CN111302772A - 一种3d打印陶瓷型芯的氩气气氛烧结方法 - Google Patents

一种3d打印陶瓷型芯的氩气气氛烧结方法 Download PDF

Info

Publication number
CN111302772A
CN111302772A CN202010110030.3A CN202010110030A CN111302772A CN 111302772 A CN111302772 A CN 111302772A CN 202010110030 A CN202010110030 A CN 202010110030A CN 111302772 A CN111302772 A CN 111302772A
Authority
CN
China
Prior art keywords
ceramic core
alumina
alumina powder
biscuit
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010110030.3A
Other languages
English (en)
Inventor
刘永胜
李鹤
刘岩松
曾庆丰
董宁
王晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202010110030.3A priority Critical patent/CN111302772A/zh
Publication of CN111302772A publication Critical patent/CN111302772A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明涉及一种3D打印陶瓷型芯的氩气气氛烧结方法,其中陶瓷型芯为氧化铝基陶瓷型芯,且由光固化3D打印技术成型得到。将由不同粒径的氧化铝粉混合得到的混合氧化铝粉平铺于平底坩埚中;将氧化铝基陶瓷型芯素坯置于平底坩埚中,且被混合氧化铝粉完全覆盖;氧化铝基陶瓷型芯素坯置于马弗炉中,在空气气氛中烧结,再转移至管式炉中,随后陶瓷型芯随炉冷却,即完成3D打印陶瓷型芯的烧结过程。本发明由不同粒径混合组成的氧化铝粉在一次烧结过程中起到支撑陶瓷型芯的作用,然后在氩气气氛中进行二次烧结强化,可得到无变形、无裂纹、且具有一定强度的陶瓷型芯。

Description

一种3D打印陶瓷型芯的氩气气氛烧结方法
技术领域
本发明属于增材制造技术领域,涉及一种3D打印陶瓷型芯的氩气气氛烧结方法。
背景技术
光固化3D打印氧化铝基陶瓷型芯因其成型效率高、尺寸精度高等优点,而适用于航空发动机空心涡轮叶片内腔的成型。
然而,由于光固化3D打印成型得到的氧化铝基陶瓷型芯素坯中存在大量的可挥发性成分,导致烧结过程中易产生变形等问题。(He R,Liu W,Wu Z,et al.Fabrication ofcomplex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3Dprinting method[J].Ceramics International,2018,44(3):3412-3416.)。
中国科学院金属研究所(中国专利,专利号CN105314987A)提出了一种烧结温度随陶瓷型芯位置变化而改变的烧结工艺,减少了陶瓷型断裂的现象,且提高陶瓷型芯的合格率。东方电气集团东方汽轮机有限公司(中国专利,专利号CN207540372U)设计了一种陶瓷型芯烧结用匣钵,使型芯生坯沿径向均匀放置,使得陶瓷型芯受热均匀,提高了陶瓷型芯的质量。
然而上述工艺、方法仍存在操作难度大、适用性低等问题。
中国专利,专利号CN 110228995A提出了一种光固化3D打印氧化铝陶瓷素坯的真空烧结方法,通过使用真空烧结的方法,降低了氧化铝陶瓷的烧结温度,得到了无开裂、变形的陶瓷。但由于陶瓷型芯结构的复杂性,使得实现真空烧结设备非常的昂贵。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种3D打印陶瓷型芯的氩气气氛烧结方法,适用于光固化3D打印氧化铝基陶瓷型芯素坯的烧结过程。
技术方案
一种3D打印陶瓷型芯的氩气气氛烧结方法,其特征在于步骤如下:
步骤1:将氧化铝粉混合得到的混合氧化铝粉平铺于平底坩埚中;
步骤2:将氧化铝基陶瓷型芯素坯置于平底坩埚中,且被混合氧化铝粉完全覆盖;所述氧化铝基陶瓷型芯素坯为光固化3D打印的成型;
步骤3:氧化铝基陶瓷型芯素坯置于马弗炉中,在空气气氛中以0.01~10℃/分钟的速率升至250~650℃,并保温0.5~5小时;然后再以0.05~10℃/分钟的速率升至900~1250℃,并保温0.5~5小时;
步骤4:再转移至管式炉中,在氩气气氛中以0.01~10℃/分钟的速率升至1300~1700℃,并保温0.5~5小时;
步骤5:以0.1~10℃/分钟的速率降至400~800℃,随后陶瓷型芯随炉冷却,即完成3D打印陶瓷型芯的烧结过程。
所述氧化铝粉为不同粒径,粒径为10~40nm的氧化铝粉所占质量百分含量不低于10%,粒径为0.1~1μm的氧化铝粉所占质量百分含量不低于15%,粒径为1~5mm的氧化铝粉所占质量百分含量不低于20%。
所述氧化铝基陶瓷型芯素坯中无机粉体质量百分含量不低于45%。
有益效果
本发明提出的一种3D打印陶瓷型芯的氩气气氛烧结方法,其中陶瓷型芯为氧化铝基陶瓷型芯,且由光固化3D打印技术成型得到。将由不同粒径的氧化铝粉混合得到的混合氧化铝粉平铺于平底坩埚中;将氧化铝基陶瓷型芯素坯置于平底坩埚中,且被混合氧化铝粉完全覆盖;氧化铝基陶瓷型芯素坯置于马弗炉中,在空气气氛中烧结,再转移至管式炉中,随后陶瓷型芯随炉冷却,即完成3D打印陶瓷型芯的烧结过程。本发明由不同粒径混合组成的氧化铝粉在一次烧结过程中起到支撑陶瓷型芯的作用,然后在氩气气氛中进行二次烧结强化,可得到无变形、无裂纹、且具有一定强度的陶瓷型芯。
本发明的有益效果有以下几点:
1、本发明由不同粒径混合组成的氧化铝粉在一次烧结过程中起到支撑陶瓷型芯的作用,然后在氩气气氛中进行二次烧结强化,可得到无变形、无裂纹、且具有一定强度的陶瓷型芯。
2、本发明通过将氧化铝基陶瓷型芯在空气气氛中以0.01~10℃/分钟的速率升至250~650℃,并保温0.5~5小时;然后再以0.05~10℃/分钟的速率升至900~1250℃,并保温0.5~5小时,完成陶瓷型芯的烧结过程。
3、通过本发明的光固化3D打印陶瓷的烧结,可以得到表面质量优良的陶瓷成品,为光固化3D打印氧化铝陶瓷技术的应用提供了基础。
4、本发明通过使用马弗炉及管式炉完成陶瓷型芯的烧结过程,设备及实验操作简单,容易实现。
附图说明
图1是3D打印陶瓷型芯的氩气烧结方法流程图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
下面对本发明的光固化3D打印氧化铝基陶瓷型芯素坯的烧结方法进行详细描述。
基于光固化3D打印氧化铝基陶瓷型芯素坯烧结技术的研究现状,减少陶瓷型芯的变形现象,使得烧结后的陶瓷型芯无变形是此技术应用的关键问题。
本发明将由不同粒径的氧化铝粉混合得到的混合氧化铝粉平铺于平底坩埚中。
将氧化铝基陶瓷型芯素坯置于平底坩埚中,且混合氧化铝粉完全覆盖陶瓷型芯素坯。
氧化铝基陶瓷型芯素坯置于马弗炉中,在空气气氛中以0.01~10℃/分钟的速率升至250~650℃,并保温0.5~5小时;然后再以0.05~10℃/分钟的速率升至900~1250℃,并保温0.5~5小时。
将样品转移至管式炉中,在氩气气氛中以0.01~10℃/分钟的速率升至1300~1700℃,并保温0.5~5小时。
样品以0.1~10℃/分钟的速率降至400~800℃,随后陶瓷型芯随炉冷却,即完成光固化3D打印氧化铝基陶瓷型芯素坯的烧结过程。
所述其中氧化铝基陶瓷型芯素坯的成型方法为光固化3D打印技术。
所述氧化铝基陶瓷型芯素坯中无机粉体质量百分含量不低于45%。
所述不同粒径的氧化铝粉中,粒径为10~40nm的氧化铝粉所占质量百分含量不低于10%,粒径为0.1~1μm的氧化铝粉所占质量百分含量不低于15%,粒径为1~5mm的氧化铝粉所占质量百分含量不低于20%。
实施例1
将由质量百分含量为15%的粒径为20nm的氧化铝粉,质量百分含量为25%的粒径为0.2μm的氧化铝粉,质量百分含量为60%的粒径为2mm的氧化铝粉混合得到的混合氧化铝粉平铺于平底坩埚中;将氧化铝基陶瓷型芯素坯置于平底坩埚中,且混合氧化铝粉完全覆盖陶瓷型芯素坯;氧化铝基陶瓷型芯素坯置于马弗炉中,在空气气氛中以5℃/分钟的速率升至550℃,并保温3小时;然后再以5℃/分钟的速率升至1200℃,并保温3小时;将样品转移至管式炉中,在氩气气氛中以5℃/分钟的速率升至1500℃,并保温3小时;然后以5℃/分钟的速率降至500℃,随后陶瓷型芯随炉冷却,即完成光固化3D打印氧化铝基陶瓷型芯素坯的烧结过程。
实施例2
将由质量百分含量为30%的粒径为20nm的氧化铝粉,质量百分含量为30%的粒径为0.2μm的氧化铝粉,质量百分含量为40%的粒径为2mm的氧化铝粉混合得到的混合氧化铝粉平铺于平底坩埚中;将氧化铝基陶瓷型芯素坯置于平底坩埚中,且混合氧化铝粉完全覆盖陶瓷型芯素坯;氧化铝基陶瓷型芯素坯置于马弗炉中,在空气气氛中以2℃/分钟的速率升至600℃,并保温2小时;然后再以4℃/分钟的速率升至1150℃,并保温2小时;将样品转移至管式炉中,在氩气气氛中以8℃/分钟的速率升至1500℃,并保温2小时;然后以8℃/分钟的速率降至500℃,随后陶瓷型芯随炉冷却,即完成光固化3D打印氧化铝基陶瓷型芯素坯的烧结过程。
实施例3
将由质量百分含量为20%的粒径为20nm的氧化铝粉,质量百分含量为50%的粒径为0.2μm的氧化铝粉,质量百分含量为30%的粒径为2mm的氧化铝粉混合得到的混合氧化铝粉平铺于平底坩埚中;将氧化铝基陶瓷型芯素坯置于平底坩埚中,且混合氧化铝粉完全覆盖陶瓷型芯素坯;氧化铝基陶瓷型芯素坯置于马弗炉中,在空气气氛中以0.5℃/分钟的速率升至500℃,并保温5小时;然后再以2℃/分钟的速率升至1100℃,并保温5小时;将样品转移至管式炉中,在氩气气氛中以2℃/分钟的速率升至1600℃,并保温5小时;然后以2℃/分钟的速率降至500℃,随后陶瓷型芯随炉冷却,即完成光固化3D打印氧化铝基陶瓷型芯素坯的烧结过程。

Claims (3)

1.一种3D打印陶瓷型芯的氩气气氛烧结方法,其特征在于步骤如下:
步骤1:将氧化铝粉混合得到的混合氧化铝粉平铺于平底坩埚中;
步骤2:将氧化铝基陶瓷型芯素坯置于平底坩埚中,且被混合氧化铝粉完全覆盖;所述氧化铝基陶瓷型芯素坯为光固化3D打印的成型;
步骤3:氧化铝基陶瓷型芯素坯置于马弗炉中,在空气气氛中以0.01~10℃/分钟的速率升至250~650℃,并保温0.5~5小时;然后再以0.05~10℃/分钟的速率升至900~1250℃,并保温0.5~5小时;
步骤4:再转移至管式炉中,在氩气气氛中以0.01~10℃/分钟的速率升至1300~1700℃,并保温0.5~5小时;
步骤5:以0.1~10℃/分钟的速率降至400~800℃,随后陶瓷型芯随炉冷却,即完成3D打印陶瓷型芯的烧结过程。
2.根据权利要求1所述3D打印陶瓷型芯的氩气气氛烧结方法,其特征在于:所述氧化铝粉为不同粒径,粒径为10~40nm的氧化铝粉所占质量百分含量不低于10%,粒径为0.1~1μm的氧化铝粉所占质量百分含量不低于15%,粒径为1~5mm的氧化铝粉所占质量百分含量不低于20%。
3.根据权利要求1所述3D打印陶瓷型芯的氩气气氛烧结方法,其特征在于:所述氧化铝基陶瓷型芯素坯中无机粉体质量百分含量不低于45%。
CN202010110030.3A 2020-02-23 2020-02-23 一种3d打印陶瓷型芯的氩气气氛烧结方法 Pending CN111302772A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010110030.3A CN111302772A (zh) 2020-02-23 2020-02-23 一种3d打印陶瓷型芯的氩气气氛烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010110030.3A CN111302772A (zh) 2020-02-23 2020-02-23 一种3d打印陶瓷型芯的氩气气氛烧结方法

Publications (1)

Publication Number Publication Date
CN111302772A true CN111302772A (zh) 2020-06-19

Family

ID=71146024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010110030.3A Pending CN111302772A (zh) 2020-02-23 2020-02-23 一种3d打印陶瓷型芯的氩气气氛烧结方法

Country Status (1)

Country Link
CN (1) CN111302772A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500143A (zh) * 2020-11-25 2021-03-16 西安国宏中天增材技术有限公司 一种硅基陶瓷型芯浆料及其应用
CN112537948A (zh) * 2020-12-19 2021-03-23 西北工业大学 一种氧化铝基陶瓷型芯的光固化3d打印制造方法
CN114853450A (zh) * 2022-05-23 2022-08-05 西北工业大学 一种光固化3d打印氧化铝基陶瓷型芯及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104043770A (zh) * 2014-06-10 2014-09-17 中国科学院金属研究所 一种烧结陶瓷型芯用填料粉
CN106316369A (zh) * 2016-08-10 2017-01-11 中国科学院上海硅酸盐研究所 一种3d打印陶瓷坯体的排胶和烧结工艺
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
WO2018196965A1 (en) * 2017-04-26 2018-11-01 Università Degli Studi Di Pavia Manufacture of ceramic objects by 3d-printing
CN110228995A (zh) * 2019-06-24 2019-09-13 西北工业大学 一种光固化3d打印氧化铝陶瓷素坯的真空烧结方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104043770A (zh) * 2014-06-10 2014-09-17 中国科学院金属研究所 一种烧结陶瓷型芯用填料粉
CN106316369A (zh) * 2016-08-10 2017-01-11 中国科学院上海硅酸盐研究所 一种3d打印陶瓷坯体的排胶和烧结工艺
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
WO2018196965A1 (en) * 2017-04-26 2018-11-01 Università Degli Studi Di Pavia Manufacture of ceramic objects by 3d-printing
CN110228995A (zh) * 2019-06-24 2019-09-13 西北工业大学 一种光固化3d打印氧化铝陶瓷素坯的真空烧结方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
易歆雨等: "95氧化铝陶瓷埋粉热脱脂过程粘粉的控制", 《陶瓷学报》 *
毕见强等: "《特种陶瓷工艺与性能》", 31 March 2008, 哈尔滨工业大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500143A (zh) * 2020-11-25 2021-03-16 西安国宏中天增材技术有限公司 一种硅基陶瓷型芯浆料及其应用
CN112537948A (zh) * 2020-12-19 2021-03-23 西北工业大学 一种氧化铝基陶瓷型芯的光固化3d打印制造方法
CN114853450A (zh) * 2022-05-23 2022-08-05 西北工业大学 一种光固化3d打印氧化铝基陶瓷型芯及其制备方法

Similar Documents

Publication Publication Date Title
CN111302772A (zh) 一种3d打印陶瓷型芯的氩气气氛烧结方法
KR102249919B1 (ko) 열팽창 계수 조절이 가능한 실리카계 세라믹 코어의 제조방법
CN107188567B (zh) 一种高热导率氮化铝陶瓷的制备方法
CN112500143B (zh) 一种硅基陶瓷型芯浆料及其应用
CN108726850A (zh) 压力控制玻璃熔炼装置及方法
CN111302771A (zh) 一种3d打印陶瓷型芯素坯的两步脱脂方法
CN106316369B (zh) 一种3d打印陶瓷坯体的排胶和烧结工艺
CN113754435B (zh) 一种Y2O3-MgO红外透明陶瓷的制备方法
CN104384452A (zh) 一种薄壁硅基陶瓷型芯制备工艺
CN109734430A (zh) 一种适用于双层壁叶片的多孔硅基陶瓷型芯及其制备方法
CN101947648B (zh) 锆及锆合金大型铸件的生产方法
CN112390633A (zh) 一种ZrB2纳米粉体增强氧化硅基陶瓷型芯及其制备方法
CN102557595B (zh) 激光立体成形氧化铝基共晶自生复合陶瓷的方法
CN108889953A (zh) 一种大孔隙率多孔钨管的制备方法
CN102531553B (zh) 一种制备氧化铝基共晶陶瓷的方法
CN110041056A (zh) 一种氧化铝陶瓷发热管及其制备方法
CN116283254A (zh) 一种耐高温硅基陶瓷型芯及其制备方法和应用
CN110228995A (zh) 一种光固化3d打印氧化铝陶瓷素坯的真空烧结方法
CN107266087B (zh) 一种节能长寿命铁水溜槽及其制造方法
CN114907133A (zh) 一种硅基陶瓷型芯材料、制备方法以及硅基陶瓷型芯
CN109550961B (zh) 一种薄壁管件功能梯度材料的离心烧结方法
CN114538961B (zh) 一种C基材料表面SiC/Y2O3涂层裂纹的修复方法
CN114410994B (zh) 基于CaO-MgO-Al2O3耐火材料熔炼镍基高温合金的方法
CN117550610B (zh) 一种高熵二硅化物及其制备方法
CN115304406B (zh) 一种银合金中频熔炼用石墨坩埚的加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200619

WD01 Invention patent application deemed withdrawn after publication