CN111287888B - 漂浮式风机独立变桨控制方法 - Google Patents

漂浮式风机独立变桨控制方法 Download PDF

Info

Publication number
CN111287888B
CN111287888B CN202010230245.9A CN202010230245A CN111287888B CN 111287888 B CN111287888 B CN 111287888B CN 202010230245 A CN202010230245 A CN 202010230245A CN 111287888 B CN111287888 B CN 111287888B
Authority
CN
China
Prior art keywords
fan
blade
dri
independent variable
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010230245.9A
Other languages
English (en)
Other versions
CN111287888A (zh
Inventor
王磊
柯建波
邓筑利
王俊烽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202010230245.9A priority Critical patent/CN111287888B/zh
Publication of CN111287888A publication Critical patent/CN111287888A/zh
Application granted granted Critical
Publication of CN111287888B publication Critical patent/CN111287888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/045Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with model-based controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/602Control system actuates through electrical actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)

Abstract

本发明漂浮式风机独立变桨控制方法,包括1)对漂浮式风机的桨叶机械结构进行分析,获得桨叶机械结构动力学方程,2)建立独立变桨模型,3)设计控制器ui,4)用设计的控制器ui控制漂浮式风机。本发明漂浮式风机独立变桨控制方法,通过建立包含扰动因素的独立变桨模型,并引入速率函数,所设计的控制器能自适应跟踪期望的桨距角,并且误差能够在有限的时间内收敛,风机往往都是大型时滞的非线性系统,有限时间收敛能够使风机在复杂的外界条件下快速做出反应,以此来降低风机的载荷,维持风机功率的稳定,以及延长风机的使用寿命。

Description

漂浮式风机独立变桨控制方法
技术领域
本发明涉及漂浮式风力发电技术领域,特别涉及一种漂浮式风机控制方法。
背景技术
漂浮式风机与陆上和近海的风力发电机相比,运行环境更加恶劣,虽然现有技术中出现了一些控制漂浮式风机抑制荷载的方法,但是由于存在以下三种问题导致现有方法的实施效果并不理想,第一个问题是由于漂浮式风机模型里的一些参数是时变的,传统控制方法并不能自适应参数时变特性,使得长时间运行后会存在着一些误差;第二个问题是漂浮式风机模型会存在一些扰动,传统控制方法不能处理这些扰动,导致最后的跟踪效果不是很好,第三个问题是由于传统控制方法的收敛方式不是指数型收敛的,也就不能按照实际工程所需要的要求去收敛。
由此,迫切需要新的漂浮式风机控制方法来维持漂浮式风机功率的稳定和载荷的抑制。
发明内容
有鉴于此,本发明的目的是提供一种漂浮式风机独立变桨控制方法,以解决在极端的环境下也能降低风机的载荷,维持风机功率稳定的技术问题。
本发明1)对漂浮式风机的桨叶机械结构进行分析,获得动力学方程:
Figure GDA0003140895240000021
式中,βi是第i片桨叶的桨距角,
Figure GDA0003140895240000022
Figure GDA0003140895240000023
分别是βi的一阶导数和二阶导数,Tdri是第i片桨叶变桨调节驱动力矩,Ttwi是第i片桨叶所受的扭转力矩和空气动力产生的扰动力矩的总和,Ji是第i片桨叶绕其轴的转动惯量;kDi是第i片桨叶的阻尼系数;kFi是第i片桨叶轴承的摩擦系数;
将式(1)写成矩阵方程的形式,建立三桨叶水平轴风力机桨叶系统动力学模型,
Figure GDA0003140895240000024
式中,β=[β1,β2,β3]T∈R3;u=[u1,u2,u3]T=[Idr1,Idr2,Idr3]T∈R3
Figure GDA0003140895240000025
Figure GDA0003140895240000026
Tdr=[Tdr1,Tdr2,Tdr3]T∈R3;J(β)=diag[J1,J2,J3]∈R3×3
Figure GDA0003140895240000027
Idri表示调节第i片桨叶桨距角到需要的角度时的驱动电流,Idri和Tdri的关系线性化为Tdri=CTiIdri,CTi为常数,
Figure GDA0003140895240000028
Figure GDA0003140895240000029
CT=diag[CT1,CT2,CT3]∈R3×3是正定常对角矩阵;
2)定义x1=β,
Figure GDA00031408952400000210
独立变桨模型为,
Figure GDA00031408952400000211
式中,F1(x1)=[0,0,0]T
Figure GDA00031408952400000212
G1(x1)=I3×3
Figure GDA00031408952400000213
D1(x1,t),
Figure GDA00031408952400000214
为系统的扰动项,I3×3为3行3列的单位矩阵;
3)引入误差模型:
Figure GDA0003140895240000031
其中α1是引入的虚拟控制参量,α2f是以α1作为输入,通过一阶滤波器后得到的输出,满足
Figure GDA0003140895240000032
α2f(0)=α1(0),τ2为常数,yd为期望的桨距角,写成
x2=z2+y21 (5)
为了实现有限时间收敛,引入如下速率函数
Figure GDA0003140895240000033
其中的0<bf<1是设计参数,T>0是有限收敛时间,再进行以下转换
Figure GDA0003140895240000034
设计如下控制器
Figure GDA0003140895240000035
其中
Figure GDA0003140895240000036
k2>0,ιi>0和ci>0是设计参数,Pi是选取的RBFNN的基函数向量,其中的
Figure GDA0003140895240000037
通过以下公示更新:
Figure GDA0003140895240000038
其中ζ2i为向量ζ2的第i个值,
Figure GDA0003140895240000039
σi>0是用户选择的设计参数;ζ1和ζ2
4)用设计的控制器ui控制漂浮式风机。
本发明的有益效果:
本发明漂浮式风机独立变桨控制方法,通过建立包含扰动因素的独立变桨模型,并引入速率函数,所设计的控制器能自适应跟踪期望的桨距角,并且加入了速率函数后使得控制器能够快速跟踪桨距角,误差能够在有限的时间内收敛,使得在极端情况下也能降低风机的载荷,维持风机功率的稳定。
附图说明
图1第i片桨叶变桨机构机械示意图;
图2桨叶桨距角跟踪误差图;
图3桨距角1在不同收敛时间下误差图;
图4挥舞力矩曲线图,图中虚线为实施例中的控制器,实线为PID控制器;
图5拍打力矩曲线图,图中虚线为实施例中的控制器,实线为PID控制器。
具体实施方式
下面结合附图和实施例对本发明作进一步描述。
本实施例漂浮式风机独立变桨控制方法,
1)对漂浮式风机的桨叶机械结构进行分析,获得动力学方程:
Figure GDA0003140895240000041
式中,βi是第i片桨叶的桨距角,
Figure GDA0003140895240000042
Figure GDA0003140895240000043
分别是βi的一阶导数和二阶导数,Tdri是第i片桨叶变桨调节驱动力矩,Ttwi是第i片桨叶所受的扭转力矩和空气动力产生的扰动力矩的总和,Ji是第i片桨叶绕其轴的转动惯量;kDi是第i片桨叶的阻尼系数;kFi是第i片桨叶轴承的摩擦系数;
将式(1)写成矩阵方程的形式,建立三桨叶水平轴风力机桨叶系统动力学模型,
Figure GDA0003140895240000051
式中,β=[β1,β2,β3]T∈R3;u=[u1,u2,u3]T=[Idr1,Idr2,Idr3]T∈R3
Figure GDA0003140895240000052
Figure GDA0003140895240000053
Tdr=[Tdr1,Tdr2,Tdr3]T∈R3;J(β)=diag[J1,J2,J3]∈R3×3
Figure GDA0003140895240000054
Idri表示调节第i片桨叶桨距角到需要的角度时的驱动电流,Idri和Tdri的关系线性化为Tdri=CTiIdri,CTi为常数,
Figure GDA0003140895240000055
Figure GDA0003140895240000056
CT=diag[CT1,CT2,CT3]∈R3×3是正定常对角矩阵;
2)定义x1=β,
Figure GDA0003140895240000057
独立变桨模型为,
Figure GDA0003140895240000058
式中,F1(x1)=[0,0,0]T
Figure GDA0003140895240000059
G1(x1)=I3×3
Figure GDA00031408952400000510
D1(x1,t),
Figure GDA00031408952400000511
为系统的扰动项,I3×3为3行3列的单位矩阵;
3)引入误差模型:
Figure GDA00031408952400000512
其中α1是引入的虚拟控制参量,α2f是以α1作为输入,通过一阶滤波器后得到的输出,满足
Figure GDA00031408952400000513
α2f(0)=α1(0),τ2为常数,yd为期望的桨距角,写成
x2=z2+y21 (5)
为了实现有限时间收敛,引入如下速率函数
Figure GDA0003140895240000061
其中的0<bf<1是设计参数,T>0是有限收敛时间,所设计的速率函数的跟踪速率高,能够快速的收敛,能更好的作用在风机上;再进行以下转换
Figure GDA0003140895240000062
设计如下控制器
Figure GDA0003140895240000063
其中
Figure GDA0003140895240000064
k2>0,ιi>0和ci>0是设计参数,Pi是选取的RBFNN的基函数向量,控制器加入了速率函数后能够快速跟踪桨距角,控制器本身设计简单,能更好的应用于实际。其中的
Figure GDA0003140895240000065
通过以下公示更新:
Figure GDA0003140895240000066
其中ζ2i为向量ζ2的第i个值,
Figure GDA0003140895240000067
σi>0是用户选择的设计参数;
4)用设计的控制器ui控制漂浮式风机。
采用本实施例中的控制器ui对漂浮式风机独立变桨进行仿真控制,从图3可以看出桨距角1跟踪误差能在短时间快速收敛;
图4是叶根载荷曲线。由图可知,在我们设计的控制器的作用下,叶片挥舞力矩得到了适当降低,叶片载荷也相对减少了。PID控制的统一变桨控制器使得叶根载荷超过了5000KNm,而在我们设计的控制器下叶根载荷全部低于5000KNm,说明我们设计的控制器对于叶根载荷的控制起到了明显的作用。
图5中,随着风速变化,拍打力矩跟随风速而变化,当叶片旋转到不同位置时,由于空气动力作用位置不同而呈现出不同的拍打力矩。由图可知,相同风速情况下,我们设计的变桨控制器能够更快的对桨距角做出调节进而改善叶根拍打力矩,实现叶片载荷的降低。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (1)

1.一种漂浮式风机独立变桨控制方法,其特征在于:包括
1)对漂浮式风机的桨叶机械结构进行分析,获得动力学方程:
Figure FDA0003140895230000011
式中,βi是第i片桨叶的桨距角,
Figure FDA0003140895230000012
Figure FDA0003140895230000013
分别是βi的一阶导数和二阶导数,Tdri是第i片桨叶变桨调节驱动力矩,Ttwi是第i片桨叶所受的扭转力矩和空气动力产生的扰动力矩的总和,Ji是第i片桨叶绕其轴的转动惯量;kDi是第i片桨叶的阻尼系数;kFi是第i片桨叶轴承的摩擦系数;
将式(1)写成矩阵方程的形式,建立三桨叶水平轴风力机桨叶系统动力学模型,
Figure FDA0003140895230000014
式中,β=[β1,β2,β3]T∈R3;u=[u1,u2,u3]T=[Idr1,Idr2,Idr3]T∈R3
Figure FDA0003140895230000015
Figure FDA0003140895230000016
Tdr=[Tdr1,Tdr2,Tdr3]T∈R3;J(β)=diag[J1,J2,J3]∈R3×3
Figure FDA0003140895230000017
Idri表示调节第i片桨叶桨距角到需要的角度时的驱动电流,Idri和Tdri的关系线性化为Tdri=CTiIdri,CTi为常数,
Figure FDA0003140895230000018
Figure FDA0003140895230000019
Figure FDA00031408952300000110
CT=diag[CT1,CT2,CT3]∈R3×3是正定常对角矩阵;
2)定义
Figure FDA00031408952300000111
独立变桨模型为,
Figure FDA00031408952300000112
式中,F1(x1)=[0,0,0]T
Figure FDA00031408952300000113
G1(x1)=I3×3
Figure FDA00031408952300000114
D1(x1,t),
Figure FDA0003140895230000021
为系统的扰动项,I3×3为3行3列的单位矩阵;
3)引入误差模型:
Figure FDA0003140895230000022
其中α1是引入的虚拟控制参量,α2f是以α1作为输入,通过一阶滤波器后得到的输出,满足
Figure FDA0003140895230000023
τ2为常数,yd为期望的桨距角,写成
x2=z2+y21 (5)
为了实现有限时间收敛,引入如下速率函数
Figure FDA0003140895230000024
其中的0<bf<1是设计参数,T>0是有限收敛时间,再进行以下转换
Figure FDA0003140895230000025
设计如下控制器
Figure FDA0003140895230000026
其中
Figure FDA0003140895230000027
和ci>0是设计参数,Pi是选取的RBFNN的基函数向量,其中的
Figure FDA0003140895230000028
通过以下公示更新:
Figure FDA0003140895230000029
其中ζ2i为向量ζ2的第i个值,
Figure FDA00031408952300000210
σi>0是用户选择的设计参数;
4)用设计的控制器ui控制漂浮式风机。
CN202010230245.9A 2020-03-27 2020-03-27 漂浮式风机独立变桨控制方法 Active CN111287888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010230245.9A CN111287888B (zh) 2020-03-27 2020-03-27 漂浮式风机独立变桨控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010230245.9A CN111287888B (zh) 2020-03-27 2020-03-27 漂浮式风机独立变桨控制方法

Publications (2)

Publication Number Publication Date
CN111287888A CN111287888A (zh) 2020-06-16
CN111287888B true CN111287888B (zh) 2021-10-19

Family

ID=71027237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010230245.9A Active CN111287888B (zh) 2020-03-27 2020-03-27 漂浮式风机独立变桨控制方法

Country Status (1)

Country Link
CN (1) CN111287888B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852763B (zh) * 2020-09-11 2023-03-24 重庆大学 一种基于漂浮式风机的容错自适应pid控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012000505A2 (en) * 2010-06-29 2012-01-05 Vestas Wind Systems A/S Callibration of wind turbine sensor
ES2538739B1 (es) * 2013-12-23 2016-04-14 Acciona Windpower, S.A. Método de control de aerogenerador
CN104454347B (zh) * 2014-11-28 2018-09-07 云南电网公司电力科学研究院 一种独立变桨距风力发电机桨距角的控制方法
CN105221336A (zh) * 2015-11-09 2016-01-06 国电南瑞科技股份有限公司 基于鲁棒控制的风电机组独立变桨控制方法
CN105673325A (zh) * 2016-01-13 2016-06-15 湖南世优电气股份有限公司 基于rbf神经网络pid的风电机组独立变桨控制方法
CN105971819B (zh) * 2016-05-04 2018-09-07 浙江大学 基于ude的风力发电机组变桨距鲁棒控制方法
CN105930938B (zh) * 2016-05-10 2019-06-21 重庆大学 基于磁流变阻尼器半主动结构控制的漂浮式风机减载方法
CN106930898A (zh) * 2017-05-19 2017-07-07 重庆大学 一种基于自适应扰动补偿的漂浮式风力机功率控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wind and Wave Disturbances Compensation to Floating Offshore Wind Turbine Using Improved Individual Pitch Control Based on Fuzzy Control Strategy;Feng Yang et al;《Abstract and Applied Analysis》;20140330;第1-11页 *

Also Published As

Publication number Publication date
CN111287888A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN109891091B (zh) 动态控制的风力涡轮机关闭
Odgaard et al. On using Pareto optimality to tune a linear model predictive controller for wind turbines
US9018780B2 (en) Control system and method to improve the electrical energy production of a variable speed wind turbine by alternative regulation
EP2292928A2 (en) Wind turbine control methods and systems
JP2010506094A (ja) 風力タービンの制御システム
Kanev et al. Exploring the limits in individual pitch control
CN102777318A (zh) 一种兆瓦级风力发电机组变桨距系统运动控制方法
Mughal et al. Review of pitch control for variable speed wind turbine
Bianchi et al. Robust Multivariable Gain-Scheduled Control of Wind Turbines for Variable Power Production.
CN106065848A (zh) 控制风力涡轮机的操作的方法
CN111287888B (zh) 漂浮式风机独立变桨控制方法
CN105649877A (zh) 一种大型风电机组的蚁群pid独立变桨控制方法
CN101550945B (zh) 一种大功率风机变桨控制方法及系统
WO2020239177A1 (en) Reduction of edgewise vibrations using blade load signal
CN111502914B (zh) 基于线性变参数系统的风机变桨控制器设计方法
CN111852763B (zh) 一种基于漂浮式风机的容错自适应pid控制方法
CN109268205A (zh) 一种基于智能风力机的风电场优化控制方法
Pintea et al. Robust control for wind power systems
KR20190063655A (ko) 풍력터빈 제어시스템의 피치제어기
CN111188732A (zh) 一种风力发电变桨鲁棒容错控制方法
Genov et al. Modeling and control of wind turbine tower vibrations
Bossanyi et al. The importance of control in wind turbine design and loading
CN107313898B (zh) 基于Markov跳变规律的风力发电系统控制的方法
Suryanarayanan et al. On the dynamics of the pitch control loop in horizontal-axis large wind turbines
CN113167240A (zh) 用于风能设备的调节器结构和调节方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant