开的有机发光显示装置的示意性截面图;
图2是示出根据本公开示例性实施方式的有机发光二极管的示意性截面图;
图3是示出根据本公开示例性实施方式的EML中的延迟荧光材料的发光机制的示意图;
图4是示出根据本公开示例性实施方式的发光材料之间的能级带隙的发光机制的示意图;
图5是示出根据本公开另一示例性实施方式的有机发光二极管的示意性截面图;
图6是示出根据本公开另一示例性实施方式的发光材料之间的能级带隙的发光机制的示意图;
图7是示出根据本公开另一示例性实施方式的有机发光二极管的示意性截面图;
图8是示出根据本公开另一示例性实施方式的发光材料之间的能级带隙的发光机制的示意图;
图9是示出根据本公开另一示例性实施方式的有机发光二极管的示意性截面图;
图10是示出根据本公开另一示例性实施方式的发光材料之间的能级带隙的发光机制的示意图;并且
图11是示出根据本公开另一示例性实施方式的有机发光二极管的示意性截面图。
具体实施方式
现将详细参照本公开的各方面,其示例描绘在附图中。
有机化合物
应用于有机发光二极管的有机化合物应具有优异的发光性能并在驱动二极管期间保持稳定的性能。本公开的有机化合物包括各自不对称地连接到中心稠合杂芳香核的咔唑基部分和二苯并呋喃基或二苯并噻吩基部分,使得该化合物具有优异的耐热性和发光性能。本公开的有机化合物可具有以下化学式1的结构:
Figure BDA0002302356570000051
在化学式1中,R1至R4各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基。或者R1至R4中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环,其中,C5~C20稠合芳环和C4~C20稠合杂芳环各自分别不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团。a和b各自独立地为1至4的整数,c为1至3的整数,并且d为1或2的整数。R5和R6中的一个是具有以下化学式2的结构的取代基,当R5不是具有化学式2的结构的取代基时,R5与R4相同,并且当R6不是具有化学式2的结构的取代基时,R6为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基,或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基。X为氧(O)或硫(S)。
化学式2
Figure BDA0002302356570000052
在化学式2中,R7和R8各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基。或者R7和R8中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环,其中,C5~C20稠合芳环和C4~C20稠合杂芳环各自分别不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团。e为1至3的整数并且f为1至4的整数。Y为氧(O)或硫(S)。
如本文所用,术语“不具有取代基”是指键合有氢原子,并且在这种情况下,氢原子包括氕、氘和氚。
如本文使用的术语“具有取代基”中的取代基可包括但不限于,不具有取代基或取代有卤素的C1~C20烷基、不具有取代基或取代有卤素的C1~C20烷氧基、卤素、氰基、-CF3、羟基、羧基、羰基、氨基、C1~C20烷基氨基、C5~C30芳基氨基、C4~C30杂芳基氨基、硝基、肼基、磺酰基、C5~C30烷基甲硅烷基、C5~C30烷氧基甲硅烷基、C3~C30环烷基甲硅烷基、C5~C30芳基甲硅烷基、C4~C30杂芳基甲硅烷基、C5~C30芳基和C4~C30杂芳基。作为示例,当R1至R6各自独立地取代有烷基时,烷基可以是直链或支链的C1~C20烷基,并且优选直链或支链的C1~C10烷基。
如本文所用,“杂芳环”、“杂芳香基”、“杂脂环”、“杂环烷基”、“杂芳基”、“杂芳烷基”、“杂芳氧基”、“杂芳基氨基”、“杂亚芳基”、“杂亚芳烷基”和“杂亚芳氧基”等中描述的术语“杂”是指形成这种芳环或脂环的至少一个碳原子(例如1至5个碳原子)由选自由N、O、S及其组合组成的组中的至少一个杂原子取代。
如化学式1和2所示,本公开的有机化合物包括咔唑基部分(具有R1至R2基团)和至少两个二苯并呋喃基和/或二苯并噻吩基部分(具有X和Y基团)。在下文中,将连接到咔唑基部分的中心二苯并呋喃基/二苯并噻吩基部分(具有X基团)称为“第一二苯并呋喃基/二苯并噻吩基部分”,并且将连接到第一二苯并呋喃基/二苯并噻吩基部分的侧面二苯并呋喃基/二苯并噻吩基部分(具有Y基团)称为“第二二苯并呋喃基/二苯并噻吩基部分”。
由于咔唑基部分由于其与空穴的优异的结合能力而具有p型性质,并且第一和第二二苯并呋喃基/二苯并噻吩基部分由于其与电子的相对更好的结合能力而具有n型性质。因此,具有化学式1和2的结构的有机化合物可具有双极性。
在一个示例性实施方式中,化学式1和2中的R1至R8各自可以分别独立地为氢、氘或氚。在另一示例性实施方式中,化学式1和2中的R1至R8各自可以分别独立地为卤素、氰基、硝基、直链或支链的C1~C20烷基和/或C1~C20烷氧基,优选C1~C10烷氧基。
在又一示例性实施方式中,化学式1和2中的R1至R8各自可以分别独立地为芳基或杂芳基,例如C5~C30芳基或C4~C30杂芳基。取代到R1至R8各自的芳基或杂芳基可以不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团。
作为示例,当R1至R8各自为C5~C30芳基时,R1至R8各自可独立地为但不限于:非稠合或稠合的芳基,如苯基、联苯基、三联苯基、萘基、蒽基、戊搭烯基、茚基、茚并茚基、庚搭烯基、亚联苯基、引达省基、非那烯基、菲基、苯并菲基、二苯并菲基、薁基、芘基、荧蒽基、三亚苯基、
Figure BDA0002302356570000071
基、四联苯基、丁省基、七曜烯基、苉基、五联苯基、戊省基、芴基、茚并芴基或螺芴基。
在一个替代实施方式中,当R1至R8各自为C4~C30杂芳基时,R1至R8各自可独立地为但不限于:非稠合或稠合的杂芳基,例如吡咯基、吡啶基、嘧啶基、吡嗪基、哒嗪基、三嗪基、四嗪基、咪唑基、吡唑基、吲哚基、异吲哚基、吲唑基、吲嗪基、吡咯里嗪基、咔唑基、苯并咔唑基、二苯并咔唑基、吲哚并咔唑基、茚并咔唑基、苯并呋喃并咔唑基、苯并噻吩并咔唑基、喹啉基、异喹啉基、酞嗪基、喹喔啉基、噌啉基、喹唑啉基、喹嗪基、苯并喹唑啉基、苯并喹喔啉基、吖啶基、菲咯啉基、呸啶基、菲啶基、蝶啶基、噌啉基、萘啶基、呋喃基、吡喃基、噁嗪基、噁唑基、噁二唑基、三唑基、二噁英基、苯并呋喃基、二苯并呋喃基、噻喃基、呫吨基、色烯基、异色烯基、噻嗪基、噻吩基、苯并噻吩基、二苯并噻吩基、二呋喃并吡嗪基、苯并呋喃并二苯并呋喃基、苯并噻吩并苯并噻吩基、苯并噻吩并二苯并呋喃基、苯并噻吩并苯并呋喃基、苯并噻吩并二苯并呋喃基或N-取代的螺芴基。
在一个示例性实施方式中,当R1至R8各自为芳基或杂芳基时,芳基或杂芳基可以由1至3个芳环或杂芳环组成。当构成R1至R8各自的芳环或杂芳环的数目增加时,整个有机化合物内的共轭结构变得过长,使得有机化合物的带隙可能过度降低。作为示例,当R1至R8各自为芳基或杂芳基时,R1至R8各自可分别独立地为但不限于:苯基、联苯基、吡咯基、三嗪基、咪唑基、吡唑基、吡啶基、吡嗪基、嘧啶基、哒嗪基、呋喃基、苯并呋喃基、二苯并呋喃基、噻吩基、苯并噻吩基、二苯并噻吩基或咔唑基。
在另一示例性实施方式中,R1至R5中相邻的两个基团或R7和R8中相邻的两个基团可以形成稠合的C5~C20稠合芳环或C4~C20稠合杂芳环。稠合C5~C20稠合芳环或C4~C20稠合杂芳环各自可以不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团。在这种情况下,具有化学式1和2的结构的有机化合物可以具有适合于OLED的发光材料层的能级带隙。在一个示例性实施方式中,稠合芳环和稠合杂芳环可以由1至3个、优选1或2个芳环或杂芳环组成。
如上所述,R1至R5中相邻的两个基团或R7和R8中相邻的两个基团形成稠合的芳环或杂芳环。作为示例,当构成咔唑基部分的R1和R2各自中相邻的两个基团形成稠合的芳环或杂芳环时,稠合的芳环或杂芳环可以是但不限于:稠合芳环(例如,稠合苯环和/或稠合萘环),或稠合杂芳环(例如,稠合吡啶环、稠合嘧啶环和/或稠合咔唑环)。
作为示例,当构成咔唑基部分的R1至R2各自中相邻的两个基团独立地形成稠合的芳环或杂芳环时,化学式1中的咔唑基部分可以形成但不限于:苯并咔唑基部分、二苯并咔唑基部分、苯并呋喃并咔唑基部分、苯并噻吩并咔唑基部分、茚并咔唑基部分和吲哚并咔唑基部分等。
在另一实施方式中,当构成第一二苯并呋喃基/二苯并噻吩基部分的R3至R5各自中相邻的两个基团和构成第二二苯并呋喃基/二苯并噻吩基部分的R7和R8各自中相邻的两个基团形成稠合芳环或稠合杂芳环时,第二二苯并呋喃基/二苯并噻吩基部分可以形成但不限于:稠合芳环(例如,稠合苯环和/或稠合萘环),或稠合杂芳环(例如,稠合吡啶环、稠合嘧啶环和/或稠合咔唑环)。
作为示例,当R3至R5各自中相邻的两个基团和/或R7和R8各自中相邻的两个基团独立地形成稠合的芳环或杂芳环时,第一和第二二苯并呋喃基/二苯并噻吩基部分可以形式但不限于:吡啶并二苯并呋喃基部分、吡啶并二苯并噻吩基部分、茚并二苯并呋喃基部分、茚并二苯并噻吩基部分、吲哚并二苯并呋喃基部分和吲哚并二苯并噻吩基部分等。
由于具有化学式1和2的结构的有机化合物包括具有p型性质的咔唑基部分以及具有n型性质的二苯并呋喃基/二苯并噻吩基部分,因此该有机化合物对空穴以及电子具有优异的亲和性。因此,当将具有化学式1和2的结构的有机化合物应用于发光材料层(EML)时,空穴和电子形成激子的复合区位于EML的中间,而不是在EML与电子输送层(ETL)或空穴阻挡层(HBL)之间的界面。
另外,具有化学式1和2的结构的有机化合物包括各自具有中心5元环连接至两侧6元环的咔唑基部分和二苯并呋喃基/二苯并噻吩基部分。由于咔唑基部分以及二苯并呋喃基/二苯并噻吩基具有刚性构象结构,因此具有化学式1和2的结构的有机化合物可具有优异的耐热性。因此,具有化学式1和2的结构的有机化合物不会因驱动OLED时产生的焦耳热而劣化。因此,具有化学式1和2的结构的有机化合物可以应用于OLED,从而实现优异的发光效率并通过防止OLED劣化来提高OLED的发光寿命。
此外,具有化学式1和2的结构的有机化合物具有多个二苯并呋喃基/二苯并噻吩基部分(各自具有中心5元环连接至两侧6元环)。因此,具有化学式1和2的结构的有机化合物可具有适合用作发光材料(例如作为EML中的主体)的最高占据分子轨道(HOMO)能级和最低未占分子轨道(LUMO)能级。作为示例,当有机化合物与延迟荧光材料一起用于EML时,可以降低OLED的驱动电压,从而降低功耗。因此,由于驱动电压的增加而施加到OLED的应力减小,从而提高OLED的发光效率和发光寿命。
在一个示例性实施方式中,具有化学式1和2的结构的有机化合物可具有等于或高于约2.9eV的激发态单重态能级(但不限于此),以及等于或高于约2.8eV的激发态三重态能级(但不限于此)。另外,具有化学式1和2的结构的有机化合物可具有在约-5.0eV和约-6.5eV之间、优选在约-5.5eV和约-6.2eV之间的HOMO能级(但不限于此),并且具有在约-1.5eV和约-3.0eV之间、优选在约-1.7eV和约-2.5eV之间的LUMO能级(但不限于此)。此外,具有化学式1和3的结构的有机化合物的HOMO能级与LUMO能级之间的能级带隙(Eg)可在约3.0eV和约4.0eV之间、优选在约3.0eV和约3.5eV之间,但不限于此。
在一个示例性实施方式中,具有化学式1和2的结构的有机化合物可包括具有以下化学式3或4的结构的有机化合物:
化学式3
Figure BDA0002302356570000101
在化学式3中,R11至R14和R17至R18各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基。或者R11至R14和R17至R18中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环。R16为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基。a、b、c、d、e、f、X和Y各自与化学式1和2中所定义的相同。
化学式4
Figure BDA0002302356570000102
在化学式4中,R11至R15和R17至R18各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基。或者R11至R15和R17至R18中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环;R16为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基。a、b、c、d、e、f、X和Y各自与化学式1和2中所定义的相同。
特别地,具有化学式1和3的结构的有机化合物可包括具有以下化学式5的结构的任何一种:
化学式5
Figure BDA0002302356570000111
Figure BDA0002302356570000121
Figure BDA0002302356570000131
Figure BDA0002302356570000141
Figure BDA0002302356570000151
Figure BDA0002302356570000161
Figure BDA0002302356570000171
Figure BDA0002302356570000181
Figure BDA0002302356570000191
Figure BDA0002302356570000201
Figure BDA0002302356570000211
Figure BDA0002302356570000221
Figure BDA0002302356570000231
Figure BDA0002302356570000241
Figure BDA0002302356570000251
在另一替代实施方式中,具有化学式1、2和4的结构的有机化合物可包括具有以下化学式6的结构的任何一种:
化学式6
Figure BDA0002302356570000252
Figure BDA0002302356570000261
Figure BDA0002302356570000271
Figure BDA0002302356570000281
Figure BDA0002302356570000291
Figure BDA0002302356570000301
Figure BDA0002302356570000311
Figure BDA0002302356570000321
Figure BDA0002302356570000331
Figure BDA0002302356570000341
Figure BDA0002302356570000351
Figure BDA0002302356570000361
Figure BDA0002302356570000371
Figure BDA0002302356570000381
Figure BDA0002302356570000391
具有化学式3至6中任何一种的结构的有机化合物包括连接至中心第一二苯并呋喃基/二苯并噻吩基部分且具有p型性质的咔唑基部分,以及连接至第一二苯并呋喃基/二苯并噻吩基部分且具有n型性质的第二二苯并呋喃基/二苯并噻吩基部分,并且咔唑基部分和第二二苯并呋喃基/二苯并噻吩基部分不对称地连接至第一二苯并呋喃基/二苯并噻吩基部分。
换句话说,具有p型性质的咔唑基部分和具有n型性质的第二二苯并呋喃基/二苯并噻吩基部分各自分别键合至构成第一二苯并呋喃基/二苯并噻吩基部分的各侧苯环中的不对称位置,使得具有化学式3至6中任何一种的结构的有机化合物可以表现出更加非晶的特性,从而极大地提高其耐热性。因此,防止了由驱动OLED时的焦耳热引起的结晶,并且没有破坏OLED的结构。
此外,由于具有化学式1至6中任何一种的结构的有机化合物包括各自包含两个苯环的咔唑基部分和二苯并呋喃基/二苯并噻苯基部分,因此该有机化合物具有适合用作EML中的主体的HOMO能级和LUMO能级。特别是,当有机化合物与延迟荧光材料以及可选的荧光材料一起用于EML时,可以在发射过程中将激子能量转移到荧光材料而没有能量损失。
换句话说,具有化学式1至6中任何一种的结构的有机化合物可用作OLED的EML中的主体,以提高发光效率,降低驱动电压并改善OLED的发光寿命。作为示例,当具有化学式1至6中任何一种的结构的有机化合物用作EML中的主体时,可以使由于主体中的激子与外围极化子之间的相互作用所致的激子猝灭最小化,并且可以防止OLED的发光寿命因电氧化和光氧化而降低。
此外,具有化学式1至6中任何一种的结构的有机化合物具有优异的耐热性和较大的能级带隙和较高的三重态能级。因此,当具有化学式1至6中任何一种的结构的有机化合物用作EML中的主体时,该有机化合物可以将激子能量有效地转移到荧光材料,使得OLED可以具有提高的发光效率。另外,EML中的有机化合物不会因热而劣化,因此可以实现具有长寿命和优异色纯度的OLED。
[有机发光二极管和装置]
具有化学式1至6中任何一种的结构的有机化合物具有增强的耐热性和发光性能。具有化学式1至6中任何一种的结构的有机化合物可以应用于有机发光二极管的发光材料层,从而实现高色纯度并提高二极管的发光效率。本公开的有机发光二极管可以应用于有机发光装置(例如,有机发光显示装置和有机发光照明装置)。将对有机发光显示装置进行说明。图1是根据本公开的示例性实施方式的有机发光显示装置的示意性截面图。
如图1所示,有机发光显示装置100包括基板102、基板102上的薄膜晶体管Tr以及连接到薄膜晶体管Tr的有机发光二极管200。
基板102可包括但不限于玻璃、薄柔性材料和/或聚合物塑料。例如,柔性材料可选自由但不限于聚酰亚胺(PI)、聚醚砜(PES)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)及其组合组成的组。其上布置有薄膜晶体管Tr和有机发光二极管200的基板102形成阵列基板。
缓冲层104可以设置在基板102上,并且薄膜晶体管Tr设置在缓冲层104上。缓冲层104可以省略。
半导体层110设置在缓冲层104上。在一个示例性实施方式中,半导体层110可以包括但不限于氧化物半导体材料。在这种情况下,在半导体层110下可以设置遮光图案(未示出),并且遮光图案(未示出)可以防止光入射到半导体层110,从而防止半导体层110因光而劣化。作为另选,半导体层110可包括但不限于多晶硅。在这种情况下,半导体层110的相反边缘可以掺杂有杂质。
由绝缘材料形成的栅极绝缘层120设置在半导体层110上。栅极绝缘层120可以包括但不限于无机绝缘材料,例如氧化硅(SiOx)或氮化硅(SiNx)。
由诸如金属等导电材料制成的栅极130设置在栅极绝缘层120上,从而对应于半导体层110的中心。虽然在图1中栅极绝缘层120设置在基板102的整个区域上,但栅极绝缘层120可以与栅极130相同地图案化。
由绝缘材料形成的层间绝缘层140设置在栅极130上,覆盖在基板102的整个表面上。层间绝缘层140可以包括但不限于无机绝缘材料(如氧化硅(SiOx)或氮化硅(SiNx)),或有机绝缘材料(如苯并环丁烯或光丙烯酸树脂)。
层间绝缘层140具有露出半导体层110的两侧的第一半导体层接触孔142和第二半导体层接触孔144。第一半导体层接触孔142和第二半导体层接触孔144设置在栅极130的相反侧上,与栅极130隔开。在图1中,第一半导体层接触孔142和第二半导体层接触孔144形成在栅极绝缘层120内。作为另选,当栅极绝缘层120与栅极130相同地图案化时,第一半导体层接触孔142和第二半导体层接触孔144仅形成在层间绝缘层140内。
各自由诸如金属等导电材料制成的源电极152和漏电极154设置在层间绝缘层140上。源电极152和漏电极154相对于栅极130彼此间隔开,并分别通过第一半导体层接触孔142和第二半导体层接触孔144接触半导体层110的两侧。
半导体层110、栅极130、源电极152和漏电极154构成用作驱动元件的薄膜晶体管Tr。图1中的薄膜晶体管Tr具有栅极130、源电极152和漏电极154设置在半导体层110上的共平面结构。作为另选,薄膜晶体管Tr可以具有栅极设置在半导体层下而源电极和漏电极设置在半导体层上的反交叠结构。在这种情况下,半导体层可以包括非晶硅。
尽管图1中未示出,栅极线和数据线彼此相交以界定像素区,并且在像素区中可以进一步形成连接至栅极线和数据线的开关元件。开关元件连接至作为驱动元件的薄膜晶体管Tr。此外,电源线与栅极线或数据线平行间隔开,并且薄膜晶体管Tr还可以包括配置为在一帧期间持续保持栅极的电压的存储电容器。
另外,有机发光显示装置100可以包括用于吸收从有机发光二极管200发射的一部分光的滤色片(未示出)。例如,滤色片(未示出)可以吸收特定波长的光,例如红色(R)、绿色(G)或蓝色(B)。在这种情况下,有机发光显示装置100可以通过滤色片(未示出)实现全色。
例如,当有机发光显示装置100是底部发射型时,滤色片(未示出)可以设置在层间绝缘层140上,对应于有机发光二极管200。作为另选,当有机发光显示装置100是顶部发射型时,滤色片(未示出)可以设置在有机发光二极管200(即,第二电极220)上。
钝化层160设置在整个基板102上的源电极152和漏电极154上。钝化层160具有平坦的顶面和露出薄膜晶体管Tr的漏电极154的漏极接触孔162。虽然漏极接触孔162设置在第二半导体层接触孔154上,但其可以与第二半导体层接触孔154隔开。
有机发光二极管200包括设置在钝化层160上并连接至薄膜晶体管Tr的漏电极154的第一电极210。有机发光二极管200还包括各自依次设置在第一电极210上的作为发射层的发射单元230和第二电极220。
第一电极210设置在各像素区中。第一电极210可以是阳极并且包括具有相对高的逸出功值的导电材料。例如,第一电极210可包括但不限于透明导电材料,例如铟锡氧化物(ITO)、铟锌氧化物(IZO)、铟锡锌氧化物(ITZO)、锡氧化物(SnO)、锌氧化物(ZnO)、铟铈氧化物(ICO)和铝掺杂的锌氧化物(AZO)等。
在一个示例性实施方式中,当有机发光显示装置100是顶部发射型时,在第一电极210下可以设置反射电极或反射层(未示出)。例如,反射电极或反射层(未示出)可包括但不限于铝-钯-铜(APC)合金。
另外,库层170设置在钝化层160上以覆盖第一电极210的边缘。库层170露出第一电极210的中心。
发射单元230设置在第一电极210上。在一个示例性实施方式中,发射单元230可以具有单层结构的发光材料层。作为另选,发射单元230可以具有空穴注入层、空穴输送层、电子阻挡层、发光材料层、空穴阻挡层、电子输送层和/或电子注入层的多层结构(参见图2、5、7、9和11)。在一个实施方式中,有机发光二极管200可以具有一个发射单元230。作为另选,有机发光二极管200可以具有多个发射单元230以形成串联结构。发射单元230包括具有化学式1至6中任何一种的结构的有机化合物。作为示例,具有化学式1至6中任何一种的结构的有机化合物可以用作发光材料层的主体,所述发光材料层可以进一步包括至少一种掺杂剂。
第二电极220设置在其上设置有发射单元230的基板102上。第二电极220可以设置在整个显示区上,并且可以包括与第一电极210相比具有相对较低的逸出功值的导电材料。第二电极220可以是阴极。例如,第二电极220可包括但不限于铝(Al)、镁(Mg)、钙(Ca)、银(Au)、其合金或其组合,例如铝-镁合金(Al-Mg)。
另外,包封膜180可以设置在第二电极220上,以防止外部水分渗入有机发光二极管200中。包封膜180可以具有但不限于第一无机绝缘膜182、有机绝缘膜184和第二无机绝缘膜186的层叠结构。
如上所述,OLED 200的发射单元230包括具有化学式1至6中任何一种的结构的有机化合物。由于该有机化合物具有优异的耐热性和发光性能,因此OLED 200可以通过将具有化学式1至6中任何一种的结构的有机化合物应用于发射单元230中来提高其发光效率和发光寿命并降低其驱动电压,从而降低其功耗。
图2是示出根据本公开的示例性实施方式的具有单层EML的有机发光二极管的示意性截面图。如图2所示,根据本公开第一实施方式的有机发光二极管(OLED)300包括彼此面对的第一电极310和第二电极320、作为发射层设置在第一电极310和第二电极320之间的发射单元330。在一个示例性实施方式中,发射单元330包括各自从第一电极310依次层叠的空穴注入层(HIL)340、空穴输送层(HTL)350、发光材料层(EML)360、电子输送层(ETL)370和电子注入层(EIL)380。作为另选,发射单元330还可以包括设置在HTL 350与EML 360之间的第一激子阻挡层,即电子阻挡层(EBL)355,和/或设置在EML 360与ETL 370之间的第二激子阻挡层,即空穴阻挡层(HBL)375。
第一电极310可以是向EML 560提供空穴的阳极。第一电极310可以包括但不限于具有相对较高的逸出功值的导电材料,例如,透明导电氧化物(TCO)。在一个示例性实施方式中,第一电极110可以包括但不限于ITO、IZO、ITZO、SnO、ZnO、ICO和AZO等。
第二电极320可以是向EML 560提供电子的阴极。第二电极320可以包括但不限于具有相对较低的逸出功值的导电材料,即高反射材料,例如Al、Mg、Ca、Ag、其合金和其组合等。
HIL 340设置在第一电极310和HTL 350之间,并且改善无机第一电极310和有机HTL 350之间的界面特性。在一个示例性实施方式中,HIL 340可包括但不限于4,4'4”-三(3-甲基苯基氨基)三苯胺(MTDATA)、4,4',4”-三(N,N-二苯基-氨基)三苯胺(NATA)、4,4',4”-三(N-(萘-1-基)-N-苯基-氨基)三苯胺(1T-NATA)、4,4',4”-三(N-(萘-2-基)-N-苯基-氨基)三苯胺(2T-NATA)、铜酞菁(CuPc)、三(4-咔唑-9-基-苯基)胺(TCTA)、N,N'-二苯基-N,N'-二(1-萘基)-1,1'-联苯-4,4”-二胺(NPB;NPD)、1,4,5,8,9,11-六氮杂三亚苯基六甲腈(二吡嗪[2,3-f:2'3'-h]喹喔啉-2,3,6,7,10,11-六甲腈;HAT-CN)、1,3,5-三[4-(二苯基氨基)苯基]苯(TDAPB)、聚(3,4-亚乙二氧基噻吩)聚苯乙烯磺酸(PEDOT/PSS)和/或N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺。根据OLED 300的结构可以省略HIL 340。
HTL 350在第一电极310和EML 360之间与EML 360相邻设置。在一个示例性实施方式中,HTL 350可包括但不限于N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺(TPD)、NPB、4,4'-二(N-咔唑基)-1,1'-联苯(CBP)、聚[N,N'-二(4-丁基苯基)-N,N'-二(苯基)-联苯胺](Poly-TPD)、聚[(9,9-二辛基芴基-2,7-二基)-共-(4,4'-(N-(4-仲丁基苯基)二苯胺))](TFB)、二[4-(N,N-二-对甲苯基-氨基)-苯基]环己烷(TAPC)、N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺和/或N-(联苯-4-基)-N-(4-(9-苯基-9H-咔唑-3-基)苯基)联苯-4-胺。
在一个示例性实施方式中,HIL 340和HTL 350各自可以层积为约5nm至约200nm,优选约5nm至约100nm的厚度,但不限于此。
EML 360可以包括掺杂有掺杂剂的主体。在该示例性实施方式中,EML 360可以包括掺杂有掺杂剂(第一掺杂剂)的主体(第一主体)。例如,具有化学式1至6中任何一种的结构的有机化合物可用作EML 360中的主体。EML 360可以发射红色、绿色或蓝色的光。将更详细地解释发光材料之间的配置和能级。
ETL 370和EIL 380依次层叠在EML 360和第二电极320之间。ETL 370可以包括具有高电子迁移率的材料,从而通过快速电子输送向EML 360稳定地提供电子。
在一个示例性实施方式中,ETL 370可以包括但不限于,噁二唑类化合物、三唑类化合物、菲咯啉类化合物、苯并噁唑类化合物、苯并噻唑类化合物、苯并咪唑类化合物和三嗪类化合物等。
作为示例,ETL 370可以包括但不限于,三(8-羟基喹啉)铝(Alq3)、2-联苯-4-基-5-(4-叔丁基苯基)-1,3,4-噁二唑(PBD)、spiro-PBD、喹啉锂(Liq)、1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBi)、二(2-甲基-8-羟基喹啉-N1,O8)-(1,1'-联苯-4-羟基)铝(BAlq)、4,7-二苯基-1,10-菲咯啉(Bphen)、2,9-二(萘-2-基)-4,7-二苯基-1,10-菲咯啉(NBphen)、2,9-二甲基-4,7-二苯基-1,10-菲咯啉(BCP)、3-(4-联苯基)-4-苯基-5-叔丁基苯基-1,2,4-三唑(TAZ)、4-(萘-1-基)-3,5-二苯基-4H-1,2,4-三唑(NTAZ)、1,3,5-三(对-吡啶-3-基-苯基)苯(TpPyPB)、2,4,6-三(3'-(吡啶-3-基)联苯-3-基)1,3,5-三嗪(TmPPPyTz)、聚[9,9-二(3'-((N,N-二甲基)-N-乙基铵)-丙基)-2,7-芴]-alt-2,7-(9,9-二辛基芴)](PFNBr)和/或三(苯基喹喔啉)(TPQ)。
EIL 380设置在第二电极320和ETL 370之间,并且可以改善第二电极320的物理特性,因此可以提高OLED 300的寿命。在一个示例性实施方式中,EIL 380可以包括但不限于碱金属卤化物(例如,LiF、CsF、NaF和BaF2等)和/或有机金属化合物(例如,苯甲酸锂和硬脂酸钠等)。
作为示例,ETL 370和EIL 380各自可以层积为约10nm至约100nm的厚度,但不限于此。
当空穴经由EML 360转移到第二电极320和/或电子经由EML 360转移到第一电极310时,OLED 300的发光寿命和发光效率可能降低。为了防止这些现象,根据本公开的该实施方式的OLED 300具有至少一个与EML 360相邻设置的激子阻挡层。
例如,示例性实施方式的OLED 300包括HTL 350和EML 360之间的EBL 355,从而控制和防止电子转移。在一个示例性实施方式中,EBL 355可包括但不限于TCTA、三[4-(二乙氨基)苯基]胺、N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺、TAPC、MTDATA、1,3-二(咔唑-9-基)苯(mCP)、3,3'-二(N-咔唑基)-1,1'-联苯(mCBP)、CuPc、N,N'-双[4-(二(3-甲基苯基)氨基)苯基]-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(DNTPD)、TDAPB、2,8-二(9-苯基-9H-咔唑-3-基)二苯并[b,d]噻吩和/或3,6-二(N-咔唑基)-N-苯基-咔唑。
另外,OLED 300还包括EML 360和ETL 370之间的作为第二激子阻挡层的HBL 375,使得空穴不能从EML 360转移到ETL 370。在一个示例性实施方式中,HBL 375可以包括但不限于噁二唑类化合物、三唑类化合物、菲咯啉类化合物、苯并噁唑类化合物、苯并噻唑类化合物、苯并咪唑类化合物和三嗪类化合物。
例如,HBL 375可以包括与EML 360中的发光材料相比具有相对较低的HOMO能级的化合物。HBL 375可包括但不限于BCP、BAlq、Alq3、PBD、spiro-PBD、Liq、双-4,5-(3,5-二-3-吡啶基苯基)-2-甲基嘧啶(B3PYMPM)、双[2-(二苯基膦)苯基]醚氧化物(DPEPO)、9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9'-联咔唑及其组合。
如上示意性所述,根据本公开第一实施方式的OLED 300的EML 360包括主体,即具有化学式1至6中任何一种的结构的有机化合物,和具有延迟荧光性能的掺杂剂(T掺杂剂)。当EML 360包括具有延迟荧光性能的掺杂剂时,OLED 300可以提高其发光效率和发光寿命并降低其驱动电压。
随着从阳极注入的空穴和从阴极注入的电子在EML中结合形成激子,然后不稳定的激发态激子返回到稳定的基态,有机发光二极管(OLED)发光。理论上,当电子遇到空穴形成激子时,通过自旋排布以1:3的比率产生成对自旋的单重态激子和未成对自旋的三重态激子。在荧光材料的情况下,只有激子中的单重态激子可以参与发射过程。因此,在使用普通荧光材料的情况下,OLED可以显示出最大5%的发光效率。
相反,磷光材料使用将单重态激子和三重态激子都转换成光的不同的发光机制。磷光材料可以通过系间窜越(ISC)将单重态激子转换为三重态激子。因此,与荧光材料相比,在采用在发光过程中同时使用单重态激子和三重态激子的磷光材料的情况下,可以提高发光效率。然而,现有技术蓝色磷光材料显示出过低的色纯度以至于无法应用于显示装置并且显示出非常短的发光寿命,因此,它们尚未用于商业显示装置中。
最近开发了延迟荧光材料,其可以解决现有技术荧光掺杂剂和磷光掺杂剂伴随的局限性。代表性的延迟荧光材料是热激活延迟荧光(TADF)材料。由于延迟荧光材料通常在其分子结构内同时具有电子供体部分和电子受体部分,因此其可以转换为分子内电荷转移(ICT)状态。在使用延迟荧光材料作为掺杂剂的情况下,可以在发射过程中同时使用单重态能级S1的激子和三重态能级T1的激子。
将参照图3解释延迟荧光材料的发光机制,图3是示出根据本公开另一示例性实施方式的EML中的延迟荧光材料的发光机制的示意图。如图3所示,延迟荧光材料中的单重态能级S1 TD的激子以及三重态能级T1 TD的激子都可以跃迁到中间能级状态,即ICT状态,然后中间态激子可以跃迁到基态(S0;S1→ICT←T1)。由于延迟荧光材料中的单重态能级S1 TD的激子以及三重态能级T1 TD的激子参与发射过程,因此延迟荧光材料可以提高发光效率。
由于在普通荧光材料内,HOMO和LUMO均广泛分布在整个分子上,因此不可能在其内进行单重态能级与三重态能级之间的相互转换(选择定则)。相反,由于可转换为ICT状态的延迟荧光材料在HOMO与LUMO之间几乎没有轨道重叠,因此在偶极矩在延迟荧光材料内极化的状态下,HOMO态分子轨道与LUMO态分子轨道之间几乎没有相互作用。结果,电子自旋状态的变化对其他电子没有影响,并且在延迟荧光材料中形成不遵循选择定则的新电荷转移带(CT带)。
换句话说,由于延迟荧光材料在分子内具有与电子供体部分隔开的电子受体部分,因此它在分子内以具有大偶极矩的极化状态存在。由于在偶极矩极化的状态下,HOMO分子轨道与LUMO分子轨道之间的相互作用变小,因此三重态能级激子和单重态能级激子均可以转换为ICT状态。因此,三重态能级T1的激子以及单重态能级S1的激子可以参与发射过程。
在驱动包括延迟荧光材料的二极管的情况下,25%的单重态能级S1 TD的激子和75%的三重态能级T1 TD的激子通过热或电场转换为ICT状态,然后所转换的激子跃迁到基态S0,伴随发光。因此,延迟荧光材料理论上可具有100%的内量子效率。
延迟荧光材料的单重态能级S1 TD与三重态能级T1 TD之间的能级带隙ΔEST TD必须等于或小于约0.3eV,例如,约0.05至约0.3eV,使得单重态能级和三重态能级的激子能量均可以转移到ICT状态。单重态能级S1 TD与三重态能级T1 TD之间的能级带隙小的材料可以显示出普通荧光(其中单重态能级S1 TD的激子可以跃迁到基态S0)以及利用反向系间窜越(RISC)的延迟荧光(其中,三重态能级T1 TD的激子可以向上跃迁到单重态能级S1 TD的激子,然后从三重态能级T1 TD跃迁的单重态能级S1 TD的激子可以跃迁到基态S0)。
由于延迟荧光材料理论上可获得高达100%的发光效率,因此延迟荧光材料可实现与包含重金属的现有技术磷光材料相同的量子效率。用于实现延迟荧光的主体可以诱导在延迟荧光材料处产生的三重态激子能量参与发光过程而不作为非发射猝灭。为了诱导这种激子能量转移,应调节主体和延迟荧光材料之间的能级。
图4是示出根据本公开示例性实施方式的发光材料之间的能级带隙的发光机制的示意图。如图4示意性所示,主体的激发态单重态能级S1 H和激发态三重态能级T1 H各自应分别高于具有延迟荧光性能的主体的激发态单重态能级S1 TD和激发态三重能级T1 TD。例如,主体的激发三重态能级T1 H可以比掺杂剂的激发态三重态能级T1 TD高至少约0.2eV。
作为示例,当主体的激发态三重态能级T1 H不足够高于掺杂剂(可以为延迟荧光材料)的激发态三重态能级T1 TD时,掺杂剂的三重态能级T1 TD的激子可以反向跃迁到不能利用三重态激子能量的主体的激发态三重态能级T1 H。因此,具有延迟荧光性能的掺杂剂的三重态能级T1 TD的激子可能作为非发射而猝灭,并且掺杂剂的三重态激子不能参与发射。
为了实现延迟荧光,掺杂剂(TD)的激发态单重态能级S1 TD与激发态三重态能级T1 TD之间的能级带隙ΔEST TD必须等于或小于约0.3eV,例如在约0.05和约0.3eV之间(参见图3)。
另外,需要适当地调节主体和掺杂剂(可以为荧光材料)的HOMO能级和LUMO能级。例如,优选主体的HOMO能级(HOMOH)与掺杂剂的HOMO能级(HOMOTD)之间的能级带隙(|HOMOH-HOMOTD|)或主体的LUMO能级(LUMOH)与掺杂剂的LUMO能级(LUMOTD)之间的能级带隙(|LUMOH-LUMOTD|)可以等于或小于约0.5eV,例如,在约0.1eV至约0.5eV之间。在这种情况下,电荷可以有效地从主体输送到第一掺杂剂,从而提高最终的发光效率。
此外,主体的HOMO能级(HOMOH)与LUMO能级(LUMOH)之间的能级带隙(EgH)可以大于掺杂剂的HOMO能级(HOMOTD)与LUMO能级(LUMOTD)之间的能级带隙(EgTD)。作为示例,主体的HOMO能级(HOMOH)深于或低于掺杂剂的HOMO能级(HOMOTD),并且主体的LUMO能级(LUMOH)浅于或高于掺杂剂的LUMO能级(LUMOTD)。
具有化学式1至6中任何一种的结构的有机化合物包括具有p型性质的咔唑基部分,和具有n型性质的第二二苯并呋喃基/二苯并噻吩基部分,并且咔唑基部分和第二二苯并呋喃基/二苯并噻吩基部分不对称地连接到第一二苯并呋喃基/二苯并噻吩基部分。具有化学式1至6中任何一种的结构的有机化合物可以表现出更加非晶的性质,从而极大地提高其耐热性。因此,防止了由驱动OLED时的焦耳热而引起的结晶,并且不会破坏OLED的结构。此外,由于具有化学式1至6中任何一种的结构的有机化合物包括各自包含两个苯环的咔唑基部分和二苯并呋喃基/二苯并噻吩基部分,因此该有机化合物具有适合用作EML 360中的主体的HOMO能级和LUMO能级。特别是,当有机化合物与延迟荧光材料以及可选的荧光材料一起用于EML时,可以在发射过程中将激子能量转移到荧光材料而没有能量损失。
换句话说,当具有化学式1至6中任何一种的结构的有机化合物用作OLED 300的EML 360中的主体时,可以使由于主体中的激子与外围极化子之间的相互作用所致的激子猝灭最小化,并且可以防止OLED的发光寿命因电氧化和光氧化而降低。而且,该有机化合物具有优异的耐热性和较高的三重态能级以及较大的HOMO能级与LUMO能级之间的能级带隙。当具有化学式1至6中任何一种的结构的有机化合物用作EML 360中的主体时,由于从主体到掺杂剂的有效激子能量转移,OLED 300可以提高其发光效率。另外,由于对EML 360中的发光材料的损伤减少,OLED 300可以实现高色纯度和长发光寿命。
在一个示例性实施方式中,当具有化学式1至6中任何一种的结构的有机化合物用作EML 360中的主体时,与主体相比具有适当能级的延迟荧光材料可用作EML 360中的掺杂剂。例如,掺杂剂可以发射红色、绿色或蓝色的光。作为示例,为了实现适用于显示装置的发光水平,掺杂剂可以具有约2.7eV至约2.75eV的激发态单重态能级(S1 TD)(但不限于此),以及约2.4eV至约2.5eV的激发态三重态能级(T1 TD)(但不限于此)。
可用作掺杂剂的延迟荧光材料可具有在约-5.0eV和约-6.0eV之间,优选在约-5.0eV和约-5.5eV之间的HOMO能级(HOMOTD)(但不限于此),在约-2.5eV和约-3.5eV之间,优选在约-2.5eV和约-3.0eV之间的LUMO能级(LUMOTD)(但不限于此),并且这些HOMO与LUMO能级(HOMOTD与LUMOTD)之间的能级带隙(EgTD)可以为但不限于,约2.2eV至约3.0eV,优选约2.4eV至约2.8eV。具有化学式1至6中任何一种的结构的有机化合物可以具有在约-5.0eV和约-6.5eV之间,优选在约-5.5eV和约-6.2eV之间的HOMO能级(HOMOH)(但不限于此),在约-1.5eV和约-3.0eV之间,优选在约-1.5eV和约-2.5eV之间的LUMO能级(LUMOH)(但不限于此),并且这些HOMO与LUMO能级(HOMOH与LUMOH)之间的能级带隙(EgH)可以为但不限于约3.0eV至约4.0eV,优选约3.0eV至约3.5eV。
在一个示例性实施方式中,可用作EML 360中掺杂剂的延迟荧光材料可以包括具有以下化学式7的结构的任何一种。
化学式7
Figure BDA0002302356570000491
Figure BDA0002302356570000501
Figure BDA0002302356570000511
Figure BDA0002302356570000521
Figure BDA0002302356570000531
在另一示例性实施方式中,作为EML 360中的延迟荧光材料的掺杂剂可包括但不限于:10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-9,9-二甲基-9,10-二氢吖啶(DMAC-TRZ)、10,10’-(4,4’-磺酰基二(4,1-亚苯基))二(9,9-二甲基-9,10-二氢吖啶)(DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(ACRSA)、3,6-二苯甲酰基-4,5-二(1-甲基-9-苯基-9H-咔唑基)-2-乙炔基苯甲腈(Cz-VPN)、9,9’,9”-(5-(4,6-二苯基-1,3,5-三嗪-2-基)苯-1,2,3-三基)三(9H-咔唑)(TcZTrz)、9,9’-(5-(4,6-二苯基-1,3,5-三嗪-2-基)-1,3-亚苯基)二(9H-咔唑)(DczTrz)、9,9’,9”,9”’-((6-苯基-1,3,5-三嗪-2,4-二基)二(苯-5,3,1-三基))四(9H-咔唑)(DDczTrz)、二(4-(9H-3,9’-联咔唑-9-基)苯基)甲酮(CC2BP)、9’-[4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-3,3”,6,6”-四苯基-9,3’:6’,9”-三-9H-咔唑(BDPCC-TPTA)、9’-[4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9,3’:,6’,9”-三-9H-咔唑(BCC-TPTA)、9,9’-(4,4’-磺酰基二(4,1-亚苯基))二(3,6-二甲氧基-9H-咔唑)(DMOC-DPS)、9-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-3’,6’-二苯基-9H-3,9’-联咔唑(DPCC-TPTA)、10-(4,6-二苯基-1,3,5-三嗪-2-基)-10H-吩噁嗪(Phen-TRZ)、9-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-9H-咔唑(Cab-Ph-TRZ)、1,2,3,5-四(3,6-咔唑-9-基)-4,6-二氰基苯(4CzIPN)、2,3,4,6-四(9H-咔唑-9-基)-5-氟苯甲腈(4CZFCN)、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9’-呫吨]和/或10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9’-芴](SpiroAC-TRZ)。
当EML 360包括主体和具有延迟荧光性能的掺杂剂时,EML 360可包括约1至约70重量%,优选约10至约50重量%,更优选约20至约50重量%的掺杂剂。EML 360可以层积为约10nm至约200nm、优选约20nm至约100nm、更优选约30nm至约50nm的厚度,但不限于此。
在上述第一实施方式中,EML 360包括仅仅一种具有延迟荧光性能的掺杂剂。与该实施方式不同,EML可以包括具有不同发光性能的多种掺杂剂。图5是示出根据本公开另一示例性实施方式的有机发光二极管的示意性截面图。如图5所示,根据本公开第二实施方式的OLED 300A包括彼此面对的第一电极310和第二电极320以及设置在第一电极310和第二电极320之间的发射单元330a。
在一个示例性实施方式中,作为发射层的发射单元330a包括各自依次层叠在第一电极310上的HIL 340、HTL 350、EML 360a、ETL 370和ETL 380。作为另选,发射单元330a还可包括设置在HTL 350和EML 360a之间的第一激子阻挡层(即EBL 355)和/或设置在EML360a和ETL 370之间的第二激子阻挡层(即HBL 375)。除了EML 360a之外,发射单元330a可以具有与图2中的发射单元330相同的配置和材料。
EML 360a可包括主体(第一主体)、第一掺杂剂和第二掺杂剂。第一掺杂剂可以是延迟荧光掺杂剂(T掺杂剂;TD),并且第二掺杂剂可以是荧光掺杂剂(F掺杂剂;FD)。在这种情况下,具有化学式1至6中任何一种的结构的有机化合物可用作主体。当EML 360a包括延迟荧光掺杂剂和荧光掺杂剂时,OLED 300A可以通过调节发光材料(即主体)和掺杂剂之间的能级来实现超荧光,从而增强其发光效率。
当EML仅包含具有延迟荧光性能并且具有化学式7中任何一种的结构的掺杂剂时,因为掺杂剂理论上可以表现出100%的内量子效率,所以EML可以实现如同包含重金属的现有技术磷光材料的高内量子效率。然而,由于延迟荧光材料内的电子受体和电子供体之间的成键以及空间扭曲,从而引起额外的电荷转移跃迁(CT跃迁),使得延迟荧光材料在发射过程中显示具有非常宽的FWHM的发射光谱,这导致色纯度差。另外,延迟荧光材料在发光过程中利用三重态激子能量以及单重态激子能量,使各部分在其分子结构内旋转,这导致扭曲的内部电荷转移(TICT)。结果,由于延迟荧光材料之间的分子键合力的减弱,因此仅包含延迟荧光材料的OLED的发光寿命可能降低。
在第二实施方式中,为了防止在仅使用延迟荧光材料的情况下色纯度和发光寿命降低,EML 360a还包括第二掺杂剂(可以为荧光或磷光材料)。可以为延迟荧光材料的第一掺杂剂(T掺杂剂)的三重态激子能量通过RISC机制转换为其自身的单重态激子能量,然后第一掺杂剂的转换的单重态激子能量可以通过Dexter能量转移机制转移到同一EML 360a中的可以为荧光或磷光材料的第二掺杂剂(F掺杂剂),该Dexter能量转移机制依赖于相邻分子之间的波函数重叠通过分子间电子交换和激子扩散来转移激子能量。
当EML 360a包括作为具有化学式1至6中任何一种的结构的有机化合物的主体、可以为具有化学式7中任何一种的结构的有机化合物并且具有延迟荧光性能的第一掺杂剂(T掺杂剂)和可以为荧光或磷光材料的第二掺杂剂(F掺杂剂)时,需要适当地调节这些发光材料之间的能级。
图6是示出根据本公开另一示例性实施方式的发光材料之间的能级带隙的发光机制的示意图。为了实现延迟荧光,第一掺杂剂(T掺杂剂)的激发态单重态能级S1 TD与激发态三重态能级T1 TD之间的能级带隙可以等于或小于约0.3eV。另外,主体的激发态单重态能级S1 H和激发态三重态能级T1 H各自分别高于第一掺杂剂的激发态单重态能级S1 TD和激发态三重态能级T1 TD。作为示例,主体的激发态三重态能级T1 H可以比第一掺杂剂的激发态三重态能级T1 TD高至少约0.2eV。此外,第一掺杂剂的激发态三重态能级T1 TD高于第二掺杂剂的激发态三重态能级T1 FD。在一个示例性实施方式中,第一掺杂剂的激发态单重态能级S1 TD可以高于作为荧光材料的第二掺杂剂的激发态单重态能级S1 FD
另外,主体的HOMO能级(HOMOH)与第一掺杂剂的HOMO能级(HOMOTD)之间的能级带隙(|HOMOH-HOMOTD|)或主体的LUMO能级(LUMOH)与第一掺杂剂的LUMO能级(LUMOTD)之间的能级带隙(|LUMOH-LUMOTD|)可以等于或小于约0.5eV。
例如,主体可以包括具有化学式1至6中任何一种的结构的有机化合物,并且第一掺杂剂可以包括但不限于具有化学式7中任何一种的结构的有机化合物。作为另选,第二掺杂剂可包括但不限于DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab-Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9’-呫吨]和/或SpiroAC-TRZ。
为了实现超荧光,激子能量应从作为延迟荧光材料的第一掺杂剂有效地转移到作为荧光或磷光材料的第二掺杂剂。关于从延迟荧光材料到荧光或磷光材料的能量转移效率,可以考虑延迟荧光材料的发射光谱与荧光或磷光材料的吸收光谱之间的重叠。作为示例,为了有效地将激子能量从第一掺杂剂转移到第二掺杂剂,可以将具有与第一掺杂剂的发射光谱的重叠区域的吸收光谱的荧光或磷光材料用作第二掺杂剂。
在一个示例性实施方式中,作为第二掺杂剂的荧光材料可具有但不限于喹啉并吖啶核。作为示例,具有喹啉并吖啶核的第二掺杂剂可包括5,12-二甲基喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮(S1:2.3eV;T1:2.0eV;LUMO:-3.0eV;HOMO:-5.4eV)、5,12-二乙基喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮(S1:2.3eV;T1:2.2eV;LUMO:-3.0eV;HOMO:-5.4eV)、5,12-二丁基-3,10-二氟喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮(S1:2.2eV;T1:2.0eV;LUMO:-3.1eV;HOMO:-5.5eV)、5,12-二丁基-3,10-二(三氟甲基)喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮(S1:2.2eV;T1:2.0eV;LUMO:-3.1eV;HOMO:-5.5eV)、5,12-二丁基-2,3,9,10-四氟喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮(S1:2.0eV;T1:1.8eV;LUMO:-3.3eV;HOMO:-5.5eV)。
另外,作为第二掺杂剂的荧光材料可包括但不限于1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(DCJTB;S1:2.3eV;T1:1.9eV;LUMO:-3.1eV;HOMO:-5.3eV)。此外,可以使用能够发出红色、绿色或蓝色的光的金属络合物作为第二掺杂剂。
在一个示例性实施方式中,EML 360a中主体的重量比可以大于第一和第二掺杂剂的重量比,并且第一掺杂剂的重量比可以大于第二掺杂剂的重量比。在一个替代实施方式中,主体的重量比大于第一掺杂剂的重量比,并且第一掺杂剂的重量比大于第二掺杂剂的重量比。当第一掺杂剂的重量比大于第二掺杂剂的重量比时,激子能量可以通过Dexter能量转移机制从第一掺杂剂充分地转移到第二掺杂剂。作为示例,EML 360a包括约60重量%至约75重量%的主体、约20重量%至约40重量%的第一掺杂剂和约0.1重量%至约5重量%的第二掺杂剂。
根据前述实施方式的OLED 300和300A具有单层EML。作为另选,本公开的OLED可包括多层EML。图7是示出根据本公开另一示例性实施方式的具有双层EML的有机发光二极管的示意性截面图。
如图7所示,根据本公开的示例性第三实施方式的OLED 400包括彼此面对的第一电极410和第二电极420以及设置在第一电极410和第二电极420之间的作为发射层的发射单元430。
在一个示例性实施方式中,发射单元430包括各自依次层叠在第一电极410上的HIL 440、HTL 450和EML 460、ETL 470和EIL 480。另外,发射单元430还可以包括设置在HTL450和EML 460之间的作为第一激子阻挡层的EBL 455,和/或设置在EML 460和ETL 470之间的作为第二激子阻挡层的HBL 475。
如上所述,第一电极410可以是阳极,并且可以包括但不限于具有相对较大的逸出功值的导电材料,例如ITO、IZO、SnO、ZnO、ICO和AZO等。第二电极420可以是阴极,并且可以包括但不限于具有相对较小的逸出功值的导电材料,例如Al、Mg、Ca、Ag、其合金或其组合。
HIL 440设置在第一电极410和HTL 450之间。HIL 440可以包括但不限于,MTDATA、NATA、1T-NATA、2T-NATA、CuPc、TCTA、NPB(NPD)、HAT-CN、TDAPB、PEDOT/PSS和/或N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺。根据OLED 400的结构可以省略HIL 440。
HTL 450在第一电极410和EML 460之间与EML 460相邻设置。HTL 450可包括但不限于芳香胺化合物,例如TPD、NPD(NPB)、CBP、poly-TPD、TFB、TAPC、N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺和/或N-(联苯-4-基)-N-(4-(9-苯基-9H-咔唑-3-基)苯基)联苯-4-胺。
EML 460包括第一EML(EML1)462和第二EML(EML2)464。EML1 462设置在EBL 455和HBL 475之间,并且EML2 464设置在EML1 462和HBL 475之间。EML1 462和EML2 464中的一个包括具有延迟荧光性能的第一掺杂剂(T掺杂剂),例如,具有化学式7中任何一种的结构的有机化合物,EML1 462和EML2 464中的另一个包括作为荧光或磷光材料的第二掺杂剂。下面将更详细地解释EML 460中发光材料之间的配置和能级。
ETL 470设置在EML 460和EIL 480之间。在一个示例性实施方式中,ETL 470可以包括但不限于,噁二唑类化合物、三唑类化合物、菲咯啉类化合物、苯并噁唑类化合物、苯并噻唑类化合物、苯并咪唑类化合物和三嗪类化合物等。作为示例,ETL 470可以包括但不限于Alq3、PBD、spiro-PBD、Liq、TPBi、BAlq、Bphen、NBphen、BCP、TAZ、NTAZ、TpPyPB、TmPPPyTz、PFNBr和/或TPQ。
EIL480设置在第二电极420和ETL 470之间。在一个示例性实施方式中,EIL 480可以包括但不限于碱金属卤化物(例如,LiF、CsF、NaF和BaF2等),和/或有机金属化合物(例如,苯甲酸锂和硬脂酸钠等)。
EBL 455设置在HTL 450和EML 460之间,用于控制和防止HTL 450和EML 460之间的电子输送。作为示例,EBL 455可以包括但不限于TCTA、三[4-(二乙氨基)苯基]胺、N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺、TAPC、MTDATA、mCP、mCBP、CuPc、DNTPD、TDAPB、2,8-二(9-苯基-9H-咔唑-3-基)二苯并[b,d]噻吩和/或3,6-二(N-咔唑基)-N-苯基-咔唑。
HBL 475设置在EML 460和ETL 470之间,用于防止EML 460和ETL 470之间的空穴输送。在一个示例性实施方式中,HBL 475可以包括但不限于噁二唑类化合物、三唑类化合物、菲咯啉类化合物、苯并噁唑类化合物、苯并噻唑类化合物、苯并咪唑类化合物和三嗪类化合物。作为示例,HBL 475可以包括与EML 660中的发射材料相比具有相对较低的HOMO能级的化合物。HBL 675可以包括但不限于BCP、BAlq、Alq3、PBD、spiro-PBD、Liq、B3PYMPM、DPEPO、9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9’-联咔唑及其组合。
在示例性第三实施方式中,EML1 462包括第一主体和第一掺杂剂(为延迟荧光材料),并且EML 464包括第二主体和第二掺杂剂(为荧光或磷光材料)。
EML1 462包括作为具有化学式1至6中任何一种的结构的有机化合物的第一主体和作为延迟荧光材料的第一掺杂剂。第一掺杂剂的激发态单重态能级S1 TD与激发态三重态能级T1 TD之间的能级带隙(ΔEST TD)非常小(ΔEST TD等于或小于约0.3eV;参见图3),因此第一掺杂剂的三重态激子能量可以通过RISC机制转移到其自身的单重态激子能量。虽然第一掺杂剂具有较高的内量子效率,但由于其较宽的FWHM(半峰全宽)而具有较差的色纯度。
相反,EML2 464可以包括第二主体和作为荧光材料的第二掺杂剂。虽然作为荧光材料的第二掺杂剂由于其较窄的FWHM而具有色纯度的优点,但由于其三重态激子不能参与发光过程,因此其内量子效率低。
然而,在该示例性实施方式中,EML1 462中的具有延迟荧光性能的第一掺杂剂的单重态激子能量和三重态激子能量可以通过FRET(福斯特共振能量转移)机制转移到与EML1 462相邻设置的EML2 464中的第二掺杂剂(可以为荧光或磷光材料),该机制通过偶极-偶极相互作用经电场无辐射地转移能量。因此,最终发射发生在EML2 464内的第二掺杂剂中。
换句话说,EML1 462中的第一掺杂剂的三重态激子能量通过RISC机制转换为其自身的单重态激子能量。然后,由于第一掺杂剂的激发态单重态能级S1 TD高于第二掺杂剂的激发态单重态能级S1 FD,因此第一掺杂剂的转换的单重态激子能量转移到第二掺杂剂的单重态激子能量(参见图8)。EML2 464中的第二掺杂剂可以使用三重态激子能量以及单重态激子能量而发光。
由于在EML1 462中作为延迟荧光材料的第一掺杂剂处产生的激子能量从第一掺杂剂转移到EML2 464中的第二掺杂剂,因此可以实现超荧光。在这种情况下,第一掺杂剂仅起到将能量转移到第二掺杂剂的作用。实质上的发光发生在包含第二掺杂剂的EML2 464中,第二掺杂剂是荧光或磷光掺杂剂并且具有较窄的FWHM。因此,由于较窄的FWHM,OLED400可以提高其量子效率并改善其色纯度。
EML1 462和EML2 464各自分别包括第一主体和第二主体。在第一和第二主体处产生的激子能量应当转移到作为延迟荧光材料的第一掺杂剂而发光。为了实现超荧光,需要调节发光材料之间的能级。图8是示出根据本公开另一示例性实施方式的发光材料之间的能级带隙的发光机制的示意图。
如图8所示,第一和第二主体的激发态单重态能级S1 H1和S1 H2以及激发态三重态能级T1 H1和T1 H2各自应分别高于作为延迟荧光材料的第一掺杂剂的激发态单重态能级S1 TD和激发态三重态能级T1 TD
例如,当第一和第二主体的激发态三重态能级T1 H1和T1 H2各自不足够高于第一掺杂剂的激发态三重态能级T1 TD时,第一掺杂剂的三重态激子可以反向转移到不能利用三重态激子能量的第一和第二主体的激发态三重态能级T1 H1和T1 H2。因此,第一掺杂剂的三重态能级T1 TD的激子可能作为非发射而猝灭,并且第一掺杂剂的三重态激子不能参与发射。作为示例,第一和第二主体的激发态三重态能级T1 H1和T1 H2各自可以比第一掺杂剂的激发态三重态能级T1 TD高至少约0.2eV。
第二主体的激发态单重态能级S1 H2高于第二掺杂剂的激发态单重态能级S1 FD。在这种情况下,在第二主体处产生的单重态激子能量可以转移到第二掺杂剂的激发单重态能级S1 FD
另外,EML 460必须实现高发光效率和色纯度,并且有效地将激子能量从EML1 462中的第一掺杂剂(通过RISC机制转换为ICT复合物状态)转移到EML2 464中作为荧光或磷光材料的第二掺杂剂。为了实现这种OLED 400,第一掺杂剂的激发态三重态能级T1 TD高于第二掺杂剂的激发态三重态能级T1 FD。在一个示例性实施方式中,第一掺杂剂的激发态单重态能级S1 TD可以高于作为荧光材料的第二掺杂剂的激发态单重态能级S1 FD
在一个示例性实施方式中,第一掺杂剂的激发态单重态能级S1 TD与激发态三重态能级T1 TD之间的能级带隙可以等于或小于约0.3eV。另外,第一和/或第二主体的HOMO能级(HOMOH)与第一掺杂剂的HOMO能级(HOMOTD)之间的能级带隙(|HOMOH-HOMOTD|)或第一和/或第二主体的LUMO能级(LUMOH)与第一掺杂剂的LUMO能级(LUMOTD)之间的能级带隙(|LUMOH-LUMOTD|)可以等于或小于约0.5eV。
当发光材料不满足如上所述的所需能级时,激子能量在第一和第二掺杂剂处猝灭,或者激子能量不能有效地从主体转移到掺杂剂,因此OLED 400可能降低量子效率。
第一主体和第二主体可以彼此相同或不同。例如,第一主体和第二主体各自可独立地包括具有化学式1至6中任何一种的结构的有机化合物。在一个示例性实施方式中,第一掺杂剂可包括但不限于具有化学式7中任何一种的结构的有机化合物。在替代实施方式中,第二掺杂剂可包括但不限于DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab-Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9’-呫吨]和/或SpiroAC-TRZ。
第二掺杂剂可以具有较窄的FWHM并且具有与第一掺杂剂的吸收光谱有较大的重叠区域的发光光谱。作为示例,第二掺杂剂可包括但不限于具有喹啉并吖啶核的有机化合物,例如5,12-二甲基喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、12-二乙基喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、5,12-二丁基-3,10-二氟喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、5,12-二丁基-3,10-二(三氟甲基)喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、5,12-二丁基-2,3,9,10-四氟喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、DCJTB以及任何能发出红色、绿色或蓝色的光的金属络合物。
在一个示例性实施方式中,EML1 462或EML2 464中的第一和第二主体各自可以分别具有比相同EML 462和464中的第一掺杂剂和第二掺杂剂更大的重量比。另外,EML1 462中的第一掺杂剂的重量比可以大于EML2 464中的第二掺杂剂的重量比。在这种情况下,可以将足够的能量从EML1 462中的第一掺杂剂转移到EML2 464中的第二掺杂剂。
作为示例,EML1 462可包括约1重量%至约70重量%、优选约10重量%至约50重量%、优选约20重量%至约50重量%的第一掺杂剂,但不限于此。
在EML2 464中第二主体的重量比可以大于第二掺杂剂的重量比。作为示例,EML2464可包括约90重量%至约99重量%、优选约95重量%至约99重量%的第二主体(但不限于此),以及约1至约10重量%、优选约1至约5重量%的第二掺杂剂(但不限于此)。
EML1 462和EML2 464各自可以层积为约5nm至约100nm,优选约10nm至约30nm,更优选约10nm至约20nm的厚度,但不限于此。
在一个示例性实施方式中,当EML2 464与HBL 475相邻设置时,与第二掺杂剂一起包含在EML2 464中的第二主体可以是与HBL 475相同的材料。在这种情况下,EML2 464可以具有空穴阻挡功能以及发射功能。换句话说,EML2 464可以起到用于阻挡空穴的缓冲层的作用。在一个实施方式中,可以省略HBL 475,其中EML2 464可以是空穴阻挡层以及发光材料层。
在另一示例性实施方式中,当EML2 464与EBL 455相邻设置时,第二主体可以是与EBL 455相同的材料。在这种情况下,EML2 464可以具有电子阻挡功能以及发射功能。换句话说,EML2 464可以起到用于阻挡电子的缓冲层的作用。在一个实施方式中,可以省略EBL455,其中EML2 464可以是电子阻挡层以及发光材料层。
将解释具有三层EML的OLED。图9是示出根据本公开另一示例性实施方式的具有三层EML的有机发光二极管的示意性截面图。
如图9所示,根据本公开第四实施方式的OLED 500包括彼此面对的第一电极510和第二电极520以及设置在第一电极510和第二电极520之间的作为发射层的发射单元530。
在一个示例性实施方式中,发射单元530包括各自依次层叠在第一电极510上的HIL 540、HTL 550和EML 560、ETL 570和EIL 580。另外,发射单元530还可以包括设置在HTL550和EML 560之间的作为第一激子阻挡层的EBL 555,和/或设置在EML 560和ETL 570之间的作为第二激子阻挡层的HBL 575。
如上所述,第一电极510可以是阳极,并且可以包括但不限于具有相对较大的逸出功值的导电材料,例如ITO、IZO、SnO、ZnO、ICO和AZO等。第二电极520可以是阴极,并且可以包括但不限于具有相对较小的逸出功值的导电材料,例如Al、Mg、Ca、Ag、其合金或其组合。
HIL 540设置在第一电极510和HTL 550之间。HIL 540可以包括但不限于MTDATA、NATA、1T-NATA、2T-NATA、CuPc、TCTA、NPB(NPD)、HAT-CN、TDAPB、PEDOT/PSS和/或N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺。根据OLED 500的结构可以省略HIL 540。
HTL 550在第一电极510和EML 560之间与EML 560相邻设置。HTL 550可包括但不限于芳香胺化合物,例如TPD、NPD(NPB)、CBP、poly-TPD、TFB、TAPC、N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺和/或N-(联苯-4-基)-N-(4-(9-苯基-9H-咔唑-3-基)苯基)联苯-4-胺。
EML 560包括第一EML(EML1)562、第二EML(EML2)564和第三EML(EML3)566。EML1562设置在EBL 555和HBL 575之间,EML2 564设置在EBL 555和EML1 562之间,并且EML3566设置在EML1 562和HBL 575之间。下面将更详细地解释EML 560中发光材料之间的配置和能级。
ETL 570设置在EML 560和EIL 580之间。在一个示例性实施方式中,ETL 570可以包括但不限于噁二唑类化合物、三唑类化合物、菲咯啉类化合物、苯并噁唑类化合物、苯并噻唑类化合物、苯并咪唑类化合物和三嗪类化合物等。作为示例,ETL 570可以包括但不限于Alq3、PBD、spiro-PBD、Liq、TPBi、BAlq、Bphen、NBphen、BCP、TAZ、NTAZ、TpPyPB、TmPPPyTz、PFNBr和/或TPQ。
EIL 580设置在第二电极520和ETL 570之间。在一个示例性实施方式中,EIL 580可以包括但不限于碱金属卤化物(例如,LiF、CsF、NaF和BaF2等),和/或有机金属化合物(例如,苯甲酸锂和硬脂酸钠等)。
EBL 555设置在HTL 550和EML 560之间,用于控制和防止HTL 550和EML 560之间的电子输送。作为示例,EBL555可以包括但不限于,TCTA、三[4-(二乙氨基)苯基]胺、N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺、TAPC、MTDATA、mCP、mCBP、CuPc、DNTPD、TDAPB、2,8-二(9-苯基-9H-咔唑-3-基)二苯并[b,d]噻吩和/或3,6-二(N-咔唑基)-N-苯基-咔唑。
HBL 575设置在EML 560和ETL 570之间,用于防止EML 560和ETL 570之间的空穴输送。在一个示例性实施方式中,HBL 575可以包括但不限于噁二唑类化合物、三唑类化合物、菲咯啉类化合物、苯并噁唑类化合物、苯并噻唑类化合物、苯并咪唑类化合物和三嗪类化合物。作为示例,HBL 575可以包括与EML 660中的发射材料相比具有相对较低的HOMO能级的化合物。HBL 675可以包括但不限于BCP、BAlq、Alq3、PBD、spiro-PBD、Liq、B3PYMPM、DPEPO、9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9’-联咔唑及其组合。
EML1 562包括具有延迟荧光性能的第一掺杂剂(T掺杂剂)。EML2 564和EML3 566各自包括第二掺杂剂(第一荧光或磷光掺杂剂,F掺杂剂1)和第三掺杂剂(第二荧光或磷光掺杂剂)。EML1 562、EML2 564和EML3 566各自还分别包括第一主体、第二主体和第三主体。
根据该实施方式,EML1 562中的第一掺杂剂(为延迟荧光材料)的单重态能量以及三重态能量可以通过FRET能量转移机制转移到各自包含在与EML1 562相邻设置的EML2564和EML3 566中得第二和第三掺杂剂(第一和第二荧光或磷光掺杂剂)。因此,最终发射发生在EML2 564和EML3 566中的第二和第三掺杂剂中。
换句话说,由于第一掺杂剂的激发态单重态能级S1 TD高于第二和第三掺杂剂的激发态单重态能级S1 FD1和S1 FD2,因此EML1 562中的第一掺杂剂的三重态激子能量通过RISC机制转换为其自身的单重态激子能量,然后第一掺杂剂的单重态激子能量转移到第二和第三掺杂剂的单重态激子能量(参见图10)。EML1 562中的第一掺杂剂的单重态激子能量通过FRET机制转移到与EML1 562相邻设置的EML2 564和EML3 566中的第二和第三掺杂剂。
EML2 564和EML3 566中的第二和第三掺杂剂可以使用来自第一掺杂剂的单重态激子能量和三重态激子能量而发光。与第一掺杂剂相比,第二和第三掺杂剂各自可具有更窄的FWHM。由于在EML1 562中作为延迟荧光材料的第一掺杂剂处产生的激子能量转移到EML2 564和EML3 566中的第二和第三掺杂剂,因此可以实现超荧光。在这种情况下,第一掺杂剂仅起到将能量转移到第二和第三掺杂剂的作用。包含第一掺杂剂的EML1 562不参与最终发射过程。实质上的发光发生在各自包括具有较窄的FWHM的第二掺杂剂和第三掺杂剂的EML2 564和EML3 566中。因此,由于较窄的FWHM,OLED 500可以提高其量子效率并改善其色纯度。作为示例,第二和第三掺杂剂各自可具有与第一掺杂剂的吸收波长范围有较大的重叠区域的发射波长范围。
在这种情况下,需要适当地调节EML1 562、EML2 564和EML3 566中的主体和掺杂剂之间的能级。图10是示出根据本公开另一示例性实施方式的发光材料之间的能级带隙的发光机制的示意图。
如图10所示,第一至第三主体的激发态单重态能级S1 H1、S1 H2和S1 H3以及激发态三重态能级T1 H1、T1 H2和T1 H3各自应分别高于作为延迟荧光材料的第一掺杂剂的激发态单重态能级S1 TD和激发态三重态能级T1 TD
例如,当第一至第三主体的激发三重态能级T1 H1、T1 H2和T1 H3各自不足够高于第一掺杂剂的激发态三重态能级T1 TD时,第一掺杂剂的三重态激子可以反向转移到不能利用三重态激子能量的第一至第三主体的激发态三重态能级T1 H1、T1 H2和T1 H3。因此,第一掺杂剂的三重态能级T1 TD的激子可能作为非发射而猝灭,并且第一掺杂剂的三重态激子不能参与发射。作为示例,第一至第三主体的激发态三重态能级T1 H1、T1 H2和T1 H3各自可以比第一掺杂剂的激发态三重态能级T1 TD高至少约0.2eV。
另外,EML 560必须实现高发光效率和色纯度,并且有效地将激子能量从EML1 562中的第一掺杂剂(通过RISC机制转换为ICT复合物状态)转移到EML2 564和EML3 566中的各自为荧光或磷光材料的第二和第三掺杂剂。为了实现这种OLED 500,EML1 562中的第一掺杂剂的激发态三重态能级T1 TD高于第二和第三掺杂剂的激发态三重态能级T1 FD1和T1 FD2。在一个示例性实施方式中,第一掺杂剂的激发态单重态能级S1 TD可以高于作为荧光材料的第二和第三掺杂剂的激发态单重态能级S1 FD1和S1 FD2
此外,为了实现有效的发光,从第一掺杂剂转移到第二和第三掺杂剂的激子能量不应转移到第二和第三主体。作为示例,第二和第三主体的激发态单重态能级S1 H2和S1 H3各自可分别高于第二和第三掺杂剂的激发态单重态能级S1 FD1和S1 FD2。在一个示例性实施方式中,为了实现延迟荧光,第一掺杂剂的激发态单重态能级S1 TD与激发态三重态能级T1 TD之间的能级带隙可以等于或小于约0.3eV。
另外,第一至第三主体的HOMO能级(HOMOH)与第一掺杂剂的HOMO能级(HOMOTD)之间的能级带隙(|HOMOH-HOMOTD|),或第一至第三主体的LUMO能级(LUMOH)与第一掺杂剂的LUMO能级(LUMOTD)之间的能级带隙(|LUMOH-LUMOTD|)可以等于或小于约0.5eV。
EML1 562、EML2 564和EML3 566各自可以分别包括第一主体、第二主体和第三主体。例如,第一至第三主体各自可以彼此相同或不同。例如,第一至第三主体各自可独立地包括具有化学式1至6中任何一种的结构的有机化合物。在一个示例性实施方式中,第一掺杂剂可包括但不限于具有化学式7中任何一种的结构的有机化合物。在替代实施方式中,第一掺杂剂可包括但不限于DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab-Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9’-呫吨]和/或SpiroAC-TRZ。
第二和第三掺杂剂各自可以具有较窄的FWHM并且具有与第一掺杂剂的吸收光谱有较大的重叠区域的发光光谱。作为示例,第二和第三掺杂剂各自可独立地包括但不限于具有喹啉并吖啶核的有机化合物,例如5,12-二甲基喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、12-二乙基喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、5,12-二丁基-3,10-二氟喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、5,12-二丁基-3,10-二(三氟甲基)喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、5,12-二丁基-2,3,9,10-四氟喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、DCJTB以及任何能发出红色、绿色或蓝色的光的金属络合物。
在一个示例性实施方式中,EML2 564和EML3 566中的第二和第三主体各自的重量比可等于或大于同一EML内的第二和第三掺杂剂的重量比。EML1 562中的第一掺杂剂的重量比可以大于EML2 564和EML3 566中的第二和第三掺杂剂的重量比。在这种情况下,可以通过FRET能量转移机制将足够的激子能量从EML1 562中的第一掺杂剂转移到EML2 564和EML3 566中的第二和第三掺杂剂。
作为示例,EML1 562可包括约1重量%至约70重量%,优选约10重量%至约50重量%,更优选约20重量%至约50重量%的第一掺杂剂。在EML2 564和EML3 566中第二和第三主体的重量比各自可以大于第二和第三掺杂剂的重量比。例如,EML2 564和EML3 566各自可包括约90重量%至约99重量%、优选约95至约99重量%的第二或第三主体(但不限于此),以及约1重量%至约10重量%、优选约1重量%至约5重量%的第二或第三掺杂剂(但不限于此)。
EML1 562可以层积为约2至约100nm,优选约2至约30nm,并且优选约2至约20nm的厚度,但不限于此。EML2 564和EML3 566各自可以层积为约5nm至约100nm,优选约10nm至约30nm,更优选约10nm至约20nm的厚度,但不限于此。
在一个示例性实施方式中,当EML2 564与EBL 555相邻设置时,与第二掺杂剂一起包含在EML2 564中的第二主体可以是与EBL 555相同的材料。在这种情况下,EML2 564可以具有电子阻挡功能以及发射功能。换句话说,EML2 564可以起到用于阻挡电子的缓冲层的作用。在一个实施方式中,可以省略EBL 555,其中EML2 564可以是电子阻挡层以及发光材料层。
在另一示例性实施方式中,当EML3 566与HBL 575相邻设置时,与第三掺杂剂一起包含在EML3 566中的第三主体可以是与HBL 575相同的材料。在这种情况下,EML3 566可以具有空穴阻挡功能以及发射功能。换句话说,EML3 566可以起到用于阻挡空穴的缓冲层的作用。在一个实施方式中,可以省略HBL 575,其中EML3 566可以是空穴阻挡层以及发光材料层。
在又一示例性实施方式中,EML2 564中的第二主体可以是与EBL 555相同的材料,并且EML3 566中的第三主体可以是与HBL 575相同的材料。在该实施方式中,EML2 564可以具有电子阻挡功能以及发射功能,并且EML3 566可以具有空穴阻挡功能以及发射功能。换句话说,EML2 564和EML3 566各自可分别起到用于阻挡电子或空穴的缓冲层的作用。在一个实施方式中,可以省略EBL 555和HBL 575,其中EML2 564可以是电子阻挡层以及发射层,并且EML3 566可以是空穴阻挡层以及发光材料层。
在上述实施方式中,描述了具有仅仅一个发射单元的OLED。与上述实施方式不同,OLED可以具有多个发射单元,从而形成串联结构。图11是示出根据本公开又一实施方式的有机发光二极管的截面图。
如图11所示,根据本公开第五实施方式的OLED 600包括彼此面对的第一电极610和第二电极620、设置在第一电极610和第二电极620之间的作为第一发射层的第一发射单元630、设置在第一发射单元630和第二电极620之间的作为第二发射层的第二发射单元730以及设置在第一发射单元630和第二发射单元730之间的电荷产生层800。
如上所述,第一电极610可以是阳极,并且包括但不限于具有相对较大的逸出功值的导电材料。作为示例,第一电极610可以包括但不限于ITO、IZO、SnO、ZnO、ICO和AZO等。第二电极620可以是阴极,并且可以包括但不限于具有相对较小的逸出功值的导电材料,例如Al、Mg、Ca、Ag、其合金或其组合。第一电极610和第二电极620各自可以层积为约30至约300nm的厚度,但不限于此。
第一发射单元630包括HIL 640、第一HTL(下部HTL)650、下部EML 660和第一ETL(下部ETL)670。第一发射单元630还可以包括设置在第一HTL 650和下部EML 660之间的第一EBL(下部EBL)655和/或设置在下部EML 660和第一ETL 670之间的第一HBL(下部HBL)675。
第二发射单元730包括第二HTL(上部HTL)750、上部EML 760、第二ETL(上部ETL)770和EIL 780。第二发射单元730还可以包括设置在第二HTL 750和上部EML 760之间的第二EBL(上部EBL)755和/或设置在上部EML 760和第二ETL 770之间的第二HBL(上部HBL)775。
下部EML 660和上部EML 760中的至少一个可以包括具有化学式1至6中任何一种的结构的有机化合物并且发射绿色(G)光。作为示例,下部EML 660和上部EML 760中的一个可以发射绿色(G)光,并且下部EML 660和上部EML 760中的另一个可以发射蓝色(B)和/或红色(R)光。作为另选,下部EML 660和上部EML 760中的一个可以发射蓝色(B)光,而下部EML 660和上部EML 760中的另一个可以发射绿色(G)、红色(R)、红绿色(RG)或黄绿色(YG)。在下文中,将解释OLED 600,其中下部EML 660发射绿色光并且包括具有化学式1至6中任何一种的结构的有机化合物,并且上部EML 760发射蓝色和/或红色光。
HIL 640设置在第一电极610和第一HTL 650之间,并且改善无机第一电极610和有机第一HTL 650之间的界面特性。在一个示例性实施方式中,HIL 640可以包括但不限于MTDATA、NATA、1T-NATA、2T-NATA、CuPc、TCTA、NPB(NPD)、HAT-CN、TDAPB、PEDOT/PSS和/或N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺。根据OLED600的结构可以省略HIL 640。
第一HTL 650和第二HTL 750各自可独立地包括但不限于TPD、NPD(NPB)、CBP、poly-TPD、TFB、TAPC、N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺和/或N-(联苯-4-基)-N-(4-(9-苯基-9H-咔唑-3-基)苯基)联苯-4-胺。HIL 640以及第一HTL 650和第二HTL 750各自可以层积为约5nm至约200nm,优选约5nm至约100nm的厚度,但不限于。
第一ETL 670和第二770各自分别促进第一发射单元630和第二发射单元730中的电子输送。第一ETL 670和第二ETL 770各自可分别独立地包括但不限于噁二唑类化合物、三唑类化合物、菲咯啉类化合物、苯并噁唑类化合物、苯并噻唑类化合物、苯并咪唑类化合物和三嗪类化合物等。作为示例,第一ETL 670和第二ETL 770各自可分别独立地包括但不限于Alq3、PBD、spiro-PBD、Liq、TPBi、BAlq、Bphen、NBphen、BCP、TAZ、NTAZ、TpPyPB、TmPPPyTz、PFNBr和/或TPQ。
EIL 780设置在第二电极620和第二ETL 770之间,并且可以改善第二电极620的物理特性,因此可以增强OLED 600的寿命。在一个示例性实施方式中,EIL 780可以包括但不限于碱金属卤化物(例如,LiF、CsF、NaF和BaF2等),和/或有机金属化合物(例如,苯甲酸锂和硬脂酸钠等)。
作为示例,第一EBL 655和第二755各自可分别独立地包括但不限于TCTA、三[4-(二乙氨基)苯基]胺、N-(联苯-4-基)-9,9-二甲基-N-(4-(9-苯基-9H-咔唑-3-基)苯基)-9H-芴-2-胺、TAPC、MTDATA、mCP、mCBP、CuPc、DNTPD、TDAPB、2,8-二(9-苯基-9H-咔唑-3-基)二苯并[b,d]噻吩和/或3,6-二(N-咔唑基)-N-苯基-咔唑。
第一HBL 675和第二HBL 775各自可独立地包括但不限于噁二唑类化合物、三唑类化合物、菲咯啉类化合物、苯并噁唑类化合物、苯并噻唑类化合物、苯并咪唑类化合物和三嗪类化合物。作为示例,第一HBL 675和第二HBL 775各自可分别独立地包括但不限于BCP、BAlq、Alq3、PBD、spiro-PBD、Liq、B3PYMPM、DPEPO、9-(6-(9H-咔唑-9-基)吡啶-3-基)-9H-3,9’-联咔唑及其组合。
在一个示例性实施方式中,当上部EML 760发射红光时,上部EML 760可以是但不限于包括主体(如CBP等)和选自由PIQIr(acac)(二(1-苯基异喹啉)乙酰丙酮铱)、PQIr(acac)(二(1-苯基喹啉)乙酰丙酮铱)、PQIr(三(1-苯基喹啉)铱)和PtOEP(八乙基卟啉铂)组成的组中的至少一种掺杂剂的磷光材料层。作为另选,上部EML 760可以是包括PBD:Eu(DMB)3(phen)、苝和/或它们的衍生物的荧光材料层。在这种情况下,上部EML 760可以发射具有但不限于约600nm至约650nm的发射波长范围的红光。
在另一示例性实施方式中,当上部EML 760发射蓝光时,上部EML 760可以是但不限于包括主体(如CBP等)和至少一种铱类掺杂剂的磷光材料层。作为另选,上部EML 760可以是包括选自由spiro-DPVBi、spiro-CBP、二苯乙烯基苯(DSB)、二苯乙烯基亚芳基(DSA)、PFO类聚合物和PPV类聚合物组成的组中的任何一种的荧光材料层。上部EML 760可以发射天蓝色或深蓝色以及蓝色的光。在这种情况下,上部EML 760可以发射具有但不限于约440nm至约480nm的发射波长范围的蓝光。
在一个示例性实施方式中,为了提高红光的发光效率,第二发射单元730可以具有双层EML 760,例如,蓝色发光材料层和红色发光材料层。在这种情况下,上部EML 760可以发射具有但不限于约440nm至约650nm的发射波长范围的光。
电荷产生层(CGL)800设置在第一发射单元630和第二发射单元730之间。CGL 800包括与第一发射单元630相邻设置的N型CGL 810和与第二发射单元730相邻设置的P型CGL820。N型CGL 810将电子注入第一发射单元630,P型CGL 820将空穴注入第二发射单元730。
作为示例,N型CGL 810可以是掺杂有碱金属(如Li、Na、K和/或Cs)和/或碱土金属(如Mg、Sr、Ba和/或Ra)的层。例如,在N型CGL 810中使用的主体可以包括但不限于如Bphen或MTDATA等有机化合物。碱金属或碱土金属可以掺杂约0.01重量%至约30重量%。
P型CGL 820可包括但不限于选自由钨氧化物(WOx)、钼氧化物(MoOx)、铍氧化物(Be2O3)、钒氧化物(V2O5)及其组合组成的组中的无机材料,和/或选自由NPD、HAT-CN、2,3,5,6-四氟-7,7,8,8-四氰基醌二甲烷(F4TCNQ)、TPD、N,N,N’,N’-四萘基-联苯胺(TNB)、TCTA、N,N'-二辛基-3,4,9,10-苝二甲酰亚胺(PTCDI-C8)及其组合组成的组中的有机材料。
下部EML 660包括设置在第一EBL 655和第一HBL 675之间的第一EML(EML1)662、设置在第一EBL 655和EML1 662之间的第二EML(EML2)664以及设置在EML1 662和第一HBL675之间的第三EML(EML3)666。EML1 662包括作为延迟荧光材料的第一掺杂剂(T掺杂剂)。EML2 664和EML3 666各自分别包括均为荧光或磷光材料的第二掺杂剂(第一F掺杂剂)和第三掺杂剂(第二F掺杂剂)。EML1 662、EML2 664和EML3 666各自分别包括第一主体、第二主体和第三主体。
在这种情况下,EML1 662中的第一掺杂剂的单重态激子能量以及三重态激子能量可以通过FRET能量转移机制转移到各自包含在与EML1 662相邻设置的EML2 664和EML3666中的第二和第三掺杂剂。因此,最终发射发生在EML2 664和EML3 666中的第二和第三掺杂剂中。
换句话说,由于第一荧光掺杂剂的激发态单重态能级S1 TD高于第二和第三掺杂剂的激发态单重态能级S1 FD1和S1 FD2,因此EML1 662中的第一掺杂剂的三重态激子能量通过RISC机制转换为其自身的单重态激子能量,然后第一掺杂剂的单重态激子能量转移到第二和第三掺杂剂的单重态激子能量(参见图10)。
EML2 664和EML3 666中的第二和第三掺杂剂可以使用来自第一掺杂剂的单重态激子能量和三重态激子能量而发光。由于与第一掺杂剂相比,第二和第三掺杂剂具有相对较窄的FWHM,因此OLED 600可以提高其发光效率和色纯度。
EML1 662、EML2 664和EML3 666各自分别包括第一主体、第二主体和第三主体。例如,第一至第三主体各自可以彼此相同或不同。作为实例,第一至第三主体各自可包括具有化学式1至6中任何一种的结构的有机化合物。在一个示例性实施方式中,第一掺杂剂可包括但不限于具有化学式7中任何一种的结构的有机化合物。在替代实施方式中,第一掺杂剂可包括但不限于DMAC-TRZ、DMAC-DPS、ACRSA、Cz-VPN、TcZTrz、DczTrz、DDczTrz、CC2BP、BDPCC-TPTA、BCC-TPTA、DMOC-DPS、DPCC-TPTA、Phen-TRZ、Cab-Ph-TRZ、4CzIPN、4CZFCN、10-(4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基)-10H-螺[吖啶-9,9’-呫吨]和/或SpiroAC-TRZ。
第二和第三掺杂剂各自可以具有较窄的FWHM并且具有与第一掺杂剂的吸收光谱有较大的重叠区域的发光光谱。作为示例,第二和第三掺杂剂各自可独立地包括但不限于具有喹啉并吖啶核的有机化合物,例如5,12-二甲基喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、12-二乙基喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、5,12-二丁基-3,10-二氟喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、5,12-二丁基-3,10-二(三氟甲基)喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、5,12-二丁基-2,3,9,10-四氟喹啉并[2,3-b]吖啶-7,14(5H,12H)-二酮、DCJTB以及任何能发出红色、绿色或蓝色的光的金属络合物。
在这种情况下,第一至第三主体和第一至第三掺杂剂之间的能级与图10中所述的相同。
在一个示例性实施方式中,EML2 664和EML3 666中的第二和第三主体各自的重量比可等于或大于同一EML内的第二和第三掺杂剂的重量比。EML1 662中的第一掺杂剂的重量比可以大于EML2 664和EML3 666中的第二和第三掺杂剂的重量比。在这种情况下,可以通过FRET能量转移机制将足够的激子能量从EML1 662中的第一掺杂剂转移到EML2 664和EML3 666中的第二和第三掺杂剂。
在一个示例性实施方式中,当EML2 664与第一EBL 655相邻设置时,与第二掺杂剂一起包含在EML2 664中的第二主体可以是与第一EBL 655相同的材料。在这种情况下,EML2664可以具有电子阻挡功能以及发射功能。换句话说,EML2 664可以起到用于阻挡电子的缓冲层的作用。在一个实施方式中,可以省略第一EBL 555,其中EML2 664可以是电子阻挡层以及发光材料层。
在另一示例性实施方式中,当EML3 666与第一HBL 675相邻设置时,与第三掺杂剂一起包含在EML3 666中的第三主体可以是与第一HBL 675相同的材料。在这种情况下,EML3666可以具有空穴阻挡功能以及发射功能。换句话说,EML3 666可以起到用于阻挡空穴的缓冲层的作用。在一个实施方式中,可以省略第一HBL 675,其中EML3 666可以是空穴阻挡层以及发光材料层。
在又一示例性实施方式中,EML2 662中的第二主体可以是与第一EBL 655相同的材料,并且EML3 666中的第三主体可以是与第一HBL 675相同的材料。在该实施方式中,EML2 664可以具有电子阻挡功能以及发射功能,并且EML3 666可以具有空穴阻挡功能以及发射功能。换句话说,EML2 664和EML3 666各自可以分别起到用于阻挡电子或空穴的缓冲层的作用。在一个实施方式中,可以省略第一EBL 655和第一HBL 675,其中EML2 664可以是电子阻挡层以及发射层,并且EML3 666可以是空穴阻挡层以及发光材料层。
在替代实施方式中,下部EML 660可具有如图2和5所示的单层结构。在这种情况下,下部EML 660可以包括主体和第一掺杂剂(可以为延迟荧光材料),或主体、第一掺杂剂(可以为延迟荧光材料)以及第二掺杂剂(可以为荧光或磷光材料)。
在另一替代实施方式中,下部EML 660可具有如图7所示的双层结构。在这种情况下,下部EML 660可以包括第一EML和第二EML。第一EML可以包括第一主体和第一掺杂剂(可以为延迟荧光材料),并且第二EML可以包括第二主体和第二掺杂剂(可以为荧光或磷光材料)。
在另一示例性实施方式中,本公开的OLED还可包括设置在第二发射单元730和第二电极620之间的第三发射单元(未示出)和设置在第二发射单元730和第三发射单元(未示出)之间的第二CGL(未示出)。在这种情况下,第一发射单元630、第二发射单元730和第三发射单元(未示出)中的至少一个可以包括具有化学式1至6中任何一种的结构的有机化合物作为主体。
合成例1:化合物1的合成
(1)中间体1-1的合成
Figure BDA0002302356570000711
在氮气氛围下,将10g(40.65mmol)的4-溴二苯并呋喃、5.1g(20.32mmol)的碘和6.6g(20.32mmol)的二乙酸苯酯放入150mL乙酸和150mL乙酸酐的混合溶剂中,向该溶液中逐滴加入三滴硫酸,然后将溶液在室温下搅拌10小时。反应完成后,将乙酸乙酯加入到混合溶液中,然后用水洗涤溶液以将水层与有机层分离。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到中间体1-1(产率:65%)。
(2)中间体1-2的合成
Figure BDA0002302356570000721
将9.8g(26.35mmol)的中间体1-1、6.15g(28.99mmol)的二苯并[b,d]呋喃-4-基-硼酸和2mol%的四(三苯基膦)钯(0)(Pd(PPh3)4)放入80mL四氢呋喃(THF)中并且将7.3g(52.70mmol)的碳酸钾溶解于40mL水中并与THF溶液混合,然后将混合溶液在80℃下搅拌12小时。反应完成后,将混合溶液冷却至室温以分离水层和有机层。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到6.5g(产率:60%)的中间体1-2。
(3)化合物1的合成
Figure BDA0002302356570000722
将6.5g(15.79mmol)的中间体1-2、2.6g(15.78mmol)的9H-咔唑、1mol%的二(三叔丁基膦)钯(0)(Pd(t-Bu3P)2)和1.8g(18.94mmol)叔丁醇钠加入到50mL甲苯中,然后将溶液在110℃下搅拌12小时。反应完成后,将溶液冷却至室温,然后用二氧化硅垫过滤以去除杂质。将经过滤的溶液用水洗涤以将水层与有机层分离。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到4.96g(产率:63%)的化合物1。MS:[M+H]+=500。
合成例2:化合物2的合成
Figure BDA0002302356570000723
以与化合物1的合成相同的方式进行合成过程,不同之处在于,使用6g(14.56mmol)的中间体1-2和3.5g(14.56mmol)的2-苯基-9H-咔唑作为反应物,以得到5.1g(产率:61%)的化合物2。MS:[M+H]+=576。
合成例3:化合物3的合成
(1)中间体3-1的合成
Figure BDA0002302356570000731
以与中间体1-2的合成相同的方式进行合成过程,不同之处在于,使用9.8g(25.35mmol)的中间体1-1和6.15g(28.99mmol)的二苯并[b,d]呋喃-1-基-硼酸作为反应物,以得到6.2g(产率:52%)的中间体3-1。
(2)化合物3的合成
Figure BDA0002302356570000732
以与化合物1的合成相同的方式进行合成过程,不同之处在于,使用6.2g(15.05mmol)的中间体3-1和2.5g(15.05mmol)的9H-咔唑作为反应物,以得到4.9g(产率:65%)的化合物3。MS:[M+H]+=500。
合成例4:化合物4的合成
(1)中间体4-1的合成
Figure BDA0002302356570000733
以与中间体1-2的合成相同的方式进行合成过程,不同之处在于,使用6g(16.14mmol)的中间体1-1和3.96g(17.75mmol)的二苯并[b,d]噻吩-2-基-硼酸作为反应物,以得到4.4g(产率:63%)的中间体4-1。
(2)化合物4的合成
Figure BDA0002302356570000741
以与化合物1的合成相同的方式进行合成过程,不同之处在于,使用4.4g(10.28mmol)的中间体4-1和1.7g(10.28mmol)的9H-咔唑作为反应物,以得到5.3g(产率:66%)的化合物4。MS:[M+H]+=516。
合成例5:化合物5的合成
(1)中间体5-1的合成
Figure BDA0002302356570000742
在氮气氛围下,将10g(38.18mmol)的4-溴二苯并噻吩、4.8g(19.09mmol)的碘和6.2g(19.09mmol)的二乙酸苯酯放入150mL乙酸和150mL乙酸酐的混合溶剂中,向该溶液中逐滴加入三滴硫酸,然后将溶液在室温下搅拌10小时。反应完成后,将乙酸乙酯加入到混合溶液中,然后用水洗涤溶液以将水层与有机层分离。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到7.8g(产率:53%)的中间体5-1。
(2)中间体5-2的合成
Figure BDA0002302356570000743
将7.8g(18.22mmol)的中间体5-1、4.3g(20.05mmol)的二苯并[b,d]呋喃-4-基-硼酸和2mol%的Pd(PPh3)4放入80mL四氢呋喃(THF)中并且将5.0g(35.44mmol)的碳酸钾溶解于30mL水中并与THF溶液混合,然后将混合溶液在80℃下搅拌12小时。反应完成后,将混合溶液冷却至室温以分离水层和有机层。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到4.8g(产率:61%)的中间体5-2。
(3)化合物5的合成
Figure BDA0002302356570000751
将5.2g(11.22mmol)的中间体5-2、1.9g(11.22mmol)的9H-咔唑、1mol%的Pd(t-Bu3P)2和1.3g(13.46mmol)的叔丁醇钠加入到30mL甲苯中,然后将溶液在110℃下搅拌12小时。反应完成后,将溶液冷却至室温,然后用二氧化硅垫过滤以去除杂质。将经过滤的溶液用水洗涤以将水层与有机层分离。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到3.4g(产率:58%)的化合物5。MS:[M+H]+=516。
合成例6:化合物6的合成
Figure BDA0002302356570000752
以与化合物5的合成相同的方式进行合成过程,不同之处在于,使用5.2g(18.69mmol)的中间体5-2和3.6g(18.69mmol)的3,6-二甲基-9H-咔唑作为反应物,以得到5.9g(产率:59%)的化合物6。MS:[M+H]+=544。
合成例7:化合物7的合成
(1)中间体7-1的合成
Figure BDA0002302356570000761
在氮气氛围下,将10g(34.02mmol)的1-碘二苯并呋喃和2.7g(17.01mmol)的溴加入到140mL氯仿中,然后将溶液在-40℃下搅拌30分钟。反应完成后,向溶液中加入硫酸氢钠水溶液以将水层与有机层分离。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到4.4g(产率:35%)的中间体7-1。
(2)中间体7-2的合成
Figure BDA0002302356570000762
将4.4g(11.83mmol)的中间体7-1、2.8g(13.01mmol)的二苯并[b,d]呋喃-4-基-硼酸和2mol%的(Pd(PPh3)4)放入30mL四氢呋喃(THF)中并且将3.27g(23.66mmol)的碳酸钾溶解于15mL水中并与THF溶液混合,然后将混合溶液在80℃下搅拌12小时。反应完成后,将混合溶液冷却至室温以分离水层和有机层。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到2.9g(产率:60%)的中间体7-2。
(3)化合物7的合成
Figure BDA0002302356570000763
将2.9g(7.04mmol)的中间体7-2、1.2g(7.04mmol)的9H-咔唑、1mol%的Pd(t-Bu3P)2和0.8g(8.45mmol)的叔丁醇钠加入到20mL甲苯中,然后将溶液在110℃下搅拌12小时。反应完成后,将溶液冷却至室温,然后用二氧化硅垫过滤以去除杂质。将经过滤的溶液用水洗涤以将水层与有机层分离。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到2.3g(产率:65%)的化合物7。MS:[M+H]+=500。
合成例8:化合物8的合成
(1)中间体8-1的合成
Figure BDA0002302356570000771
以与中间体7-2的合成相同的方式进行合成过程,不同之处在于,使用6.0g(16.14mmol)的中间体7-1和3.70g(17.75mmol)的二苯并[b,d]呋喃-1-基-硼酸作为反应物,以得到3.9g(产率:60%)的中间体8-1。
(2)化合物8的合成
Figure BDA0002302356570000772
以与化合物7的合成相同的方式进行合成过程,不同之处在于,使用3.9g(9.47mmol)的中间体8-1和1.6g(9.47mmol)的9H-咔唑作为反应物,以得到2.7g(产率:58%)的化合物8。MS:[M+H]+=500。
合成例9:化合物9的合成
Figure BDA0002302356570000773
以与化合物7的合成相同的方式进行合成过程,不同之处在于,使用6.0g(14.56mmol)的中间体7-2和2.8g(14.56mmol)的9H-咔唑-3-甲腈作为反应物,以得到4.7g(产率:62%)的化合物9。MS:[M+H]+=525。
合成例10:化合物10的合成
(1)中间体10-1的合成
Figure BDA0002302356570000781
在氮气氛围下,将10g(32.26mmol)的1-碘二苯并噻吩和2.7g(16.13mmol)的溴放入140mL氯仿中,然后将溶液在-40℃下搅拌30分钟。反应完成后,向溶液中加入硫酸氢钠水溶液以将水层与有机层分离。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到3.8g(产率:31%)的中间体10-1。
(2)中间体10-2的合成
Figure BDA0002302356570000782
将3.8g(9.80mmol)的中间体10-1、2.3g(13.01mmol)的二苯并[b,d]呋喃-4-基-硼酸和2mol%的(Pd(PPh3)4)放入30mL四氢呋喃(THF)中并且将2.7g(19.60mmol)碳酸钾溶解于15mL水中并与THF溶液混合,然后将混合溶液在80℃下搅拌12小时。反应完成后,将混合溶液冷却至室温以分离水层和有机层。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到2.6g(产率:63%)的中间体10-2。
(3)化合物10的合成
Figure BDA0002302356570000791
将2.6g(6.07mmol)的中间体10-2、1.0g(6.07mmol)的9H-咔唑、1mol%的Pd(t-Bu3P)2和0.7g(7.26mmol)的叔丁醇钠加入到20mL甲苯中,然后将溶液在110℃下搅拌12小时。反应完成后,将溶液冷却至室温,然后用二氧化硅垫过滤以去除杂质。将经过滤的溶液用水洗涤以将水层与有机层分离。将有机层放入无水硫酸镁中,然后再次搅拌有机溶液。用二氧化硅垫过滤有机溶液,在减压下浓缩,然后通过柱层析法纯化,以得到1.8g(产率:59%)的化合物10。MS:[M+H]+=516。
合成例11:化合物11的合成
(1)中间体11-1的合成
Figure BDA0002302356570000792
以与中间体10-2的合成相同的方式进行合成过程,不同之处在于,使用6.0g(15.47mmol)的中间体10-1和3.60g(17.02mmol)的二苯并[b,d]呋喃-1-基-硼酸作为反应物,以得到3.8g(产率:59%)的中间体11-1。
(2)化合物11的合成
Figure BDA0002302356570000793
以与化合物10的合成相同的方式进行合成过程,不同之处在于,使用3.8g(8.88mmol)的中间体11-1和1.5g(8.88mmol)的9H-咔唑作为反应物,以得到2.9g(产率:64%)的化合物11。MS:[M+H]+=516。
实验例1:有机化合物的物理性质的测量
评价了化合物1、3、4、7、8和10的物理性质。特别是,评价了各化合物的HOMO能级、LUMO能级、最大光致发光波长(PLλmax)、玻璃化转变温度(Tg)、熔点(Tm)、热分解温度(Td)、蒸发温度(Evap.)和三重态能级(T1)。为了进行比较,还评价了在以下比较例中用作参考主体的mCBP的物理性质。测量结果示于下表1中。
表1:有机化合物的发光性能
Figure BDA0002302356570000801
如表1所示,化合物1、3、4、7、8和10各自显示出足够的作为发射层中使用的发光材料的HOMO能级、LUMO能级和能级带隙。而且,化合物1、3、4、7、8和10各自显示出作为主体的高三重态能级。考虑到化合物的三重态能级,发现那些化合物与延迟荧光材料的组合使用适合于激子能量转移,从而在减少非发射猝灭的同时实现良好的发光效率。而且,证实了那些化合物的玻璃化转变温度、熔点和蒸发温度较高,这表明那些化合物具有优异的耐热性。
实施例1:有机发光二极管(OLED)的制造
使用合成例1中合成的化合物1作为发光材料层(EML)中的主体来制造有机发光二极管。将40mm×40mm×0.5mm的附着有ITO(包括反射层)的玻璃基板用异丙醇、丙酮和蒸馏水超声清洗5分钟,然后在100℃的烘箱中干燥。将所清洗的基板在真空中用O2等离子体处理2分钟,并转移到沉积室中以在基板上沉积其他层。在10-7托下,通过加热舟按以下列顺序蒸发沉积有机层。有机层的沉积速率设定为
Figure BDA0002302356570000802
空穴注入层(HIL)(HAT-CN;7nm);空穴输送层(HTL)(NPB,55nm);电子阻挡层(EBL)(mCBP;
Figure BDA0002302356570000811
);发光材料层(EML)(化合物1(主体):4CzIPN(延迟荧光材料)=70:30重量比;35nm);空穴阻挡层(HBL)(B3PYMPM;10nm);电子输送层(ETL)(TPBi;20nm);电子注入层(EIL)(LiF;0.8nm);和阴极(Al;100nm)。
然后,在阴极上沉积封盖层(CPL),并且由玻璃封装该器件。在沉积发射层和阴极之后,将OLED从沉积室转移到干燥箱中以便成膜,随后使用UV固化性环氧树脂和吸湿剂进行封装。所制造的有机发光二极管具有9mm2的发射面积。
实施例2~6:OLED的制造
以与实施例1相同的过程和相同的材料制造有机发光二极管,不同之处在于,使用化合物3(实施例2)、化合物4(实施例3)、化合物7(实施例4)、化合物8(实施例5)和化合物10(实施例6)代替化合物1作为EML中的主体。
比较例1:OLED的制造
以与实施例1相同的过程和相同的材料制造有机发光二极管,不同之处在于,使用mCBP(Ref.1)代替化合物1作为EML中的主体。
实验例2:OLED的发光性能的测量
将实施例1至6和比较例1中制造的有机发光二极管各自连接至外部电源,并且使用恒流源(KEITHLEY)和光度计PR650在室温下评价了所有二极管的发光性能。特别是,测量了实施例1至6和比较例1的发光二极管在10mA/cm2的电流密度下的驱动电压(V)、电流效率(cd/A)、功率效率(lm/W)、色坐标以及在3000nit下发光降至95%的时间。其结果示于下表2中。
表2:OLED的发光性能
样品 V cd/A lm/W EQE(%) CIE(x) CIE(y) T<sub>95</sub>
Ref.1 4.82 45.5 29.7 15.4 0.342 0.597 200
实施例1 4.28 49.3 36.2 14.4 0.355 0.590 448
实施例2 4.53 59.1 40.9 17.2 0.364 0.587 560
实施例3 4.45 51.0 36.0 17.3 0.361 0.595 510
实施例4 4.18 56.7 42.6 16.6 0.350 0.592 476
实施例5 4.13 53.8 40.9 15.7 0.357 0.578 504
实施例6 4.42 49.2 34.9 16.7 0.361 0.588 466
如表2中所示,与比较例1的包含mCBP作为EML中的主体的OLED相比,实施例的包含有机化合物作为EML中的主体的OLED将其驱动电压降低高达14.3%,并且提高其电流效率高达29.9%,电源效率高达43.4%,EQE高达12.3%,以及T95高达180%。确认了,通过应用本公开的有机化合物,OLED可以降低其驱动电压并提高其发光效率和发光寿命。
实施例7:OLED的制造
以与实施例1相同的过程和相同的材料制造有机发光二极管,不同之处在于,将作为主体的化合物1和作为延迟荧光材料的4CzIPN以50:50(重量比)代替70:30(重量比)进行混合。
实施例8~10:OLED的制造
以与实施例7相同的过程和相同的材料制造有机发光二极管,不同之处在于,使用化合物3(实施例8)、化合物7(实施例9)和化合物8(实施例10)代替化合物1作为EML中的主体。
比较例2~3:OLED的制造
以与实施例1相同的过程和相同的材料制造有机发光二极管,不同之处在于,使用以下参考2化合物(Ref.2)和参考3化合物(Ref.3)代替化合物1作为EML中的主体。
[参考化合物]
Figure BDA0002302356570000821
实验例3:OLED的发光性能的测量
通过重复与实验例2相同的过程来测量实施例7至10和比较例2和3中制造的各有机发光二极管的包括最大电致发光波长(ELλmax)在内的发光性能。测量结果示于下表3中。
表3:OLED的发光性能
样品 V cd/A lm/W EQE(%) λ<sub>max</sub>(nm) CIE(x) CIE(y) T<sub>95</sub>
Ref.2 4.34 52.48 38.02 16.35 532 0.35 0.56 80
Ref.3 4.73 52.85 35.13 16.01 532 0.36 0.56 90
实施例7 4.23 51.36 38.14 16.03 532 0.36 0.56 160
实施例8 4.39 50.61 36.24 15.80 536 0.35 0.56 200
实施例9 4.13 52.11 39.60 16.27 536 0.35 0.56 170
实施例10 4.45 54.04 38.17 16.87 532 0.35 0.56 180
如表3所示,与比较例2和3的包含化合物作为EML中的主体的OLED相比,实施例的包含有机化合物作为EML中的主体的OLED使其驱动电压降低高达12.7%,并且提高其电流效率高达3.0%,电源效率高达12.7%,EQE高达5.5%以及T95高达150%。确认了,通过应用本公开的有机化合物,OLED可以降低其驱动电压并提高其发光效率和发光寿命。综合实验例2和3的结果,通过使用应用了本公开的有机化合物的有机发光二极管,可以实现具有降低的功耗和改善的发光效率和发光寿命的有机发光装置(例如,有机发光显示装置)。
虽然已经参考示例性实施方式和实施例描述了本公开,但是这些实施方式和实施例并不旨在限制本公开的范围。相反,本领域技术人员会明白,在不脱离本发明的精神或范围的情况下,可以在本公开中进行各种修改和变型。因此,本公开旨在涵盖本公开的修改和变型,前提是它们落入所附权利要求及其等同物的范围内。
可以组合上述各种实施方式以提供进一步的实施方式。通过援引将本说明书中提及和/或申请信息表中列出的所有美国专利、美国专利申请公报、美国专利申请、外国专利、外国专利申请和非专利出版物完整并入本文。如果需要,可以修改实施方式的各方面以采用各种专利、申请和出版物的概念来提供更进一步的实施方式。
根据上述详细描述,可以对实施方式进行这些和其他改变。通常,在以下权利要求中,所使用的术语不应被解释为将权利要求局限于说明书和权利要求中公开的具体实施方式,而是应被解释为包括所有可能的实施方式以及这些权利要求所享有的等同物的全部范围。因此,权利要求不受本公开的限制。

Claims (20)

1.一种具有以下化学式1的有机化合物:
化学式1
Figure FDA0002302356560000011
其中,R1至R4各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基,或R1至R4中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环,其中,所述C5~C20稠合芳环和所述C4~C20稠合杂芳环各自分别不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团,a和b各自独立地为1至4的整数;c为1至3的整数,并且d为1或2的整数;R5和R6中的一个是具有以下化学式2的结构的取代基,当R5不是具有化学式2的结构的取代基时,R5与R4相同,并且当R6不是具有化学式2的结构的取代基时,R6为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基;并且X为氧(O)或硫(S);
化学式2
Figure FDA0002302356560000021
其中,R7和R8各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基,或R7和R8中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环,其中,C5~C20稠合芳环和C4~C20稠合杂芳环各自分别不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团;e为1至3的整数并且f为1至4的整数;Y为氧(O)或硫(S)。
2.根据权利要求1所述的有机化合物,其中,所述有机化合物包括具有以下化学式3的结构的有机化合物:
化学式3
Figure FDA0002302356560000022
其中,R11至R14和R17至R18各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基,或R11至R14和R17至R18中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环;R16为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基;a至f、X和Y各自与化学式1和2中所定义的相同。
3.根据权利要求1所述的有机化合物,其中,所述有机化合物包括具有以下化学式4的结构的有机化合物:
化学式4
Figure FDA0002302356560000031
其中,R11至R15和R17至R18各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基,或R11至R15和R17至R18中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环;R16为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基;a至f、X和Y各自与化学式1和2中所定义的相同。
4.根据权利要求1所述的有机化合物,其中,所述有机化合物包括具有以下化学式5的结构的任何一种:
化学式5
Figure FDA0002302356560000032
Figure FDA0002302356560000041
Figure FDA0002302356560000051
Figure FDA0002302356560000061
Figure FDA0002302356560000071
Figure FDA0002302356560000081
Figure FDA0002302356560000091
Figure FDA0002302356560000101
Figure FDA0002302356560000111
Figure FDA0002302356560000121
Figure FDA0002302356560000131
Figure FDA0002302356560000141
5.根据权利要求1所述的有机化合物,其中,所述有机化合物包括具有以下化学式6的结构的任何一种:
化学式6
Figure FDA0002302356560000142
Figure FDA0002302356560000151
Figure FDA0002302356560000161
Figure FDA0002302356560000171
Figure FDA0002302356560000181
Figure FDA0002302356560000191
Figure FDA0002302356560000201
Figure FDA0002302356560000211
Figure FDA0002302356560000221
Figure FDA0002302356560000231
Figure FDA0002302356560000241
Figure FDA0002302356560000251
Figure FDA0002302356560000261
6.一种有机发光二极管,其包括:
第一电极;
面对第一电极的第二电极;
设置在第一和第二电极之间的至少一个发射单元,
其中,所述至少一个发射单元包括发光材料层,并且
其中,所述发光材料层包括具有以下化学式1的结构的有机化合物:
Figure FDA0002302356560000262
其中,R1至R4各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基,或R1至R4中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环,其中,所述C5~C20稠合芳环和所述C4~C20稠合杂芳环各自分别不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团,a和b各自独立地为1至4的整数;c为1至3的整数,并且d为1或2的整数;R5和R6中的一个是具有以下化学式2的结构的取代基,当R5不是具有化学式2的结构的取代基时,R5与R4相同,并且当R6不是具有化学式2的结构的取代基时,R6为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基;并且X为氧(O)或硫(S);
化学式2
Figure FDA0002302356560000271
其中,R7和R8各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C5~C30芳基、或不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团的C4~C30杂芳基,或R7和R8中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环,其中,所述C5~C20稠合芳环和所述C4~C20稠合杂芳环各自分别不具有取代基或取代有选自由卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基及其组合组成的组中的基团;e为1至3的整数并且f为1至4的整数;Y为氧(O)或硫(S)。
7.根据权利要求6所述的有机发光二极管,其中,所述有机化合物包括具有以下化学式3的结构的有机化合物:
化学式3
Figure FDA0002302356560000272
其中,R11至R14和R17至R18各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基,或R11至R14和R17至R18中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环;R16为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基;a至f、X和Y各自与化学式1和2中所定义的相同。
8.根据权利要求6所述的有机发光二极管,其中,所述有机化合物包括具有以下化学式4的结构的有机化合物:
化学式4
Figure FDA0002302356560000281
其中,R11至R15和R17至R18各自独立地为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基,或R11至R15和R17至R18中相邻的两个基团形成C5~C20稠合芳环或C4~C20稠合杂芳环;R16为氕、氘、氚、卤素、氰基、硝基、C1~C20烷基、C1~C20烷氧基、C1~C20烷基氨基、C5~C30芳基或C4~C30杂芳基;a至f、X和Y各自与化学式1和2中所定义的相同。
9.根据权利要求6所述的有机发光二极管,其中,所述发光材料层包括主体和第一掺杂剂,并且其中,所述主体包括所述有机化合物。
10.根据权利要求9所述的有机发光二极管,其中,第一掺杂剂的激发态单重态能级(S1 TD)与激发态三重态能级(T1 TD)之间的能级带隙等于或小于0.3eV。
11.根据权利要求9所述的有机发光二极管,所述发光材料层还包含第二掺杂剂。
12.根据权利要求11所述的有机发光二极管,其中,第一掺杂剂的激发态三重态能级(T1 TD)低于所述主体的激发态三重态能级(T1 H),并且第一掺杂剂的激发态单重态能级(S1 TD)高于第二掺杂剂的激发态单重态能级(S1 FD)。
13.根据权利要求6所述的有机发光二极管,其中,所述发光材料层包括设置在第一和第二电极之间的第一发光材料层和设置在第一电极和第一发光材料层之间或第一发光材料层和第二电极之间的第二发光材料层,并且其中,第一发光材料层包括所述有机化合物。
14.根据权利要求13所述的有机发光二极管,其中,第一发光材料层包括第一主体和第一掺杂剂,并且其中,第一主体包括所述有机化合物。
15.根据权利要求14所述的有机发光二极管,其中,第二发光材料层包括第二主体和第二掺杂剂,其中,第一掺杂剂的激发态单重态能级(S1 TD)高于第二掺杂剂的激发态单重态能级(S1 FD)。
16.根据权利要求13所述的有机发光二极管,所述发光材料层还包括相对于第一发光材料层与第二发光材料层相反地设置的第三发光材料层。
17.根据权利要求16所述的有机发光二极管,其中,第一发光材料层包括第一主体和第一掺杂剂,第二发光材料层包括第二主体和第二掺杂剂,并且第三发光材料层包括第三主体和第三掺杂剂,并且其中,第一主体包括所述有机化合物。
18.根据权利要求17所述的有机发光二极管,其中,第一掺杂剂的激发态单重态能级(S1 TD)分别高于第二和第三掺杂剂各自的激发态单重态能级(S1 FD1和S1 FD2)。
19.根据权利要求6所述的有机发光二极管,其中,所述至少一个发射单元包括设置在第一和第二电极之间的第一发射单元和设置在第一发射单元和第二电极之间的第二发射单元,其中,第一发射单元包括下部发光材料层,第二发射单元包括上部发光材料层,并且所述下部发光材料层和所述上部发光材料层中的至少一个包括所述有机化合物,并且所述有机发光二极管还包括设置在第一和第二发射单元之间的电荷产生层。
20.一种有机发光装置,其包括:
基板;和
位于所述基板上的根据权利要求6至19中任一项所述的有机发光二极管。
CN201911226440.8A 2018-12-14 2019-12-04 具有优异的耐热性和发光性的有机化合物、具有该化合物的有机发光二极管和有机发光装置 Active CN111320614B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0161946 2018-12-14
KR1020180161946A KR102645609B1 (ko) 2018-12-14 2018-12-14 내열 특성 및 발광 특성이 우수한 유기 화합물, 이를 포함하는 발광다이오드 및 유기발광장치

Publications (2)

Publication Number Publication Date
CN111320614A true CN111320614A (zh) 2020-06-23
CN111320614B CN111320614B (zh) 2023-11-03

Family

ID=71073011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911226440.8A Active CN111320614B (zh) 2018-12-14 2019-12-04 具有优异的耐热性和发光性的有机化合物、具有该化合物的有机发光二极管和有机发光装置

Country Status (3)

Country Link
US (1) US11683982B2 (zh)
KR (1) KR102645609B1 (zh)
CN (1) CN111320614B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171689A (zh) * 2020-09-11 2022-03-11 乐金显示有限公司 有机发光二极管和包含它的有机发光装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11856853B2 (en) 2019-12-03 2023-12-26 Lg Display Co., Ltd. Organic compound, organic light emitting diode and organic light emitting device including the compound
KR20220077298A (ko) * 2020-12-01 2022-06-09 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법
JP2023068426A (ja) * 2021-11-02 2023-05-17 株式会社Kyulux 化合物、組成物、ホスト材料および有機発光素子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052250A1 (ja) * 2009-10-26 2011-05-05 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
JP2013145811A (ja) * 2012-01-13 2013-07-25 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2013114966A1 (ja) * 2012-02-02 2013-08-08 コニカミノルタ株式会社 イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2013168534A1 (ja) * 2012-05-09 2013-11-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置および照明装置
WO2014163083A1 (ja) * 2013-04-05 2014-10-09 コニカミノルタ株式会社 発光層形成用塗布液、有機エレクトロルミネッセンス素子とその製造方法及び照明・表示装置
JP2016207954A (ja) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102170390B1 (ko) * 2018-07-25 2020-10-27 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
CN113166120A (zh) * 2018-12-10 2021-07-23 株式会社Lg化学 化合物及包含其的有机发光器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052250A1 (ja) * 2009-10-26 2011-05-05 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
JP2013145811A (ja) * 2012-01-13 2013-07-25 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2013114966A1 (ja) * 2012-02-02 2013-08-08 コニカミノルタ株式会社 イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2013168534A1 (ja) * 2012-05-09 2013-11-14 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置および照明装置
WO2014163083A1 (ja) * 2013-04-05 2014-10-09 コニカミノルタ株式会社 発光層形成用塗布液、有機エレクトロルミネッセンス素子とその製造方法及び照明・表示装置
JP2016207954A (ja) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171689A (zh) * 2020-09-11 2022-03-11 乐金显示有限公司 有机发光二极管和包含它的有机发光装置
CN114171689B (zh) * 2020-09-11 2024-05-14 乐金显示有限公司 有机发光二极管和包含它的有机发光装置

Also Published As

Publication number Publication date
KR102645609B1 (ko) 2024-03-07
US20200194685A1 (en) 2020-06-18
KR20200073602A (ko) 2020-06-24
US11683982B2 (en) 2023-06-20
CN111320614B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN111106256B (zh) 有机发光二极管和具有该发光二极管的有机发光装置
CN111276620B (zh) 有机发光二极管和具有其的有机发光装置
CN111081888B (zh) 有机发光二极管和具有该发光二极管的有机发光装置
CN111326666B (zh) 有机发光二极管和具有其的有机发光装置
CN111320614B (zh) 具有优异的耐热性和发光性的有机化合物、具有该化合物的有机发光二极管和有机发光装置
CN111377916B (zh) 具有改善的发光特性的有机化合物、具有所述化合物的有机发光二极管和有机发光装置
CN111349066A (zh) 有机化合物、具有所述化合物的发光二极管和发光装置
CN111269170A (zh) 有机化合物、具有该化合物的有机发光二极管和有机发光装置
CN110818612B (zh) 有机化合物、包含其的有机发光二极管和有机发光装置
CN112300084B (zh) 有机化合物、具有所述有机化合物的有机发光二极管和有机发光装置
CN112239472B (zh) 有机化合物、包括有机化合物的有机发光二极管和有机发光装置
CN112898305A (zh) 有机化合物、包含它的有机发光二极管和有机发光装置
CN112457200B (zh) 有机化合物、包含有机化合物的有机发光二极管和有机发光装置
CN111349079B (zh) 有机化合物、具有该化合物的oled和有机发光装置
CN112851687B (zh) 有机化合物、包含该化合物的有机发光二极管和装置
CN111018837B (zh) 有机化合物、具有所述化合物的oled和有机发光装置
CN112442015B (zh) 具有改善的发光特性的有机化合物、含该有机化合物的有机发光二极管和有机发光装置
CN110818575B (zh) 有机化合物、含有该化合物的有机发光二极管和有机发光装置
CN114464746A (zh) 有机发光二极管和包括其的有机发光装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant