CN111320374A - 光纤预制棒及其制备方法 - Google Patents

光纤预制棒及其制备方法 Download PDF

Info

Publication number
CN111320374A
CN111320374A CN201811537652.3A CN201811537652A CN111320374A CN 111320374 A CN111320374 A CN 111320374A CN 201811537652 A CN201811537652 A CN 201811537652A CN 111320374 A CN111320374 A CN 111320374A
Authority
CN
China
Prior art keywords
layer
optical fiber
fiber preform
preparing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811537652.3A
Other languages
English (en)
Other versions
CN111320374B (zh
Inventor
吴椿烽
陈子国
钱宜刚
沈一春
陈京京
周建峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongtian Technology Advanced Materials Co ltd
Jiangsu Zhongtian Technology Co Ltd
Original Assignee
Zhongtian Technology Advanced Materials Co ltd
Jiangsu Zhongtian Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongtian Technology Advanced Materials Co ltd, Jiangsu Zhongtian Technology Co Ltd filed Critical Zhongtian Technology Advanced Materials Co ltd
Priority to CN201811537652.3A priority Critical patent/CN111320374B/zh
Publication of CN111320374A publication Critical patent/CN111320374A/zh
Application granted granted Critical
Publication of CN111320374B publication Critical patent/CN111320374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/01453Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering for doping the preform with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor
    • C03B2207/28Multiple ports for glass precursor for different glass precursors, reactants or modifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

本发明提供一种光纤预制棒的制备方法,采用气相沉积工艺,通过第一喷灯、第二喷灯及第三喷灯依次进行沉积,在第一喷灯中通入氟化物、四氯化硅、可燃气体、惰性气体、氧气,形成含有氟元素的二氧化硅松散体,在第二喷灯中通入氧气、可燃气体、四氯化硅、四氯化锗、惰性气体,形成芯层疏松体,在第三喷灯中通入氧气、可燃气体、四氯化硅、惰性气体,形成二氧化硅内包层,得到芯棒;将芯棒进行脱羟以及玻璃化烧结;采用掺氟工艺制备沟渠层、中包层;采用气相沉积工艺或套管工艺制备外包层,得到光纤预制棒。本发明通过第一喷灯原料口的偏置的设计控制芯层的凹陷深度,制备的产品降低损耗,实现大有效面积。

Description

光纤预制棒及其制备方法
技术领域
本发明涉及光通信领域,尤其涉及一种光纤预制棒及其制备方法。
背景技术
众所周知,光纤的衰减、光学参数性能取决于光纤预制棒的性能,为了获得大有效面积,主要方法是降低芯层折射率和增加芯层直径,但是单纯降低芯层折射率和增加芯层直径,虽然可以实现增加光纤有效面积,但与之而来的是截止波长的增加以及光纤衰减、弯曲性能的恶化,造成光纤超出相关指标。而且采用纯硅芯设计方式,其要求内部必须进行复杂的粘度匹配,制造工艺极其困难。另外为了降低光纤损耗,通过降低光纤预制棒的掺杂浓度,可以有效降低光纤的瑞利散射,但是光纤的瑞利散射除了受掺杂浓度的影响,还受密度波动影响,传统的纯硅芯层设计容易引起芯层和包层间的不匹配,无法改善瑞利散射,无法降低损耗。
发明内容
有鉴于此,有必要提供一种光纤预制棒的制备方法,其能够获得大有效面积且降低光纤损耗。
本发明提供一种光纤预制棒的制备方法,包括以下步骤:
步骤1,采用气相沉积工艺制备芯棒,通过第一喷灯、第二喷灯及第三喷灯依次进行沉积,在第一喷灯中通入氟化物、四氯化硅、可燃气体、惰性气体及氧气,形成含有氟元素的二氧化硅松散体,在第二喷灯中通入氧气、可燃气体、四氯化硅、四氯化锗及惰性气体,在二氧化硅松散体表面形成芯层疏松体,在第三喷灯中通入氧气、可燃气体、四氯化硅及惰性气体,在芯层疏松体的表面形成二氧化硅内包层,沉积完成得到芯棒;
步骤2,将上述步骤得到的芯棒进行脱羟以及玻璃化烧结;
步骤3,采用掺氟工艺制备沟渠层与中包层;
步骤4,采用气相沉积工艺或套管工艺制备外包层,得到光纤预制棒。
进一步的,所述步骤1中的第一喷灯中通入的气体还包括碱金属气体,所述碱金属包括含有锂、钠、钾、铷中的一种或至少两种组合。
进一步的,所述步骤3中还包括采用掺氟工艺制备的辅助中包层。
进一步的,所述第一喷灯沿水平平面方向移动且与水平方向的夹角为30°~90°,所述第二喷灯沿水平平面方向以及自身的中心轴方向移动,所述第二喷灯与水平方向的夹角为20°~70°。
进一步的,所述第一喷灯由内到外包括三层同心设置的椭圆形管或三个并排分布的内矩形管、设置于所述椭圆形管或内矩形管外的三层同心设置的外矩形管。
进一步的,所述内矩形管或椭圆形管偏置于所述外矩形管最内层的一侧。
进一步的,所述步骤2中的玻璃化烧结过程中依次通入四氯化硅和氟化物。
进一步的,所述氟化物包括SiF4、CF4、SF6、C2F6、SOF2、C2F2Cl2的一种或至少两种组合。
进一步的,所述惰性气体包括氩气或氮气,所述可燃气体包括氢气或甲烷。
所述光纤预制棒的制备方法制备的光纤预制棒,所述光纤预制棒由内向外依次包括芯层、内包层、沟渠层、中包层及外包层,所述芯层、内包层、沟渠层、中包层及外包层沿径向的横截面均为圆环,所述芯层中心凹陷深度为0.05~0.15%,斜率为tan10°~tan80°,所述的芯层半径r1为5~7μm,相对折射率△n1为0.05%~0.15%;所述内包层的边界到所述芯层中心的距离r2为6~20μm,相对折射率△n2为-0.05%~-0.2%;所述沟渠层的边界到所述芯层中心的距离r3为15~28μm,相对折射率△n3为-0.3%~-0.4%;所述中包层的边界到所述芯层中心的距离r4为25~33μm,相对折射率△n4为-0.1%~-0.20%;所述外包层为纯二氧化硅。
进一步的,所述光纤预制棒还包括辅助中包层,所述辅助中包层包覆于所述中包层外侧,所述辅助中包层的边界到所述芯层中心的距离为35~45μm,相对折射率△n5为-0.05%~-0.20%。
本发明提供的光纤预制棒的制备方法,通过第一喷灯原料口的偏置的设计控制芯层的凹陷深度,制备的产品实现大有效面积;含氟化物和四氯化硅原料气体通过第一喷灯的内三层管路喷出再混合,可以实现氟元素的掺杂浓度的均匀性分布;烧结过程中掺入内包层的氟元素、氯元素从内包层向芯层扩散呈线性渐弱趋势,可以消除或大幅缓解芯层与内包层的边界效应,有效降低光纤损耗。
附图说明
图1为本发明一实施方式中的沉积设备的结构示意图。
图2为本发明一实施方式中的第一喷灯的喷嘴的结构示意图。
图3为本发明另一实施方式中的第一喷灯的喷嘴的结构示意图。
图4为本发明一实施方式中的光纤预制棒的制备方法的流程示意图。
图5为本发明一实施方式中的光纤预制棒的折射率剖面示意图。
主要元件符号说明
沉积设备 100
沉积部 10
腔体 11
沉积室 12
沉积组件 20
吊杆 21
靶棒 22
第一喷灯 30
第二喷灯 40
第三喷灯 50
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,图1为本发明一实施方式中的沉积设备100的结构示意图,所述沉积设备100用于沉积芯棒,所述沉积设备100包括沉积部10、设置于所述沉积部10中的沉积组件20及由下至上依次设置于所述沉积部10外的第一喷灯30、第二喷灯40及第三喷灯50。所述第一喷灯30、第二喷灯40及第三喷灯50的一端均伸入所述沉积部10中。
所述沉积部10包括沉积腔体11及沉积室12,所述沉积腔体11与所述沉积室12连接。在本实施方式中,所述沉积腔体11设置于所述沉积室12的上方。
所述沉积组件20包括依次连接的提升机构(图未示)、吊杆21、挂钩(图未示)及靶棒22。所述提升机构用于将所述靶棒22在所述沉积室12中移动,如提出或者放入所述沉积室12。所述吊杆21设置于所述沉积腔体11中,所述吊杆21通过所述挂钩与所述靶棒22连接,所述靶棒22用于沉积芯棒粉末体。
所述第一喷灯30设置于所述沉积室12的下方,所述第一喷灯30沿水平平面方向移动且与水平方向的夹角为30°~90°,所述第一喷灯30用于在所述靶棒22上沉积松散体。所述第二喷灯40设置于所述沉积室12的一侧且位于所述第一喷灯30的上方,所述第二喷灯40沿水平平面方向以及自身的中心轴方向移动,所述第二喷灯40与水平方向的夹角为20°~70°,所述第二喷灯40用于在所述松散体上沉积芯层疏松体。所述第三喷灯50与所述第二喷灯40设置于所述沉积室12的同一侧,所述第三喷灯50用于在所述芯层疏松体上沉积内包层。
请一并参阅图2和图3,图2和图3为所述第一喷灯30的喷嘴在不同实施方式中的结构示意图。如图2所示,所述第一喷灯30由内到外包括三层同心设置的椭圆形管以及设置于所述椭圆形管外的三层同心设置的外矩形管;如图3所示,所述第一喷灯30包括三个并排分布的内矩形管以及设置于所述内矩形管外的三层同心设置的外矩形管。在本实施方式中,所述内矩形管或椭圆形管偏置于所述外矩形管最内层的一侧。在其他实施方式中,所述椭圆形管可替换为圆管。
请参阅图4,本发明还提供一种光纤预制棒的制备方法,包括以下步骤:
步骤S31,采用气相沉积工艺制备芯棒,通过第一喷灯、第二喷灯及第三喷灯依次进行沉积,在第一喷灯中通入氟化物、四氯化硅、可燃气体、惰性气体及氧气,形成氟元素的二氧化硅松散体,在第二喷灯中通入氧气、可燃气体、四氯化硅、四氯化锗及惰性气体,在二氧化硅松散体表面形成芯层疏松体,在第三喷灯中通入氧气、可燃气体、四氯化硅及惰性气体,在芯层疏松体的表面形成二氧化硅内包层,沉积完成得到芯棒;
步骤S32,将上述步骤得到的芯棒进行脱羟以及玻璃化烧结;
步骤S33,采用掺氟工艺制备沟渠层与中包层;
步骤S34,采用气相沉积工艺或套管工艺制备外包层,得到光纤预制棒。
所述步骤S31中的第一喷灯、第二喷灯及第三喷灯由下往上依次设置。
所述步骤S31中的第一喷灯中通入的气体还包括碱金属气体,所述碱金属包括含有锂、钠、钾、铷中的一种或至少两种组合。
第一喷灯沿水平平面方向移动且与水平方向的夹角为30°~90°,第二喷灯沿水平平面方向以及自身的中心轴方向移动,第二喷灯与水平方向的夹角为20°~70°。第一喷灯由内到外包括三层同心设置的圆管或三个并排分布的内矩形管、设置于圆管或内矩形管外的三层同心设置的外矩形管,其中内矩形管或圆管偏置于外矩形管最内层的一侧。三层外矩形管由内向外依次用于通入惰性气体、可燃气体、氧气,内矩形管或椭圆形管的中间层用于通入四氯化硅,当所述步骤S31中通入氟化物时,内矩形管或椭圆形管的另外两层分别用于通入氟化物、氧气;当所述步骤S31中通入氟化物与碱金属气体时,内矩形管或椭圆形管的另外两层均用于通入氟化物、氧气及碱金属气体的混合气体。
所述步骤S31中的惰性气体包括氩气或氮气,可燃气体包括氢气或甲烷。
所述步骤S32中在脱羟结束后,玻璃化烧结过程中依次通入四氯化硅和氟化物,具体为将玻璃化温度升至1200℃~1300℃后,通入四氯化硅气体,流量为0.5g/min~5g/min,恒温时间为2~6h,再通入氟化物气体,流量为200cc/min~1000cc/min,恒温时间2~6h,此阶段结束后,再进一步升温至1350℃以上进行烧结直至粉末棒形成透明玻璃体。所述步骤S31和步骤S32中的氟化物包括SiF4、CF4、SF6、C2F6、SOF2及C2F2Cl2中的一种或至少两种的组合。
所述步骤S33中还包括采用掺氟工艺制备的辅助中包层;所述步骤S33中的掺氟工艺包括气相合成掺氟烧结工艺、管内掺氟沉积工艺及掺氟套管熔缩工艺。
一种采用上述方法制备的光纤预制棒,所述光纤预制棒由内向外依次包括芯层、内包层、沟渠层、中包层及外包层,所述芯层、内包层、沟渠层、中包层及外包层沿径向的横截面均为圆环,所述芯层中心凹陷深度为0.05~0.15%,斜率为tan10°~tan80°,所述的芯层半径r1为5~7μm,相对折射率△n1为0.05%~0.15%;所述内包层的边界到所述芯层中心的距离r2为6~20μm,相对折射率△n2为-0.05%~-0.2%;所述沟渠层的边界到所述芯层中心的距离r3为15~28μm,相对折射率△n3为-0.3%~-0.4%;所述中包层的边界到所述芯层中心的距离r4为25~33μm,相对折射率△n4为-0.1%~-0.20%;所述外包层为纯二氧化硅。
如图5所示,在本实施方式中,所述光纤预制棒还包括辅助中包层,所述辅助中包层包覆于所述中包层外侧,所述辅助中包层的边界到所述芯层中心的距离为35~45μm,相对折射率△n5为-0.05%~-0.20%。
所述光纤预制棒拉丝后得到的光纤有效面积为110μm2~150μm2,在1550nm波长的衰减低于0.168dB/km,以弯曲半径R为10mm绕一圈时,在1550nm和1625nm波长的弯曲损耗均低于0.02dB,缆波长低于1530nm。
下面将结合具体的实施例对本发明做进一步说明。
实施例1
首先,第一喷灯的角度调整为50°,第二喷灯的角度调整为40°,采用气相沉积的方式,在第一喷灯中通入SiF4、SiCl4、H2、KCl、Ar及O2,Ar作为载气以将KCl带入第一喷灯中,其中Ar流量控制在60cc/min,SiF4气体的流量控制在100cc/min,在第二喷灯中通入O2、H2、SiCl4、GeCl4及Ar气体,其中GeCl4气体的流量控制在50cc/min,在第三喷灯中通入O2、H2、SiCl4及Ar气体,沉积形成粉末棒。
沉积结束的粉末棒在烧结炉中进行脱羟、玻璃化烧结。其中,在脱羟结束,玻璃化温度升至1250℃后,通入SiCl4气体,流量为1g/min,恒温时间6h,再通入SiF4气体,流量为300cc/min,恒温时间6h。恒温阶段结束后,再进一步升温至1350℃,进行烧结直至成透明玻璃体。
采用OVD气相合成掺氟烧结工艺,逐层沉积沟渠层、中包层、辅助中包层,形成不同尺寸和折射率的剖面结构。
采用OVD气相沉积工艺制备外包层,得到光纤预制棒。
获得的光纤预制棒折射率剖面特征:芯层半径r1为4.7μm,芯层的相对折射率△1为0.075%,芯层中心凹陷深度为0.058%,斜率为tan52°;内包层的边界到芯层中心的距离为8.5μm,内包层的相对折射率△2为-0.135%;沟渠层的边界到芯层中心的距离r3为18μm,沟渠层的相对折射率△3为-0.35%;中包层的边界到芯层中心的距离r4为25μm,中包层的相对折射率△4为-0.17%;外包层的边界到芯层中心的距离r6为62.5μm,外包层的相对折射率△6为0%。光纤预制棒通过拉丝,光纤测试结果:光纤有效面积为118μm2,1550nm衰减0.169dB/km,以弯曲半径R为10mm绕一圈时,1550nm和1625nm弯曲损耗分别是0.011dB和0.017dB,缆波长1418nm。
实施例2
首先,第一喷灯的角度调整为70°,第二喷灯的角度调整为60°,采用气相沉积的方式,在第一喷灯中通入SiF4、SiCl4、H2、KBr、Ar及O2,Ar作为载气以将KBr带入第一喷灯中,其中Ar流量控制在100cc/min,SiF4气体的流量控制在150cc/min,在第二喷灯中通入O2、H2、SiCl4、GeCl4及Ar气体,其中GeCl4气体的流量控制在80cc/min,在第三喷灯中通入O2、H2、SiCl4及Ar气体,沉积形成粉末棒。
沉积结束的粉末棒在烧结炉中进行脱羟、玻璃化烧结。其中,在脱羟结束,玻璃化温度升至1250℃后,通入SiCl4气体,流量为3g/min,恒温时间4h,再通入SiF4气体,流量为500cc/min,恒温时间4h。恒温阶段结束后,再进一步升温至1350℃,进行烧结直至成透明玻璃体。
采用OVD气相合成掺氟烧结工艺,逐层沉积沟渠层、中包层、辅助中包层,形成不同尺寸和折射率的剖面结构。
采用OVD气相沉积工艺制备外包层,得到光纤预制棒。
获得的光纤预制棒折射率剖面特征:芯层半径r1为5.3μm,芯层的相对折射率△1为0.086%,芯层中心凹陷深度为0.105%,斜率为tan67°;内包层的边界到芯层中心的距离r2为10.2μm,内包层的相对折射率△2为-0.128%;沟渠层的边界到芯层中心的距离r3为25μm,沟渠层的相对折射率△3为-0.28%;中包层的边界到芯层中心的距离r4为30μm,中包层的相对折射率△4为-0.15%;辅助中包层的边界到芯层中心的距离r5为40μm,辅助中包层的相对折射率△5为-0.1%;外包层的边界到芯层中心的距离r6为62.5μm,外包层的相对折射率△6为0%。光纤预制棒通过拉丝,光纤测试结果:光纤有效面积为125μm2,1550nm衰减0.165dB/km,以弯曲半径R为10mm绕一圈时,1550nm和1625nm弯曲损耗分别是0.008dB和0.016dB,缆波长1443nm。
实施例3
首先,第一喷灯的角度调整为85°,第二喷灯的角度调整为60°,采用气相沉积的方式,在第一喷灯中通入SiF4、SiCl4、H2、Ar及O2,其中SiF4气体的流量控制在200cc/min,在第二喷灯中通入O2、H2、SiCl4、GeCl4及Ar气体,其中GeCl4气体的流量控制在150cc/min,在第三喷灯中通入O2、H2、SiCl4及Ar气体,沉积形成粉末棒。
沉积结束的粉末棒在烧结炉中进行脱羟、玻璃化烧结。其中,在脱羟结束,玻璃化温度升至1250℃后,通入SiCl4气体,流量为3g/min,恒温时间6h,再通入SF6气体,流量为800cc/min,恒温时间2h。恒温阶段结束后,再进一步升温至1350℃,进行烧结直至成透明玻璃体。
采用OVD气相合成掺氟烧结工艺,逐层沉积沟渠层、中包层形成不同尺寸和折射率的剖面结构。
采用OVD气相沉积工艺制备外包层,得到光纤预制棒。
获得的光纤预制棒折射率剖面特征:芯层半径r1为6.4μm,芯层的相对折射率△1为0.182%,芯层中心凹陷深度为0.12%,斜率为tan74°;内包层的边界到芯层中心的距离r2为15μm,内包层的相对折射率△2为-0.086%;沟渠层的边界到芯层中心的距离r3为28μm,沟渠层的相对折射率△3为-0.27%;中包层的边界到芯层中心的距离r4为33μm,中包层的相对折射率△4为-0.27%;外包层的边界到芯层中心的距离r5为62.5μm,外包层的相对折射率△5为0%。光纤预制棒通过拉丝,光纤测试结果:光纤有效面积为138μm2,1550nm衰减0.17dB/km,以弯曲半径R为10mm绕一圈时,1550nm和1625nm弯曲损耗分别是0.013dB和0.018dB,缆波长1467nm。
实施例4
首先,第一喷灯的角度调整为85°,第二喷灯的角度调整为55°,采用气相沉积的方式,在第一喷灯中通入SiF4、SiCl4、H2、Ar及O2,其中Ar流量控制在100cc/min,SiF4气体的流量控制在200cc/min,在第二喷灯中通入O2、H2、SiCl4、GeCl4及Ar气体,其中GeCl4气体的流量控制在180cc/min,在第三喷灯中通入O2、H2、SiCl4及Ar气体,沉积形成粉末棒。
沉积结束的粉末棒在烧结炉中进行脱羟、玻璃化烧结。其中,在脱羟结束,玻璃化温度升至1250℃后,通入SiCl4气体,流量为5g/min,恒温时间4h,再通入CF4气体,流量为1000cc/min,恒温时间2h。恒温阶段结束后,再进一步升温至1350℃,进行烧结直至成透明玻璃体。
采用OVD气相合成掺氟烧结工艺,逐层沉积沟渠层、中包层形成不同尺寸和折射率的剖面结构。
采用套管工艺制备外包层,得到光纤预制棒。
获得的光纤预制棒折射率剖面特征:芯层半径r1为6.7μm,芯层的相对折射率△1为0.203%,芯层中心凹陷深度为0.124%,斜率为tan76°;内包层的边界到芯层中心的距离r2为20μm,内包层的相对折射率△2为-0.12%;沟渠层的边界到芯层中心的距离r3为22μm,沟渠层的相对折射率△3为-0.32%;中包层的边界到芯层中心的距离r4为28μm,中包层的相对折射率△4为-0.15%;外包层的边界到芯层中心的距离r5为62.5μm,外包层的相对折射率△5为0%。光纤预制棒通过拉丝,光纤测试结果:光纤有效面积为134μm2,1550nm衰减0.169dB/km,以弯曲半径R为10mm绕一圈时,1550nm和1625nm弯曲损耗分别是0.011dB和0.019dB,缆波长1454nm。
本发明提供的光纤预制棒的制备方法,通过第一喷灯原料口的偏置的设计控制芯层的凹陷深度,制备的产品实现大有效面积;含氟化物和四氯化硅原料气体通过第一喷灯的内三层管路喷出再混合,可以实现氟元素的掺杂浓度的均匀性分布;烧结过程中掺入内包层的氟元素、氯元素从内包层向芯层扩散呈线性渐弱趋势,可以消除或大幅缓解芯层与内包层的边界效应,有效降低光纤损耗。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上实施方式所作的适当改变和变化都落在本发明要求保护的范围内。

Claims (11)

1.一种光纤预制棒的制备方法,其特征在于,包括以下步骤:
步骤1,采用气相沉积工艺制备芯棒,通过第一喷灯、第二喷灯及第三喷灯依次进行沉积,在第一喷灯中通入氟化物、四氯化硅、可燃气体、惰性气体及氧气,形成含有氟元素的二氧化硅松散体,在第二喷灯中通入氧气、可燃气体、四氯化硅、四氯化锗及惰性气体,在二氧化硅松散体表面形成芯层疏松体,在第三喷灯中通入氧气、可燃气体、四氯化硅及惰性气体,在芯层疏松体的表面形成二氧化硅内包层,沉积完成得到芯棒;
步骤2,将上述步骤得到的芯棒进行脱羟以及玻璃化烧结;
步骤3,采用掺氟工艺依次制备沟渠层与中包层;
步骤4,采用气相沉积工艺或套管工艺制备外包层,得到光纤预制棒。
2.如权利要求1所述的光纤预制棒的制备方法,其特征在于:所述步骤1中的第一喷灯中通入的气体还包括碱金属气体,所述碱金属包括含有锂、钠、钾、铷中的一种或至少两种组合。
3.如权利要求1所述的光纤预制棒的制备方法,其特征在于:所述步骤3中还包括采用掺氟工艺制备的辅助中包层。
4.如权利要求1所述的光纤预制棒的制备方法,其特征在于:所述第一喷灯沿水平平面方向移动且与水平方向的夹角为30°~90°,所述第二喷灯沿水平平面方向以及自身的中心轴方向移动,所述第二喷灯与水平方向的夹角为20°~70°。
5.如权利要求1所述的光纤预制棒的制备方法,其特征在于:所述第一喷灯由内到外包括三层同心设置的椭圆形管或三个并排分布的内矩形管、设置于所述椭圆形管或内矩形管外的三层同心设置的外矩形管。
6.如权利要求5所述的光纤预制棒的制备方法,其特征在于:所述内矩形管或椭圆形管偏置于所述外矩形管最内层的一侧。
7.如权利要求1所述的光纤预制棒的制备方法,其特征在于:所述步骤2中的玻璃化烧结过程中依次通入四氯化硅气体和氟化物气体。
8.如权利要求1或7所述的光纤预制棒的制备方法,其特征在于:所述氟化物包括SiF4、CF4、SF6、C2F6、SOF2、C2F2Cl2的一种或至少两种组合。
9.如权利要求1所述的光纤预制棒的制备方法,其特征在于:所述惰性气体包括氩气或氮气,所述可燃气体包括氢气或甲烷。
10.如权利要求1-9任意一项所述光纤预制棒的制备方法制备的光纤预制棒,其特征在于:所述光纤预制棒由内向外依次包括芯层、内包层、沟渠层、中包层及外包层,所述芯层、内包层、沟渠层、中包层及外包层沿径向的横截面均为圆环,所述芯层中心凹陷深度为0.05~0.15%,斜率为tan10°~tan80°,所述的芯层半径r1为5~7μm,相对折射率△n1为0.05%~0.15%;所述内包层的边界到所述芯层中心的距离r2为6~20μm,相对折射率△n2为-0.05%~-0.2%;所述沟渠层的边界到所述芯层中心的距离r3为15~28μm,相对折射率△n3为-0.3%~-0.4%;所述中包层的边界到所述芯层中心的距离r4为25~33μm,相对折射率△n4为-0.1%~-0.20%;所述外包层为纯二氧化硅。
11.如权利要求10所述的光纤预制棒,其特征在于:所述光纤预制棒还包括辅助中包层,所述辅助中包层包覆于所述中包层外侧,所述辅助中包层的边界到所述芯层中心的距离为35~45μm,相对折射率△n5为-0.05%~-0.20%。
CN201811537652.3A 2018-12-15 2018-12-15 光纤预制棒及其制备方法 Active CN111320374B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811537652.3A CN111320374B (zh) 2018-12-15 2018-12-15 光纤预制棒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811537652.3A CN111320374B (zh) 2018-12-15 2018-12-15 光纤预制棒及其制备方法

Publications (2)

Publication Number Publication Date
CN111320374A true CN111320374A (zh) 2020-06-23
CN111320374B CN111320374B (zh) 2023-09-26

Family

ID=71170634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811537652.3A Active CN111320374B (zh) 2018-12-15 2018-12-15 光纤预制棒及其制备方法

Country Status (1)

Country Link
CN (1) CN111320374B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111847866A (zh) * 2020-07-14 2020-10-30 复旦大学 低损耗光纤预制棒外包层及制备设备和制备方法及光纤
CN113716862A (zh) * 2021-09-01 2021-11-30 中天科技光纤有限公司 光纤的制备方法及其装置
CN113912279A (zh) * 2020-07-10 2022-01-11 中天科技精密材料有限公司 轴向沉积掺杂装置、粉末棒的制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109065A (en) * 1998-04-22 2000-08-29 Lucent Technologies, Inc. Method of making optical waveguide devices using perchloryl fluoride to make soot
KR100518058B1 (ko) * 2002-06-29 2005-09-28 엘에스전선 주식회사 코어층 내의 수산기가 제거된 광섬유 모재의 제조방법
CN101492244A (zh) * 2008-12-29 2009-07-29 富通集团有限公司 一种制造光纤预制棒的装置和方法
CN202912848U (zh) * 2012-07-16 2013-05-01 江苏亨通光电股份有限公司 一种制造大尺寸弯曲不敏感光纤预制棒的装置
CN103224325A (zh) * 2013-04-11 2013-07-31 浙江富通光纤技术有限公司 一种光纤预制棒包层掺氟的方法
CN104402213A (zh) * 2014-10-30 2015-03-11 浙江富通光纤技术有限公司 一种纯二氧化硅松散体玻璃化掺氟方法
CN105271701A (zh) * 2015-11-16 2016-01-27 江苏通鼎光棒有限公司 一种在ovd沉积过程中保护喷灯导轨的装置及方法
CN105776843A (zh) * 2016-05-06 2016-07-20 藤仓烽火光电材料科技有限公司 制备低损耗光纤预制棒的沉积反应装置及压力调节方法
CN106007355A (zh) * 2016-05-19 2016-10-12 中天科技精密材料有限公司 一种制备纯硅芯包层掺氟的超低损耗光纤预制棒的方法及其设备
CN205803319U (zh) * 2016-05-19 2016-12-14 中天科技精密材料有限公司 一种制备纯硅芯包层掺氟的超低损耗光纤预制棒的设备
CN106904821A (zh) * 2017-02-15 2017-06-30 天津富通集团有限公司 大尺寸光纤预制棒的生产工艺及其大尺寸光纤预制棒
CN107522396A (zh) * 2017-08-23 2017-12-29 成都富通光通信技术有限公司 一种光纤及其制备方法
CN107540206A (zh) * 2017-10-13 2018-01-05 长飞光纤光缆股份有限公司 Vad制备光纤预制棒母材的装置及方法
WO2018098814A1 (zh) * 2016-12-02 2018-06-07 中天科技精密材料有限公司 光纤预制棒的制造设备及其制造方法
WO2018098810A1 (zh) * 2016-12-02 2018-06-07 中天科技精密材料有限公司 光纤预制棒的制造设备及其制造方法
CN108147653A (zh) * 2016-12-02 2018-06-12 中天科技精密材料有限公司 光纤预制棒的制造设备、制造方法及其制造系统

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109065A (en) * 1998-04-22 2000-08-29 Lucent Technologies, Inc. Method of making optical waveguide devices using perchloryl fluoride to make soot
KR100518058B1 (ko) * 2002-06-29 2005-09-28 엘에스전선 주식회사 코어층 내의 수산기가 제거된 광섬유 모재의 제조방법
CN101492244A (zh) * 2008-12-29 2009-07-29 富通集团有限公司 一种制造光纤预制棒的装置和方法
CN202912848U (zh) * 2012-07-16 2013-05-01 江苏亨通光电股份有限公司 一种制造大尺寸弯曲不敏感光纤预制棒的装置
CN103224325A (zh) * 2013-04-11 2013-07-31 浙江富通光纤技术有限公司 一种光纤预制棒包层掺氟的方法
CN104402213A (zh) * 2014-10-30 2015-03-11 浙江富通光纤技术有限公司 一种纯二氧化硅松散体玻璃化掺氟方法
CN105271701A (zh) * 2015-11-16 2016-01-27 江苏通鼎光棒有限公司 一种在ovd沉积过程中保护喷灯导轨的装置及方法
CN105776843A (zh) * 2016-05-06 2016-07-20 藤仓烽火光电材料科技有限公司 制备低损耗光纤预制棒的沉积反应装置及压力调节方法
CN106007355A (zh) * 2016-05-19 2016-10-12 中天科技精密材料有限公司 一种制备纯硅芯包层掺氟的超低损耗光纤预制棒的方法及其设备
CN205803319U (zh) * 2016-05-19 2016-12-14 中天科技精密材料有限公司 一种制备纯硅芯包层掺氟的超低损耗光纤预制棒的设备
WO2018098814A1 (zh) * 2016-12-02 2018-06-07 中天科技精密材料有限公司 光纤预制棒的制造设备及其制造方法
WO2018098810A1 (zh) * 2016-12-02 2018-06-07 中天科技精密材料有限公司 光纤预制棒的制造设备及其制造方法
CN108147653A (zh) * 2016-12-02 2018-06-12 中天科技精密材料有限公司 光纤预制棒的制造设备、制造方法及其制造系统
CN106904821A (zh) * 2017-02-15 2017-06-30 天津富通集团有限公司 大尺寸光纤预制棒的生产工艺及其大尺寸光纤预制棒
CN107522396A (zh) * 2017-08-23 2017-12-29 成都富通光通信技术有限公司 一种光纤及其制备方法
CN107540206A (zh) * 2017-10-13 2018-01-05 长飞光纤光缆股份有限公司 Vad制备光纤预制棒母材的装置及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912279A (zh) * 2020-07-10 2022-01-11 中天科技精密材料有限公司 轴向沉积掺杂装置、粉末棒的制备方法
CN113912279B (zh) * 2020-07-10 2023-03-31 中天科技精密材料有限公司 轴向沉积掺杂装置、粉末棒的制备方法
CN111847866A (zh) * 2020-07-14 2020-10-30 复旦大学 低损耗光纤预制棒外包层及制备设备和制备方法及光纤
CN113716862A (zh) * 2021-09-01 2021-11-30 中天科技光纤有限公司 光纤的制备方法及其装置
CN113716862B (zh) * 2021-09-01 2023-03-21 中天科技光纤有限公司 光纤的制备方法及其装置

Also Published As

Publication number Publication date
CN111320374B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
EP1813581B1 (en) Method for manufacturing an optical fiber preform, optical fiber preform and optical fiber
CN111320376B (zh) 光纤预制棒及其制备方法
US6434975B2 (en) Method of making an optical fiber by placing different core tablets into a cladding tube
JP5342614B2 (ja) 光ファイバ母材および光ファイバの製造方法
CN111320374B (zh) 光纤预制棒及其制备方法
CN111320373B (zh) 光纤预制棒以及制备方法
US20120304701A1 (en) Manufacturing method of optical fiber base material possessing low refractive index portion distantly-positioned from core
JP6310378B2 (ja) 光ファイバ用シリカガラス母材の製造方法
US9676658B2 (en) Method of making updoped cladding by using silicon tertrachloride as the dopant
JP2013109350A (ja) マルチモード光ファイバ
CN109839694A (zh) 一种截止波长位移单模光纤
US11577984B2 (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber
CN106371167A (zh) 一种高带宽多模光纤
JP6079114B2 (ja) マルチモード光ファイバ
JP5799903B2 (ja) シングルモード光ファイバ
CN103760634B (zh) 一种单模光纤
CN209989258U (zh) 光纤预制棒
WO2021037248A1 (zh) 光纤预制棒及其制备方法、等离子沉积设备
JP2013056787A (ja) 光ファイバ母材の製造方法
JP2012171802A (ja) 光ファイバ母材の製造方法
CN209989256U (zh) 沉积设备
JP2002047027A (ja) 光ファイバ用プリフォーム及びシングルモード光ファイバ
CN209989257U (zh) 光纤预制棒
CN104834053A (zh) 多模光纤及其制造方法
CN112441734A (zh) 光纤预制棒及其制备方法、粉末棒沉积设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant