CN111298829A - 一种甲烷无氧制芳烃反应中抗积碳性能强的催化剂制备方法及应用 - Google Patents

一种甲烷无氧制芳烃反应中抗积碳性能强的催化剂制备方法及应用 Download PDF

Info

Publication number
CN111298829A
CN111298829A CN202010260137.6A CN202010260137A CN111298829A CN 111298829 A CN111298829 A CN 111298829A CN 202010260137 A CN202010260137 A CN 202010260137A CN 111298829 A CN111298829 A CN 111298829A
Authority
CN
China
Prior art keywords
molecular sieve
catalyst
methane
reaction
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010260137.6A
Other languages
English (en)
Inventor
张维萍
王馨瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202010260137.6A priority Critical patent/CN111298829A/zh
Publication of CN111298829A publication Critical patent/CN111298829A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种甲烷无氧制芳烃反应中抗积碳性能强的催化剂制备方法及应用。本发明使用一定浓度的有机碱改性分子筛,按照一定质量比例将金属盐溶液与改性分子筛通过浸渍法得到了改性金属‑分子筛复合催化剂。并将该催化剂应用于少量甲醇存在下的甲烷无氧芳构化反应生产芳烃,大大降低了催化剂上积碳含量,提高了催化剂稳定性。该催化剂制备原料便宜易得,制备方法简单,反应操作流程短,具有很好的应用前景。

Description

一种甲烷无氧制芳烃反应中抗积碳性能强的催化剂制备方法 及应用
技术领域
本发明涉及无氧条件下的甲烷转化技术领域,具体地说就是一种在甲烷脱氢制芳烃反应引入少量甲醇降低积碳性能的改性金属-分子筛复合型催化剂制备方法和应用。
背景技术
芳烃是重要的化工原料,广泛用于工业生产和生活应用,主要通过石油的催化重整和裂解制得,这导致了石油过度开采和资源急剧枯竭。甲烷是天然气和页岩气的主要成分,与石油资源相比,储量丰富且价格相对便宜,但是甲烷的催化转化非常困难,其直接芳构化转化成苯系物具有良好的应用前景和研究价值。
甲烷直接转化主要包括甲烷氧化偶联制乙烯、氧化制甲醛、甲醇及甲烷芳构化等。甲烷芳构化在有氧和无氧条件下都可以发生,从热力学角度来说,有氧条件下更容易发生,但有氧条件使甲烷过度氧化生成CO2和H2O,导致芳烃选择性较差。而无氧芳构化原子经济性高,芳烃选择性高,具有明显优势,因此甲烷无氧芳构化得到广泛关注与研究。最早在1993年,Wang等人(Catal.Lett.,1993,21:35-41)以Mo/HZSM-5为催化剂进行甲烷无氧芳构化研究,在700℃时,甲烷转化率为7.2%,苯的选择性高达到100%,但反应稳定性不高,很容易失活。另有研究(《催化学报》,2001,23:24-28)报道Mo/HZSM-5在700℃、1500h-1条件下,甲烷转化率为10%,苯的选择性为58%,但积碳量高达16.5%。通过金属助剂Zn、Y等对其改性,能提高甲烷转化率,但积碳量仍然高达15%左右。Shu等人(Catal.Lett.,2000,70:67–73)对比了Mo/MCM-22和Mo/HZSM-5催化剂对甲烷无氧芳构化反应的催化性能,两种催化剂上甲烷转化率大概在10%左右,对苯的选择性分别为80%和57.8%,但是积碳选择性分别高达12%和18%。2010年的一篇中国专利(CN101618337A)报导了多级孔结构的Mo/HZSM-5催化剂,反应24小时后甲烷转化率由12%降至9%,催化剂抗积碳性能不高,且并未明确指出催化剂的积碳量。
为了进一步改善甲烷无氧制芳烃反应性能,降低其积碳量,有研究将烷基化反应和芳构化反应耦合,Liu等人(ACS Catal.,2016,6:5366-5370)评价了Mo/HZSM-5催化甲烷甲醇共芳构化反应的性能,发现产物偏向于生成甲苯和二甲苯等高碳芳烃,且甲烷转化率高达26.4%,虽然稳定性较单纯甲烷无氧芳构化有所提高,但是积碳量仍在14%以上。同一个研究组在2017年一篇中国专利(CN106540742A)中使用碱溶液处理Mo-Co-Mg/HZSM-5催化剂,可获得高达35.2%的总芳烃收率,但积碳选择性达到5.9%,抗积碳性能改善不明显。由此可见Mo/HZSM-5催化剂虽然对甲烷甲醇共芳构化反应具有较好的反应性能,但是反应产物很容易形成稠环芳烃,不易从催化剂孔道移出而形成大量的积碳,降低了催化剂的使用寿命,不利于提高反应中碳原子的利用率。因此,开发一种抗积碳能力强的金属-分子筛催化剂对于提升甲烷无氧芳构化反应性能至关重要。
发明内容
本发明涉及一种制备简单的改性金属-分子筛复合型催化剂的制备方法及其在甲烷甲醇共无氧芳构化制备芳烃反应中的应用。
本发明提供一种在甲烷无氧(尤其是甲烷甲醇共无氧芳构化)制芳烃反应中抗积碳性能强的改性金属-分子筛复合型催化剂的制备方法,利用有机碱溶液对分子筛进行改性,得到改性分子筛,再利用金属盐溶液将金属盐溶液中的金属作为改性金属(金属活性组分)负载到改性分子筛上,得到改性金属-分子筛复合型催化剂,可以降低甲烷无氧芳构化反应抗积碳性能;
其中,所述的有机碱溶液的浓度为0.01~1M,优选为0.05~0.8M;所述的改性金属-分子筛复合型催化剂中金属负载质量分数为1~10%。所述金属盐为前驱体。
根据上文技术方案,作为优选,所述的催化剂为改性金属-分子筛复合型催化剂,所述的有机碱溶液中的有机碱为四甲基氢氧化铵(TMAOH)、四乙基氢氧化铵(TEAOH)、四丙基氢氧化铵(TPAOH)和四丁基氢氧化铵(TBAOH)等。
根据上文技术方案,作为优选,所述的催化剂为改性金属-分子筛复合型催化剂,所述的分子筛结构为MFI、BEA、FER、MWW等型分子筛,所述分子筛的Si/Al比为10~100。
根据上文技术方案,作为优选,所述的催化剂为改性金属-分子筛复合型催化剂,所述的金属盐溶液中的金属为钴、钼或钨,所述的金属盐前驱体为硝酸钴、氯化钴、钼酸钠、钼酸铵、钨酸钠、钨酸铵等。
根据上文技术方案,作为优选,所述的催化剂为改性金属-分子筛复合型催化剂,所述催化剂分子筛制备过程包括一个焙烧过程,焙烧温度为400~600℃,时间为2~8h,压力为0.1~1MPa。
根据上文技术方案,作为优选,所述的催化剂为改性金属-分子筛复合型催化剂,所述的催化剂可通过沉积沉淀法、浸渍法、溶胶凝胶法、机械混合法等制备。
根据上文技术方案,作为优选,所述的催化剂为改性金属-分子筛复合型催化剂,所述的催化剂的制备方法,包括如下步骤:
(1)有机碱改性分子筛的制备:使用0.01~1M有机碱溶液对Si/Al=10~100的分子筛在100~200℃处理24~80h,处理后的样品在80~150℃下干燥5~12h,之后在450~650℃焙烧4~8h;
(2)改性金属-分子筛复合型催化剂的制备:将步骤(1)所得样品作为载体,浸渍于金属盐溶液中,浸渍时间0.5~5h,然后在80~150℃下干燥4~8h,之后在450~650℃下焙烧4~8h,得到改性金属-分子筛复合型催化剂;
其中,所述金属盐溶液为金属钴、钼或钨的盐溶液,所述改性金属-分子筛复合型催化剂中所含金属质量分数为1~10%。
本发明还涉及保护利用上文所述方法制备的改性金属-分子筛复合型催化剂在甲烷无氧芳构化反应中的应用,尤其是在甲烷甲醇共无氧芳构化反应中的应用,所述甲烷甲醇共无氧芳构化反应为少量甲醇存在下甲烷无氧芳构化反应。
根据上文技术方案,作为优选,所述改性金属-分子筛复合型催化剂在甲烷无氧芳构化反应中的应用,尤其是在甲烷甲醇共无氧芳构化反应中的应用,该催化剂包括预处理活化过程。
根据上文技术方案,作为优选,所述改性金属-分子筛复合型催化剂预处理活化过程中,预处理活化气氛为甲烷,流速为10~30mL/min,预处理活化温度为400~750℃,程序升温速率为1~10℃/min,预处理活化时间为0.5~2h。
根据上文技术方案,作为优选,所述改性金属-分子筛复合型催化剂在甲烷无氧芳构化反应中的应用,尤其是在甲烷甲醇共无氧芳构化反应中的应用,所述的反应温度为450~850℃,优选为600~750℃;反应压力为0.1~5MPa,优选为0.1~1MPa;反应体积空速为1000~5000h-1,优选为1500~3000h-1
根据上文技术方案,作为优选,所述改性金属-分子筛复合型催化剂在甲烷无氧芳构化反应中的应用,尤其是在甲烷甲醇共无氧芳构化反应中的应用,甲烷与气态甲醇摩尔比为100:1~10:1,优选为50:1~10:1,更优选为30:1~10:1。
根据上文技术方案,作为优选,所述改性金属-分子筛复合型催化剂在甲烷无氧芳构化反应中的应用,尤其是在甲烷甲醇共无氧芳构化反应中的应用,甲烷与气态甲醇同时进入反应器,甲烷、甲醇与催化剂的用量为(10~50mol):1mol:(0.05~1g),优选为(10~30mol):1mol:(0.2~0.5g)。
本发明催化剂的应用条件是:反应器中装填催化剂,所述催化剂的用量为0.05~1g,优选为0.2~0.5g;使用10~30mL/min的甲烷气体对催化剂进行预处理活化,活化温度为400~750℃,升温速率为1~10℃/min,活化时间为0.5~2h。反应物甲烷与气态甲醇摩尔比为100:1~10:1,优选为50:1~10:1,更优选为30:1~10:1;反应温度为450~850℃,优选为600~750℃;反应压力为0.1~5MPa,优选为0.1~1MPa。反应体积空速为1000~5000h-1,优选为1500~3000h-1
本发明使用一定浓度的有机碱改性分子筛,按照一定质量比例将金属盐溶液与改性分子筛通过浸渍法得到了改性金属-分子筛复合催化剂。并将改性金属-分子筛复合催化剂应用在少量甲醇存在下的甲烷无氧芳构化反应生产芳烃,通过引入少量甲醇降低催化剂的积碳性能。
本发明的优点如下:
从催化剂制备方面:分子筛和金属盐等原料便宜易得,催化剂制备方法简单,反应操作流程短,易于操作且工业应用前景较好。
从催化芳构化反应方面:该改性金属-分子筛复合型催化剂可将甲烷在无氧条件下直接转化为芳烃,芳烃选择性高,少量甲醇的引入使积碳含量大大降低,并提高了催化剂的稳定性和碳原子利用率。
附图说明
图1是不同浓度TPAOH改性的HZSM-5分子筛及其负载金属Mo后的XRD图。
图2是改性前后Mo/HZSM-5催化剂对甲烷甲醇共无氧芳构化反应性能的影响。
图3是改性前后Mo/HZSM-5催化剂反应后的TG图。
具体实施方式
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例
如下面通过实施例对于整个过程做一详细的说明,但是本发明的权利要求范围不受这些实施例的限制。同时,实施例只是给出了实现此目的的部分条件,但并不意味着必须满足这些条件才可以达到此目的。
1.不同浓度TPAOH改性HZSM-5分子筛的制备
对比例1
取5gHZSM-5分子筛(南开大学催化剂厂,MFI结构,Si/Al=35),550℃焙烧5h,得到焙烧后的HZSM-5分子筛,记为HZSM-5-Cal,其XRD谱如图1所示,表明焙烧后的HZSM-5分子筛仍保留其特征衍射峰。
实施例1
取5g HZSM-5分子筛(南开大学催化剂厂,MFI结构,Si/Al=35)溶于0.1mol/LTPAOH溶液中搅拌60分钟后,在150℃静置80h。将所得样品离心,用去离子水洗涤,110℃烘干8h,550℃焙烧5h,得到0.1M TPA-HZ催化剂,其XRD谱如图1所示,表明TPAOH改性后的HZSM-5分子筛仍保留其特征衍射峰。
实施例2
取5gHZSM-5分子筛(南开大学催化剂厂,MFI结构,Si/Al=35)溶于0.3mol/LTPAOH溶液中搅拌60分钟后,在150℃静置80h。将所得样品离心,用去离子水洗涤,110℃烘干8h,550℃焙烧5h,得到0.3M TPA-HZ催化剂,其XRD谱如图1所示,表明TPAOH改性后的HZSM-5分子筛仍保留其特征衍射峰。
2.负载Mo的改性HZSM-5分子筛催化剂的制备
对比例2
取0.3g钼酸铵,溶于2mL去离子水,得到钼酸铵溶液浸渍于上述对比例1所制得的HZSM-5分子筛上,充分搅拌30分钟,110℃烘干8h,放入马弗炉中550℃焙烧5h。即得到6Mo/HZ催化剂,其中6Mo代表由ICP测得的金属Mo质量分数为6.0wt%,以下同。其XRD谱图如图1所示,表明负载金属Mo的HZSM-5分子筛仍保留其特征衍射峰。
实施例3
取0.3g钼酸铵,溶于2mL去离子水,得到钼酸铵溶液浸渍于上述实施例1所制得的0.1M TPA-HZ分子筛上,充分搅拌30分钟,110℃烘干8h,放入马弗炉中550℃焙烧5h。即得到6Mo/0.1M TPA-HZ催化剂。其XRD谱图如图1所示,表明负载金属Mo的改性HZSM-5分子筛仍保留其特征衍射峰。
实施例4
取0.3g钼酸铵,溶于2mL去离子水,得到钼酸铵溶液浸渍于上述实施例2所制得的0.3M TPAOH-HZSM-5分子筛上,充分搅拌30分钟,110℃烘干8h,放入马弗炉中550℃焙烧5h。即得到6Mo/0.3M TPA-HZ催化剂。其XRD谱图如图1所示,表明负载金属Mo的改性HZSM-5分子筛仍保留其特征衍射峰。
3.负载Mo的改性HZSM-5分子筛催化剂在甲烷甲醇共无氧芳构化反应中的应用
所有反应实施例均在连续流动固定床反应装置中进行,该装置配备气体质量流量计和在线产物分析色谱。在线产物分析使用Shimadzu GC-2014C型气相色谱,采用一个十通阀取样来实现全产物分析,使用FID检测器对烃类和含氧化合物进行分析。
对比例3
对比例2中得到的催化剂6Mo/HZ的甲烷无氧芳构化评价实验在连续流动固定床反应装置中进行,具体反应条件如下:催化剂用量为0.6g,在20mL/min氮气气氛中以10℃/min升温至700℃后,改通入甲烷气体活化30min。活化完成后将其应用在甲烷无氧芳构化反应中。反应温度为700℃,反应压力为0.1MPa,甲烷体积空速为2000h-1。反应结果如图2所示。
实施例5
对比例2中得到的催化剂6Mo/HZ的甲烷甲醇共无氧芳构化评价实验在连续流动固定床反应装置中进行,具体反应条件如下:催化剂用量为0.6g,在20mL/min氮气气氛中以10℃/min升温至700℃后,改通入甲烷气体活化30min。活化完成后将其应用在甲烷甲醇共无氧芳构化反应中。反应温度为700℃,反应压力为0.1MPa,甲烷体积空速为2000h-1,反应气为摩尔比为20:1的甲烷与甲醇混合气。反应结果如图2所示。
实施例6
实施例3中得到的催化剂6Mo/0.1M TPA-HZ的催化评价实验在连续流动固定床反应装置中进行,具体反应条件如下:催化剂用量为0.6g,在20ml/min氮气气氛中以10℃/min升温至700℃后,改通入甲烷气体活化30min。活化完成后将其应用在甲烷甲醇共无氧芳构化反应中。反应温度为700℃,反应压力为0.1MPa,甲烷体积空速为2000h-1,反应气为摩尔比为20:1的甲烷与甲醇混合气。反应结果如图2所示。
实施例7
实施例4中得到的催化剂6Mo/0.3M TPA-HZ的催化评价实验在连续流动固定床反应装置中进行,具体反应条件如下:催化剂用量为0.6g,在20ml/min氮气气氛中以10℃/min升温至700℃后,改通入甲烷气体活化30min。活化完成后将其应用在甲烷甲醇共芳构化反应中。反应温度为700℃,反应压力为0.1MPa,甲烷体积空速为2000h-1,反应气为摩尔比为20:1的甲烷与甲醇混合气。反应结果如图2所示。
4.反应后催化剂的积碳分析
对比例4
取0.1g对比例3中反应后催化剂进行热重测试,具体条件如下:在30mL/min的空气氛围中升温至700℃,升温速率为10℃/min,记录催化剂重量随温度的变化,即6Mo/HZ催化剂在甲烷无氧芳构化反应后的积碳总重量。记为6Mo/HZ(CH4)。测试结果如图3所示。
实施例8
取0.1g实施例5中反应后催化剂进行热重测试,具体条件如下:在30mL/min的空气氛围中升温至700℃,升温速率为10℃/min,记录催化剂重量随温度的变化,即6Mo/HZ催化剂在甲烷甲醇共无氧芳构化反应后的积碳总重量。记为6Mo/HZ(Cofeed)。测试结果如图3所示。
实施例9
取0.1g实施例6中反应后催化剂进行热重测试,具体条件如下:在30mL/min的空气氛围中升温至700℃,升温速率为10℃/min,记录催化剂重量随温度的变化,即6Mo/0.1MTPA-HZ催化剂在甲烷甲醇共无氧芳构化反应后的积碳总重量。记为6Mo/0.1M TPA-HZ(Cofeed)。测试结果如图3所示。
实施例10
取0.1g实施例7中反应后催化剂进行热重测试,具体条件如下:在30mL/min的空气氛围中升温至700℃,升温速率为10℃/min,记录催化剂重量随温度的变化,即6Mo/0.3MTPA-HZ催化剂在甲烷甲醇共无氧芳构化反应后的积碳总重量。记为6Mo/0.3M TPA-HZ(Cofeed)。测试结果如图3所示。
由图2反应结果可知,以6Mo/HZ为催化剂,反应中通入少量甲醇后,甲烷的转化率从4%提高至10%左右,苯的选择性稳定在70%~80%左右,且C7-C9高碳芳烃的选择性有所提高,结合图3的TG结果分析,积碳量由15%显著下降到5%左右。TPAOH处理的催化剂在反应2h后苯的选择性基本稳定在60%左右,C7-C9高碳芳烃的选择性可进一步提高,TG结果分析发现0.1M TPAOH处理的催化剂积碳量可最大下降至2%左右,这大大提高了催化剂稳定性,有效提高了碳原子的利用率。

Claims (10)

1.一种用于甲烷无氧制芳烃反应的改性金属-分子筛复合型催化剂的制备方法,其特征在于,先用有机碱溶液处理分子筛,得到改性分子筛,再利用金属盐为前驱体将金属活性组分负载至改性分子筛上,得到改性金属-分子筛复合型催化剂;
其中,所述有机碱溶液的浓度为0.01~1M,所述的改性金属-分子筛复合型催化剂中金属负载质量分数为1~10%。
2.如权利要求1所述的制备方法,其特征在于,所述的分子筛为BEA、MFI、FER或MWW,所述分子筛的Si/Al比为10~100。
3.如权利要求1所述的制备方法,其特征在于,所述的有机碱溶液为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵或四丁基氢氧化铵;所述的金属盐中的金属为钴、钼或钨。
4.如权利要求1所述的制备方法,其特征在于,所述的改性金属-分子筛复合型催化剂通过机械混合法、浸渍法、沉积沉淀法或溶胶凝胶法制备。
5.如权利要求1所述的制备方法,其特征在于,所述的催化剂制备包括焙烧过程,焙烧温度为400~600℃,时间为2~8h,压力为0.1~1MPa。
6.如权利要求1所述的制备方法,其特征在于包括以下步骤:
(1)有机碱改性分子筛的制备:使用0.01~1M的有机碱溶液对分子筛在100~200℃处理24~80h,处理后的样品在80~150℃下干燥5~12h,之后在450~650℃焙烧4~8h;
(2)改性金属-分子筛复合型催化剂的制备:将步骤(1)所得样品浸渍于金属盐溶液盐溶液中,浸渍0.5~5h,在80~150℃下干燥4~8h,在450~650℃焙烧4~8h,得到改性金属-分子筛复合型催化剂
其中,所述金属盐溶液为金属钴、钼或钨的盐溶液,所述改性金属-分子筛复合型催化剂中所含金属质量分数为1~10%。
7.如权利要求1所述的改性金属-分子筛复合型催化剂在甲烷无氧芳构化反应中的应用。
8.如权利要求7所述的应用,其特征在于,用10~30mL/min的甲烷对催化剂进行预处理活化,活化温度为400~750℃,升温速率为1~10℃/min,活化时间为0.5~2h。
9.如权利要求7所述的应用,其特征在于,甲烷与气态甲醇同时通入反应器中,甲烷与气态甲醇的摩尔比为100:1~10:1。
10.如权利要求7所述的应用,其特征在于,反应温度为450~850℃,反应压力为0.1~5MPa,反应体积空速为1000~5000h-1
CN202010260137.6A 2020-04-03 2020-04-03 一种甲烷无氧制芳烃反应中抗积碳性能强的催化剂制备方法及应用 Pending CN111298829A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010260137.6A CN111298829A (zh) 2020-04-03 2020-04-03 一种甲烷无氧制芳烃反应中抗积碳性能强的催化剂制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010260137.6A CN111298829A (zh) 2020-04-03 2020-04-03 一种甲烷无氧制芳烃反应中抗积碳性能强的催化剂制备方法及应用

Publications (1)

Publication Number Publication Date
CN111298829A true CN111298829A (zh) 2020-06-19

Family

ID=71155471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010260137.6A Pending CN111298829A (zh) 2020-04-03 2020-04-03 一种甲烷无氧制芳烃反应中抗积碳性能强的催化剂制备方法及应用

Country Status (1)

Country Link
CN (1) CN111298829A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871448A (zh) * 2020-08-03 2020-11-03 西北大学 一种用于提高甲烷无氧芳构化反应性能的催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481936A (zh) * 2002-09-11 2004-03-17 中国科学院大连化学物理研究所 一种用于甲烷无氧芳构化反应的催化剂及制法和应用
CN1616150A (zh) * 2003-11-10 2005-05-18 中国科学院大连化学物理研究所 一种甲烷无氧芳构化催化剂及制备方法和用途
CN102247887A (zh) * 2011-05-20 2011-11-23 汕头大学 一种高效低载量甲烷芳构化催化剂的制备方法
CN103920525A (zh) * 2013-01-14 2014-07-16 中国科学院大连化学物理研究所 一种二甲醚和苯烷基化的催化剂的制备方法和应用
CN104909975A (zh) * 2014-03-10 2015-09-16 中国科学院大连化学物理研究所 一种微孔分子筛择形甲烷无氧直接制乙烯的方法及催化剂
CN105566047A (zh) * 2014-10-13 2016-05-11 中国科学院大连化学物理研究所 金属掺杂分子筛催化转化甲烷无氧直接制乙烯的方法
CN109437227A (zh) * 2018-11-30 2019-03-08 西北大学 一种含镓沸石的制备方法以及在煤热解挥发分改质中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1481936A (zh) * 2002-09-11 2004-03-17 中国科学院大连化学物理研究所 一种用于甲烷无氧芳构化反应的催化剂及制法和应用
CN1616150A (zh) * 2003-11-10 2005-05-18 中国科学院大连化学物理研究所 一种甲烷无氧芳构化催化剂及制备方法和用途
CN102247887A (zh) * 2011-05-20 2011-11-23 汕头大学 一种高效低载量甲烷芳构化催化剂的制备方法
CN103920525A (zh) * 2013-01-14 2014-07-16 中国科学院大连化学物理研究所 一种二甲醚和苯烷基化的催化剂的制备方法和应用
CN104909975A (zh) * 2014-03-10 2015-09-16 中国科学院大连化学物理研究所 一种微孔分子筛择形甲烷无氧直接制乙烯的方法及催化剂
CN105566047A (zh) * 2014-10-13 2016-05-11 中国科学院大连化学物理研究所 金属掺杂分子筛催化转化甲烷无氧直接制乙烯的方法
CN109437227A (zh) * 2018-11-30 2019-03-08 西北大学 一种含镓沸石的制备方法以及在煤热解挥发分改质中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE YINGPING ET AL.,: ""Modification of nanocrystalline HZSM‐5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction"", 《CHINESE JOURNAL OF CATALYSIS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111871448A (zh) * 2020-08-03 2020-11-03 西北大学 一种用于提高甲烷无氧芳构化反应性能的催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Julian et al. Supercritical solvothermal synthesis under reducing conditions to increase stability and durability of Mo/ZSM-5 catalysts in methane dehydroaromatization
Jin et al. Catalytic pyrolysis of lignin with metal-modified HZSM-5 as catalysts for monocyclic aromatic hydrocarbons production
Zhao et al. The influence of the Si/Al ratio of Mo/HZSM-5 on methane non-oxidative dehydroaromatization
Ismagilov et al. Methane conversion to valuable chemicals over nanostructured Mo/ZSM-5 catalysts
CN107537555B (zh) Mo/HZSM-5催化剂、制备方法及其应用
CN106883091B (zh) 一种由4-甲基-3-环己烯甲醛选择性合成对二甲苯的方法
Wang et al. Direct catalytic co-conversion of cellulose and methane to renewable petrochemicals
Austin et al. Catalytic aromatization of acetone as a model compound for biomass-derived oil under a methane environment
Zhang et al. Production of monocyclic aromatics and light olefins through ex-situ catalytic pyrolysis of low-density polyethylene over Ga/P/ZSM-5 catalyst
CN111298829A (zh) 一种甲烷无氧制芳烃反应中抗积碳性能强的催化剂制备方法及应用
CN101708434A (zh) 一种用于mda制苯分子筛/炭复合膜反应器制备与应用
CN110385141B (zh) 一种用于合成气直接制取芳烃的复合催化剂及其制备方法
CN109569719B (zh) 一种用于轻质烷烃芳构化的炭基催化剂及其制备方法
CN111097497B (zh) 一种催化甲烷直接转化制氢的方法及其催化剂和制备方法
CN114733562B (zh) 一种高活性的甲烷甲醇无氧共芳构化催化剂及其制备方法和应用
Liu et al. Methane aromatization over cobalt and gallium-impregnated HZSM-5 catalysts
CN113509957B (zh) 一种用于提高甲醇制烯烃反应催化剂循环稳定性和寿命的方法
CN107008489B (zh) 用于木质素加氢解聚的分子筛负载钒基催化剂及其制备方法
Qin et al. Catalytic performance of Ni–Co/HZSM-5 catalysts for aromatic compound promotion in simulated bio-oil upgrading
CN114797946A (zh) 一种丙烷脱氢制丙烯的负载型Pt基催化剂
CN113355123A (zh) 催化热解木质素的方法
CN111229296A (zh) 一种基于mfi型结构分子筛的择形异构化催化剂的制备方法
CN113289675B (zh) 一种用于重油催化裂化的催化剂及其制备方法
CN117208846B (zh) 一种慢速热解与快速热解耦合的热解重整制氢方法
CN112824359B (zh) 一种贵金属负载型催化剂在合成对二甲苯中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200619