CN111281544B - 体内医疗器械自动引导机器人系统及其自动引导方法 - Google Patents

体内医疗器械自动引导机器人系统及其自动引导方法 Download PDF

Info

Publication number
CN111281544B
CN111281544B CN202010120178.5A CN202010120178A CN111281544B CN 111281544 B CN111281544 B CN 111281544B CN 202010120178 A CN202010120178 A CN 202010120178A CN 111281544 B CN111281544 B CN 111281544B
Authority
CN
China
Prior art keywords
flexible instrument
module
catheter
instrument
driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010120178.5A
Other languages
English (en)
Other versions
CN111281544A (zh
Inventor
宋璐
卫亚博
冯艳平
宋燕燕
孙艳敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Chinese Medicine
Original Assignee
Shaanxi University of Chinese Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Chinese Medicine filed Critical Shaanxi University of Chinese Medicine
Priority to CN202010120178.5A priority Critical patent/CN111281544B/zh
Publication of CN111281544A publication Critical patent/CN111281544A/zh
Application granted granted Critical
Publication of CN111281544B publication Critical patent/CN111281544B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/32Surgical robots operating autonomously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

本发明提供了一种体内医疗器械自动引导机器人系统,包括:驱动器,与柔性器械驱动连接,用于驱动柔性器械在解剖结构中产生直线运动和旋转运动;柔性器械,用于插入解剖结构的目标位置;跟踪模块,用于获得柔性器械在患者解剖结构内的位置;计算机模块,用于输出对驱动器的控制指令。同时提供了一种基于上述体内医疗器械自动引导机器人系统实现的自动引导方法。本发明显著减少了对患者和医生的X射线照射;最小化了柔性器械和机器人部件之间的摩擦;减小了机器人系统的总体尺寸;降低了生产成本;缩短了临床操作的持续时间,并能够将体内医疗器械精确地引导至目标位置。

Description

体内医疗器械自动引导机器人系统及其自动引导方法
技术领域
本发明涉及医疗器械技术领域,具体地,涉及一种体内医疗器械自动引导机器人系统及其自动引导方法。
背景技术
医疗干预,如血管内手术、肺结节活检或任何其他需要在人体内插入导管的手术,需要使用CT和透视成像指导,这将导致患者和医生长时间暴露在X射线的照射下,有潜在的不安全因素。肺癌是全球最常见的癌症,每年诊断出的新病例超过200万。幸运的是如果及早发现,存活的可能性大大提高。如果在I期诊断,5年内存活率>75%,而在IV期诊断,存活率仅为1%。早期诊断需要发现并取样(活检)位于肺实质和主要位于支气管周围的小结节。目前,患者在接受肺部放射成像识别到可疑结节后,经常提示需要进一步诊断。在支气管镜检查中,摄像机被插入气道,但由于体积大它无法到达小气道中的恶性肺结节附近。为了进行活检,支气管镜必须通过一个尖锐的活检针或者钳盲目地朝有结节肺组织的大致方向推进。为了提高手术的准确性,一般会实时近距离的行x射线(透视)检查,使病人和医生暴露在有害的辐射下。
计算机辅助技术和医疗机器人技术提出了可行的解决方案,但目前还不是最优的。现有的计算机辅助技术和医疗机器人技术,在进行介入治疗时,一般是采用影像设备来监控导管在患者体内的位置,然后由操作者按照主观判断来实时调整方向和控制速度,通常存在如下问题:技术成本和使用条件高,使用复杂,瞄准精度低,系统尺寸大,缺乏合适的仪器和特定的引导,增加了导管样仪器和机器人部件之间的摩擦,且病人和医生仍然需要暴露在X射线的照射下。
目前没有发现同本发明类似技术的说明或报道,也尚未收集到国内外类似的资料。
发明内容
本发明在针对现有技术中存在的上述不足,提供了一种体内医疗器械自动引导机器人系统及其自动引导方法。该系统及方法通过配置插入装置和旋转装置,使柔性器械在插入解剖结构时能够以旋转的方式前进,通过放置在柔性器械尖端的跟踪传感器,将柔性器械定位到解剖结构的目标位置。
本发明是通过以下技术方案实现的。
根据本发明的一个方面,提供了一种体内医疗器械自动引导机器人系统,包括:
驱动器;与柔性器械驱动连接,用于驱动柔性器械在解剖结构中产生直线运动和旋转运动;
跟踪模块;用于获得柔性器械在患者解剖结构内的位置;
计算机模块:用于输出对驱动器的控制指令。
优选地,所述驱动器包括导线、插入装置、旋转装置、驱动器控制器以及多关节臂;其中:
所述导线沿着柔性器械运行,并分别与柔性器械和跟踪模块连接,用于将柔性器械连接至跟踪模块;
所述插入装置用于实现柔性器械的直线运动;
所述旋转装置用于实现柔性器械的旋转运动;
所述驱动器控制器分别与插入装置和旋转装置控制连接;
所述多关节臂用于支撑及固定插入装置和旋转装置。
优选地,所述插入装置包括:卷筒、插入电机、第一齿轮、第二齿轮、卷筒第一外壳、卷筒第二外壳、插入装置支架和插入装置外壳;其中:
所述柔性器械可拆卸地盘绕在卷筒上;所述插入电机依次通过第二齿轮和第一齿轮与卷筒驱动连接,用于驱动卷筒转动,进而驱动柔性器械被展开并穿过卷筒第一外壳上的开口,将柔性器械插入到解剖结构中,实现柔性器械的线性运动;改变卷筒的转动方向,使柔性器械从解剖结构中缩回到卷筒上;
所述卷筒和柔性器械封装在卷筒第一外壳和卷筒第二外壳中,形成可拆卸的卷筒组件;第一齿轮设置于卷筒第二外壳的外侧;第二齿轮与第一齿轮啮合;第一齿轮、第二齿轮以及卷筒组件分别安装在插入装置支架上的相应位置,卷筒组件与插入装置支架之间设有旋转滚珠轴承;插入装置外壳设置于插入装置支架的外侧。
优选地,所述卷筒设置有螺旋通道,柔性器械盘绕在螺旋通道上。
优选地,所述旋转装置包括:旋转装置支架以及安装于旋转装置支架上的旋转电机、第一锥齿轮和第二锥齿轮;所述旋转电机与第一锥齿轮驱动连接,所述第一锥齿轮与第二锥齿轮啮合;所述第二锥齿轮通过插入滚珠轴承与插入装置的插入装置支架连接;
所述旋转电机带动第一锥齿轮旋转,所述第一锥齿轮带动第二锥齿轮旋转,所述第二锥齿轮带动整个插入装置旋转,进而驱动柔性器械绕其轴线做旋转运动。
优选地,所述多关节臂设置于旋转装置的旋转装置支架的底端,包括:用于连接到手术台的固定部件,以及以不同角度固定插入装置和旋转装置的角度可调固定部件。
优选地,所述驱动器控制器根据计算机模块的指令,控制插入装置的插入电机和旋转装置的旋转电机工作,在电机的驱动下,实现柔性器械进入解剖结构的直线运动和旋转运动。
优选地,所述驱动器控制器从计算机模块接收信息,并基于该信息来控制电机,从而控制柔性器械的运动。
优选地,所述驱动器控制器通过IEEE/LabVIEW接口对电机进行控制。
优选地,所述柔性器械包括一个或多个管腔、设置于管腔末端的器械尖端以及设置于器械尖端的尖端传感器;所述器械尖端引导柔性器械穿过解剖结构,尖端传感器与沿着柔性器械运行的导线连接,通过导线将尖端传感器连接到跟踪模块。
优选地,所述跟踪模块采用电磁跟踪系统,包括磁场发生器、主单元、一个或多个电磁跟踪传感器;所述磁场发生器布置在患者附近;所述主单元通过导线与放置在患者相应位置的电磁跟踪传感器连接;所述尖端传感器通过导线与主单元连接;所述主单元通过导线与计算机模块相连;其中:
所述磁场发生器,用于产生交变磁场;
所述电磁跟踪传感器,用于感应磁场发生器所产生的交变磁场,并将感应信号的数据传送给主单元;
所述主单元,接受来自电磁跟踪传感器的数据,并对数据进行处理,再将处理后的数据发送给计算机模块,由计算机模块计算出具体的位置信息;
所述尖端传感器的位置由设置在电磁跟踪传感器上的坐标系决定,所述电磁跟踪传感器形成跟踪标记。
优选地,所述计算机模块包括:医疗程序规划模块、导航模块、人机交互模块以及成像模块;其中:
所述成像模块,用于接收一个或多个与解剖结构相对应的CT和/或MRI图像并进行压缩处理以及接收一个或多个跟踪标记信号,配置为解剖结构的三维地图的图像,其中,目标位置在所述地图上的映射点采用建立在电磁跟踪传感器上的坐标系来表示;
所述医疗程序规划模块,用于识别与解剖结构相对应的一个或多个图像上的目标位置;
所述导航模块,用于根据三维地图上的入口点和目标位置,创建柔性器械的行进路径;
所述人机交互模块,用于生成对驱动器的驱动器控制器的控制指令,进而控制柔性器械的运动。
根据本发明的另一个方面,提供了一种基于上述任意一项或任意多项体内医疗器械自动引导机器人系统实现的自动引导方法,包括:
S1,计算机模块接收来自尖端传感器的信息,创建接入路径即行进路径,并计算行进路径上尖端传感器的位置;其中,尖端传感器的位置用于计算期望路径段及对应的一组电机驱动下的柔性器械所要实现的直线运动和旋转运动;
S2,根据S1中得到的尖端传感器的位置,计算期望路径段以及一组电机驱动下的柔性器械所要实现的直线运动和旋转运动;
S3,根据S2中得到的期望路径段以及柔性器械所要实现的直线运动和旋转运动,生成对驱动器的控制指令,对应于柔性器械,控制柔性器械沿着该期望的路径从当前位置向目标点移动;
S4,重复S1~S3,直至柔性器械达到目标点。
优选地,所述S1中:通过计算机模块中的医疗程序规划模块识别入口点和目标点在解剖结构中的位置,并使用计算机模块中的导航模块根据入口点和目标点在配置为解剖结构的三维地图图像中的位置,计算并创建行进路径。
优选地,所述S2中:计算机模块接收来自柔性器械的尖端传感器的信息,并计算行进路径上尖端传感器的位置,根据位置信息和程序设置的期望路径段的长度,计算该期望路径段及对应的一组电机驱动下的柔性器械所要实现的直线运动和旋转运动。
优选地,所述S3中:根据得到的期望路径段以及柔性器械所要实现的直线运动和旋转运动,生成对驱动器的控制指令,对应于柔性器械,控制柔性器械沿着该期望路径段从当前位置向目标点移动。
本发明提供的体内医疗器械自动引导机器人系统及其自动引导方法,其具有自动引导和插入的柔性器械驱动装置,可用于引导医用导管、内窥镜和柔性手术器械(例如导丝)、射频或冷冻消融导管等柔性器械以及通过导管管腔进入的活检针、缝合线、小直径定制的镊子、夹子、剪刀、手术刀等组合柔性器械。
本发明提供的体内医疗器械自动引导机器人系统及其自动引导方法,包括插入解剖结构或指向解剖结构的紧贴的柔性器械。柔性器械可包括靠近尖端的尖端传感器。还包括经由电机驱动柔性器械进入或接近解剖结构的插入装置和旋转装置,该旋转装置可以通过电机驱动带动整个插入装置旋转,从而将柔性器械引导至解剖结构或接近解剖结构。还包括经由电机控制柔性器械运动的驱动器控制器。还包括通过一个或多个跟踪标记来确定尖端传感器位置的跟踪模块,以及可以从跟踪模块接收信息并创建跟踪传感器在解剖结构中位置的计算机模块。驱动器控制器可以从计算机模块接收关于柔性器械的移动信息,并且通过控制电机来控制柔性器械进入解剖结构。
本发明提供的体内医疗器械自动引导机器人系统及其自动引导方法,通过在患者身体上附加跟踪模块的跟踪标记,并对患者执行CT/MRI成像,例如捕获解剖结构和标记。在附着跟踪标记的参考帧中渲染3D模型或解剖结构,并将所述3D模型加载到计算机模块上,通过计算机模块创建接入路径(例如,沿着动脉、气管、食道)和3D模型或解剖结构上的目标点。
与现有技术相比,本发明具有如下的有益效果:
本发明提供的体内医疗器械自动引导机器人系统及其自动引导方法,显著减少了对患者和医生的X射线照射;最小化了柔性器械和机器人部件之间的摩擦;减小了机器人系统的总体尺寸;降低了生产成本;缩短了临床操作的持续时间,并能够将体内医疗器械精确地引导至目标位置。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例所提供的体内医疗器械自动引导机器人系统结构应用示意图。
图2为本发明实施例所提供的导管驱动器结构示意图。
图3为本发明实施例所提供的导管驱动器结构爆炸图。
图4为本发明实施例所提供的导管驱动器的导管安装结构示意图。
图5为本发明实施例所提供的导管驱动器与导管盒耦合的结构示意图。
图中:
1:导管驱动器
2:导管
3:磁场发生器
4:主单元
5:计算机
6:电磁跟踪传感器
7:患者
8:多关节臂
9:卷筒
10:卷筒第一外壳
11:第一锥齿轮
12:第二锥齿轮
13:旋转装置支架
14:第一齿轮
15:第二齿轮
16:插入电机
17:旋转电机
18:卷筒第二外壳
19:旋转滚珠轴承
20:插入滚珠轴承
21:旋转装置外壳
22:插入装置支架
23:插入装置外壳
24:插入装置电机外壳
25:导线
26:尖端传感器
27:开口
具体实施方式
下面对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
下面结合附图,对本发明实施例所提供的技术方案进一步详细描述。
驱动器;与柔性器械驱动连接,用于驱动柔性器械在解剖结构中产生直线运动和旋转运动;
跟踪模块;用于获得柔性器械在患者解剖结构内的位置;
计算机模块:用于输出对驱动器的控制指令。
下面结合附图,以一优选实施例对上述技术方案进一步详细描述。
请同时参阅图1至图5。本发明的一个优选实施例所提供了一种体内医疗器械自动引导机器人系统,包括:
导管驱动器1;用于驱动导管2插入患者7的解剖结构中;
跟踪模块;用于获得导管2在患者解剖结构内的位置;
计算机模块:用于输出对导管驱动器1的控制指令。
进一步地:
导管驱动器1可以采用配置为2级自由度(2DOF)的机器人,自动将导管2插入患者7的解剖结构中。
如图2~图5所示,给出了导管驱动器1的具体结构。导管驱动器1具有紧凑的结构,并且可以驱动导管2产生两种运动:一种直线运动和一种旋转运动。由图2所示,导管驱动器1包括一根导线25,该导线25连接了设置在导管尖端上的尖端传感器26和跟踪模块的主单元4。导管驱动器1还包括导管插入装置、导管旋转装置、驱动器控制器以及多关节臂8。
图3给出了根据图2所示的导管驱动器的展开图。
导管驱动器1中:
导管插入装置包括:卷筒9、插入电机16、第一齿轮14、第二齿轮15、卷筒第一外壳10、卷筒第二外壳18、插入装置支架22、插入装置外壳23和插入装置电机外壳24。
图4给出了导管插入装置的一个视图。如图4所示,导管2可拆卸地盘绕在卷筒9上,插入电机16与导管2驱动连接,用于驱动导管2沿线性方向(向前和向后)运动,以便将导管插入解剖结构或从解剖结构移除。例如,插入装置可以如图1所示将导管插入到血管系统中。进一步地,插入电机16依次通过第二齿轮15和第一齿轮14与卷筒9驱动连接,用于驱动卷筒9转动。当插入电机16驱动卷筒9转动时,导管2被展开并穿过卷筒第一外壳10上的开口27,从而将导管2插入到解剖结构(例如患者的血管系统)中。改变卷筒9的转动方向,可以使导管从解剖结构中缩回,回到导管驱动器中,并将导管卷在卷筒9上。
卷筒9和卷装在卷筒9上的导管2封装在卷筒第一外壳10和卷筒第二外壳18中,形成可拆卸的卷筒组件;第一齿轮14设置于卷筒第二外壳18的外侧;第二齿轮15与第一齿轮14啮合;第一齿轮、第二齿轮以及卷筒组件分别安装在插入装置支架22上的相应位置,卷筒组件与插入装置支架22之间设有旋转滚珠轴承19;插入装置外壳23设置于插入装置支架22的外侧。插入装置电机外壳24固定在插入装置支架22上。
卷筒9设置有螺旋通道,导管2盘绕在螺旋通道上。
操作期间,当导管2到达解剖结构中的目标位置(例如患者的血管系统)时,用户可以打开卷筒第二外壳18,并将导管2从卷筒9上取下;当卷筒第二外壳18被移除时,卷筒9也可以从卷筒第一外壳10中移除。在导管2从卷筒9上分离后,导管驱动器1可被移离患者7,而导管2在医疗过程中(例如支架植入、活检等)仍留在患者体内。
卷筒组件可拆卸地安装在插入装置支架22上,卷筒组件作为一个整体,可以从驱动器支架2上整体拆下,可以配置为一次性组件,并且可以预先组装和消毒。
将导管2盘绕在卷筒9上,并可在卷筒9转动时向前或向后推拉导管。卷筒9设有螺旋通道,导管盘绕在螺旋通道上。卷筒9通过施加滚动运动来推进或收回设置于螺旋通道上的导管2,从而使得导管2与卷筒第一外壳10上的开口27之间的摩擦最小化。
如图5所示,导管旋转装置包括:旋转装置支架13以及安装于旋转装置支架13上的旋转装置外壳21、旋转电机17、第一锥齿轮11和第二锥齿轮12;旋转电机17与第一锥齿轮11驱动连接,第一锥齿轮11与第二锥齿轮12啮合;第二锥齿轮12通过插入滚珠轴承20与导管插入装置的插入装置支架22连接。
导管旋转装置可以驱动导管2围绕导管2的轴线做旋转运动,旋转运动是通过旋转电机17、第一锥齿轮11和第二锥齿轮12来获得的。旋转电机17带动第一锥齿轮11旋转,第一锥齿轮11带动第二锥齿轮12旋转,第二锥齿轮12带动整个导管插入装置旋转,使导管2绕其轴线旋转。通过旋转整个导管插入装置可使导管2在卷筒9上卷动。
导管插入装置和导管旋转装置协同工作,为导管2提供所需的运动,即平移插入和旋转运动的组合。当导管2在解剖结构内(例如在血管系统内)前进时采用旋转运动扭转导管2,可以用来在导管尖端到达解剖结构的交叉点(例如在血管树中的交叉点)时选择特定的分支。
多关节臂8设置于旋转装置支架13的底端,用于保持和定位导管插入装置和导管旋转装置。多关节臂8包括:用于连接到手术台的固定部件,以及以不同角度固定导管插入装置和导管旋转装置的角度可调固定部件。其中,固定部件可以安装于手术台的底座或者侧面上,根据导管进入患者的不同位置,以固定在手术台上便于固定多关节臂。
驱动器控制器根据计算机模块的指令,控制插入电机16和旋转电机17工作,在电机的驱动下,实现导管2进入解剖结构的运动。
驱动器控制器从计算机模块接收信息,并基于该信息来控制电机,从而控制导管2的运动。驱动器控制器可以通过IEEE/LabVIEW接口对电机进行控制。
导管2可包括一个或多个管腔、设置于管腔末端的导管尖端以及设置于导管尖端的尖端传感器26;所述导管尖端能够引导导管2穿过解剖结构,尖端传感器26可以和沿着导管2运行的导线25连接,并且可以通过导线25将尖端传感器26连接到跟踪模块。导管2可以是任何商用柔性器械,还可包括导丝,导丝尖端附近设有跟踪传感器。并且导管2还可以包括通过导管管腔进入解剖结构中的摄像头、探头、导丝、传感器、多个管腔、其他导管、管状柔性医疗器械、无线电或冷冻消融导管、活检针、镊子、夹子、缝合线、剪刀、手术刀等。本发明实施例中的机器人系统可以使用多种类型的导管,并且不受所使用的导管类型的限制。
跟踪模块的配置取决于布置在导管尖端的尖端传感器26的位置。跟踪模块可以采用电磁跟踪系统,其可以包括磁场发生器3、主单元4、布置在患者7上的一个或多个电磁跟踪传感器6。电磁跟踪传感器6形成跟踪标记。可使用商用导航跟踪系统(例如可以采用NDI公司生产的Aurora电磁跟踪系统),本发明中的方法和设备不受所使用跟踪系统和传感器类型的限制。
其中:
磁场发生器3、主单元4、一个或多个电磁跟踪传感器6之间的连接关系是:磁场发生器布置在患者附近;主单元通过导线与放置在患者相应位置的电磁跟踪传感器连接;布置在导管中的尖端传感器通过导线与主单元连接;主单元通过导线与计算机相连;每一个部件所要实现的功能是:磁场发生器:产生交变磁场;电磁跟踪传感器:利用电磁感应原理来感应磁场发生器所产生的交变磁场,并将感应信号的数据传送给主单元;主单元:接受来自电磁跟踪传感器的数据,并对数据进行处理,主要包括运算放大和数模转换等,再将处理后的数据发送给计算机模块,由计算机模块计算出具体的位置信息。
计算机模块包括:医疗程序规划模块、导航模块、人机交互模块以及成像模块;其中:
成像模块,用于接收一个或多个与解剖结构相对应的CT和/或MRI图像并进行压缩处理以及接收一个或多个跟踪标记信号,配置为解剖结构的三维地图的图像,其中,目标位置在所述地图上的映射点可以采用建立在电磁跟踪传感器上的坐标系来表示;
医疗程序规划模块,用于识别与解剖结构相对应的一个或多个图像上的目标位置(例如,手术前患者的CT扫描);
导航模块,用于根据3D地图上的入口点和目标位置,创建导管的行进路径;
人机交互模块,用于生成对导管驱动器的驱动器控制器的控制指令,进而控制导管的运动。
进一步地,
医疗程序规划模块和导航模块可以通过iMTCEH软件包与CustusX或其他可用的免费软件库(例如,用于提高导航精度的附加算法和数学公式)一起实现。
如上所述,体内医疗器械自动引导机器人系统通过多个装置以及控制模块之间的协同工作,实现各部件之间的相互作用,进而实现机器人系统的各种动作。
本发明另一个实施例提供了一种体内医疗器械自动引导机器人系统,该机器人系统与上述实施例中所提供的机器人系统的区别在于,其所设置的驱动器为一个内窥镜驱动器。该内窥镜驱动器与上述的导管驱动器1具有相似的功能及结构,该内窥镜驱动器可用于驱动一个或多个导丝、导管、内窥镜、探针等,其结构及实现过程与导管驱动器1相似,此处不再赘述。
通过以上实施例可知,任意一种柔性器械,均可以采用上述的驱动器结构来进行驱动,卷筒设置螺旋通道,柔性器械可以盘绕在螺旋通道上(例如铺设在螺旋通道上)。当卷筒转动时,柔性器械被向前推或向后拉、前进或缩回。螺旋通道的设计,通过施加滚动运动来使器械前进或收缩,从而最小化柔性器械和驱动器之间的摩擦。
本发明上述实施例所提供的体内医疗器械自动引导机器人系统,可用于引导医用导管、内窥镜和类似的柔性手术器械,如:导丝、无线电或冷冻消融导管、活检针、镊子、夹钳、缝合线、剪刀、手术刀等。
下面结合几个具体应用实例,进一步描述上述体内医疗器械自动引导机器人系统的工作过程,以下描述过程中涉及的医疗过程,仅用于更容易地理解本发明实施例所提供的机器人系统在具体工作中的实施步骤,不属于疾病的诊断和治疗方法。
在一个具体应用实例中,采用上述体内医疗器械自动引导机器人系统来执行心导管术。在这种情况下,用户(例如心脏外科医生或血管外科医生)将首先确定心血管系统内的解剖结构(心脏或主要血管)作为血管支架置入或血管成形术的靶点。患者敏感区域(即腹部和胸部)的解剖结构将通过患者的CT扫描图像重建。在手术之前,将电磁跟踪传感器6放置在患者胸部之后,再行CT扫描。患者被转移到手术室内,电磁跟踪传感器6保持在胸部,跟踪模块(采用电磁跟踪系统ETS)被放置在病人附近并连接到计算机模块。外科医生在CT扫描中选择导管插入和靶点,导航模块将自动创建从插入点到靶点的路径。路径创建完成后,将允许用户可视化从入口点(即股动脉或静脉)到目标(即腹主动脉或胸主动脉或心脏的病变或动脉粥样硬化斑块)的路径。
通过将预装配好的卷筒组件安装在插入装置支架22上,并将导管驱动器1固定在患者手术台上,用多关节臂8将导管插入装置和导管旋转装置调整到合适的位置进行血管插入,并将连接导管的导线25连接到跟踪模块。
从导管2完全卷绕在卷筒9上开始,操作人员可手动将导管2从卷筒9上展开,以允许外科医生按照经典医疗程序将导管尖端插入到患者血管中。计算机模块使用电磁跟踪传感器6在CT数据和患者之间进行自动配准,通过在虚拟3D空间中执行比对,找到与真实传感器在真实空间中的位置相似的参考传感器的位置。
本具体应用实例中,所述机器人系统与当前最先进的系统不同,它允许操作者从三种不同的使用模式中选择一种:手动、半自动和全自动。在任何一个模式中,用户使用计算机模块的导航模块,结合跟踪模块,实施电磁(EM)导航程序,以便将医疗器械(例如,配备有导丝的导管、医用镊子或其他介入器械)推进至目标位置。目前,血管医疗机器人仅通过操纵杆手动引导,虽然手动控制可以减少或消除操作者暴露在辐射下,但对病人却不能做到这一点。相比之下,本具体应用实例中公开的半自动和全自动模式几乎完全消除了患者或操作者暴露于有害辐射的情况。本具体应用实例中公开的机器人系统可以在导管保持原位的同时,将医疗器械定向到目标位置并执行活检或其他医疗程序,使得操作更加精确。
通过电磁跟踪系统ETS和尖端传感器26持续向软件提供导管针尖相对于患者的位置。因此,机器人系统可以时刻保证导管尖端是在正确的路径上。
利用电磁跟踪系统ETS和导航模块,机器人系统可以在规划的路径上移动导管,无需在导管插入过程中进行X射线扫描就可以精确地到达目标。当遇到解剖结构的分支(例如血管分支)时,机器人系统可以通过旋转、插入和收回导管的组合运动来选择特定的血管分支,直到导管尖端对准正确的方向并朝所需的分支前进。在到达目标位置并确认后,卷筒第二外壳18可以被打开,导管可以与导管驱动器分离。尖端传感器26可从导管的工作通道中缩回,另一仪器可通过导管插入,例如用于标准活检采集的活检针或用于获取成像数据的内窥镜探头。
在另一个具体应用实例中,机器人系统可用来导航至肺部病变部位以用于早期肺癌的诊断和治疗。在这种情况下,解剖目标表现为位于正常支气管镜无法到达的肺周围的小(<1mm)可疑病灶。与心血管应用类似,从诊断CT扫描重建患者解剖结构后,在患者解剖的虚拟3D模型中定义入口点(即气管或主肺气道)和目标(即CT检查中检测到的可疑肺部病变)。机器人系统将在导航模块的引导下,引导导管和各种医疗器械从入口点到达目标。下面描述操作机器人系统的几种实现方法。
方法1(自动模式):使用上述机器人系统对患者解剖结构执行医疗程序的方法。该方法可以包括将跟踪模块的跟踪标记附着在患者身体上,并且对患者执行CT/MRI成像,例如捕获解剖结构和标记。该方法还可以包括绘制解剖结构的3D模型(例如,在附着到标记的参考帧中),然后将所述3D模型加载到计算机上。
该方法还可以包括经由计算机模块的导航模块创建接入路径(例如经由动脉、气管、食道等)和3D模型或解剖结构上的目标点。该方法可以包括在与入口点或接入路径相对应的身体上的点处插入导管,并引导接入路径上的导管朝向目标点。
引导导管朝向目标点可包括以下步骤,第一步包括经由导航系统接收来自跟踪尖端传感器的信息,并计算接入路径上尖端传感器的位置。步骤2包括计算期望的路径(例如2mm长的路径),沿着该路径将导管从当前位置移向目标点。步骤3包括计算一组电机运动,插入运动和旋转运动,对应于在所需路径上移动导管。步骤4包括通过驱动器控制器向马达发送一组与马达运动相对应的信号。然后重复上述步骤,直到导管达到目标点。
一旦导管的边缘到达目标点,导管驱动器就会与导管断开,跟踪传感器也可以被移除。
方法2(半自动模式):公开了一种使用上述机器人系统对患者解剖结构执行医疗程序的方法。该方法包括将跟踪模块的电磁跟踪传感器6附着在患者身体上,并且对患者执行CT/MRI扫描。该方法还可以包括在附着到标记的参考帧中绘制解剖结构的3D模型,然后将所述3D模型加载到计算机上。
该方法还包括经由计算机计算进入路径(例如经由动脉、气管、食道等)和解剖结构的3D模型上的目标点。该方法还可包括在与接入路径的入口点相对应的身体上的点处插入导管,并引导接入路径上的导管朝向目标点。
导管朝向目标点的引导可包括以下步骤。步骤1包括经由导航模块接收来自尖端传感器的信息并计算尖端传感器在接入路径上的当前位置。步骤2包括定义期望的路径部分(例如,2mm长的路径),沿着该部分将导管从当前位置移动到目标点。步骤3包括通过计算机接口引导驱动器电机,显示器上显示的计算机接口包括用于推进/收回导管的上/下箭头和用于向左/向右旋转导管的左/右箭头。步骤3也可以包括通过操纵杆引导驱动器马达,使操作者能够手动控制导管在所需路径上移动。然后重复上述步骤,直到导管尖端到达目标点。一旦导管尖端到达目标点,导管驱动器可以与导管断开,跟踪传感器也可以被移除。方法3(手动模式,使用常规透视或摄像机或支气管镜/内窥镜):本具体应用式中,机器人系统在解剖结构或患者上终止医疗过程的方法。该方法可以包括在患者身体上附加跟踪标记或导航系统,并对患者执行CT/MRI成像,例如捕获解剖结构和标记。该方法还可以包括绘制解剖结构的3D模型(例如,在附着到标记的参考帧中),然后将所述3D模型加载到计算机上。
该方法还可包括经由计算机模块创建解剖结构的接入路径(例如经由动脉、气管、食道等)和3D模型上的目标点。该方法还可包括在与入口点或接入路径相对应的身体上的点处插入导管,并引导接入路径上的导管朝向目标点。
引导导管朝向目标点可包括以下描述的步骤1和2。步骤1通过传统成像方式(即透视或支气管镜/内窥镜摄像机)接收导管的当前位置。步骤2包括通过计算机接口控制驱动器的电机,计算机显示器上显示的接口,可以包括用于推进/收回导管的上/下箭头和用于向左/向右旋转导管的左/右箭头。步骤2还可以包括通过操纵杆控制驱动器电机,使操作者能够手动控制导管在所需路径上的移动。然后重复上述步骤,直到导管尖端到达目标点。一旦导管尖端到达目标点,导管驱动器可能与导管断开,电磁跟踪传感器可以被移除。
本发明上述实施例中提供的体内医疗器械自动引导机器人系统及其自动引导方法,能够根据患者的病情及需求进行定制。所述的机器人系统可以应用于:自动引导活检导管至周围肺气道目标的机器人系统;在心导管插管期间引导导管的机器人系统;在食管胃十二指肠镜检查期间引导导管的机器人系统;血管内手术的机器人系统;在结肠镜检查期间引导结肠镜或基于结肠镜的医疗器械的机器人系统等。
本领域技术人员应理解,本发明上述实施例所提供的机器人系统及其自动引导方法,可以包括实现多种类型功能的各种类型的组件,比如可以使用各种类型的导丝和导管,例如专门设计用于:内窥镜检查、支气管镜检查、结肠镜检查、心导管检查的导丝和导管。可使用各种类型的内窥镜以用于不同的应用,例如:胃肠道(食道、胃和十二指肠镜)、小肠(肠镜)、大肠/结肠(肠镜、乙状结肠镜)、胆管、直肠(直肠镜)和肛门(肛门镜);呼吸道:鼻(鼻镜)、下段呼吸道(支气管镜);耳朵:耳镜;尿路:膀胱镜;女性生殖道(妇科镜):宫颈(阴道镜)、子宫(宫腔镜)、输卵管(输卵管镜);通过小切口:腹腔或盆腔(腹腔镜)、内关节(关节镜)、器官或胸部(胸腔镜和纵隔镜)。
可使用各种类型的导管尖端,例如:直的、弯曲的或部分弯曲的尖端。可使用各种类型的尖端传感器,包括:探头、传感器、电极中的任意一种或任意多种,例如可以采用:力敏传感器、摄像机、LEDs、电极、压电传感器、流体或气体压力传感器。
本发明上述实施例所提供的体内医疗器械自动引导机器人系统及其自动引导方法,显著减少了患者和医生的X射线照射;最小化了柔性器械和机器人部件之间的摩擦;减小了机器人系统的总体尺寸;降低了生产成本;并缩短了临床程序的持续时间。能够实现多个医疗程序的组合,例如支气管镜联合诊断(即通过组织活检)和开放式腹腔镜手术治疗(即组织切除或消融)的结合。机器人系统也可以设置由智能机器人系统操纵的特殊仪器、电磁跟踪系统以及具有光学和电磁跟踪能力的腹腔镜仪器。
本发明上述实施例所提供的体内医疗器械自动引导机器人系统及其自动引导方法,可以用于执行:CT或MRI扫描的三维解剖模型、困难解剖和小周边目标的手术计划,同时进行电磁(EM)和光学导航,用于单台或多台仪器制导,以提高精度。
本发明上述实施例所提供的体内医疗器械自动引导机器人系统及其自动引导方法,用于在各种医疗过程中将医用器械自动引导到解剖结构中的机器人系统的实现方法。配置有电机控制的插入装置和旋转装置,使柔性器械插入和旋转相结合,从而使柔性器械在进入解剖结构时旋转前进。跟踪模块通过放置在柔性器械尖端的跟踪传感器来确定解剖结构中的位置。柔性器械的运动是由控制器控制的马达来驱动的,通过马达,运动柔性器械进入到由跟踪传感器定位到的解剖结构的位置。本发明所述的方法、系统可显著减少患者和医生的x射线暴露,降低柔性器械和机器人部件之间的摩擦,缩小机器人系统的尺寸,降低生产成本,减少临床治疗的时间。
尽管上面仅详细描述了几个实施例,但本领域技术人员应该理解,在不脱离本发明精神的情况下,可以从所描述的实施例中进行许多变化。本发明用理想化实施例(和中间结构)的示意性图示来描述本发明的实施例。因此,由于制造技术和误差等原因,插图的形状会发生变化。因此,本发明的实施例不应被解释为仅限于本文所示区域的特定形状,而应包括例如制造技术导致的形状偏差。
本发明上述实施例所提供的体内医疗器械自动引导机器人系统及其自动引导方法,可包括基于需要添加的替代或附加装置/步骤。本领域技术人员将清楚地看到,在不脱离本发明的精神、范围或本发明的情况下,可以在本发明中进行各种修改和变化。因此,本发明的目的在于涵盖本发明的修改和变型,前提是这些修改和变型属于本发明的范围或所附权利要求及其等效物。

Claims (1)

1.一种体内医疗器械自动引导机器人系统,其特征在于,包括:
驱动器;与柔性器械驱动连接,用于驱动柔性器械在解剖结构中产生直线运动和旋转运动;
跟踪模块;用于获得柔性器械在患者解剖结构内的位置;
计算机模块:用于输出对驱动器的控制指令;所述驱动器包括导线、插入装置、旋转装置、驱动器控制器以及多关节臂;其中:
所述导线沿着柔性器械运行,并分别与柔性器械和跟踪模块连接,用于将柔性器械连接至跟踪模块;
所述插入装置用于实现柔性器械的直线运动;
所述旋转装置用于实现柔性器械的旋转运动;
所述驱动器控制器分别与插入装置和旋转装置控制连接;
所述多关节臂用于支撑及固定插入装置和旋转装置;所述插入装置包括:卷筒、插入电机、第一齿轮、第二齿轮、卷筒第一外壳、卷筒第二外壳、插入装置支架和插入装置外壳;其中:
所述柔性器械可拆卸地盘绕在卷筒上;所述插入电机依次通过第二齿轮和第一齿轮与卷筒驱动连接,用于驱动卷筒转动,进而驱动柔性器械被展开并穿过卷筒第一外壳上的开口,将柔性器械插入到解剖结构中,实现柔性器械的线性运动;改变卷筒的转动方向,使柔性器械从解剖结构中缩回到卷筒上;
所述卷筒和柔性器械封装在卷筒第一外壳和卷筒第二外壳中,形成可拆卸的卷筒组件;第一齿轮设置于卷筒第二外壳的外侧;第二齿轮与第一齿轮啮合;第一齿轮、第二齿轮以及卷筒组件分别安装在插入装置支架上的相应位置,卷筒组件与插入装置支架之间设有旋转滚珠轴承;插入装置外壳设置于插入装置支架的外侧;所述卷筒设置有螺旋通道,柔性器械盘绕在螺旋通道上;所述旋转装置包括:旋转装置支架以及安装于旋转装置支架上的旋转电机、第一锥齿轮和第二锥齿轮;所述旋转电机与第一锥齿轮驱动连接,所述第一锥齿轮与第二锥齿轮啮合;所述第二锥齿轮通过插入滚珠轴承与插入装置的插入装置支架连接;
所述旋转电机带动第一锥齿轮旋转,所述第一锥齿轮带动第二锥齿轮旋转,所述第二锥齿轮带动整个插入装置旋转,进而驱动柔性器械绕其轴线做旋转运动;所述多关节臂设置于旋转装置的旋转装置支架的底端,包括:用于连接到手术台的固定部件,以及以不同角度固定插入装置和旋转装置的角度可调固定部件;所述驱动器控制器根据计算机模块的指令,控制插入装置的插入电机和旋转装置的旋转电机工作,在电机的驱动下,实现柔性器械进入解剖结构的直线运动和旋转运动;所述驱动器控制器从计算机模块接收信息,并基于该信息来控制电机,从而控制柔性器械的运动;和/或所述驱动器控制器通过IEEE/LabVIEW接口对电机进行控制;所述柔性器械包括一个或多个管腔、设置于管腔末端的器械尖端以及设置于器械尖端的尖端传感器;所述器械尖端引导柔性器械穿过解剖结构,尖端传感器与沿着柔性器械运行的导线连接,通过导线将尖端传感器连接到跟踪模块;
所述跟踪模块采用电磁跟踪系统,包括磁场发生器、主单元、一个或多个电磁跟踪传感器;所述磁场发生器布置在患者附近;所述主单元通过导线与放置在患者相应位置的电磁跟踪传感器连接;所述尖端传感器通过导线与主单元连接;所述主单元通过导线与计算机模块相连;其中:
所述磁场发生器,用于产生交变磁场;
所述电磁跟踪传感器,用于感应磁场发生器所产生的交变磁场,并将感应信号的数据传送给主单元;
所述主单元,接受来自电磁跟踪传感器的数据,并对数据进行处理,再将处理后的数据发送给计算机模块,由计算机模块计算出具体的位置信息;
所述尖端传感器的位置由设置在电磁跟踪传感器上的坐标系决定,所述电磁跟踪传感器形成跟踪标记;
所述计算机模块包括:医疗程序规划模块、导航模块、人机交互模块以及成像模块;其中:
所述成像模块,用于接收一个或多个与解剖结构相对应的CT和/或MRI图像并进行压缩处理以及接收一个或多个跟踪标记信号,配置为解剖结构的三维地图的图像,其中,目标位置在所述地图上的映射点采用建立在电磁跟踪传感器上的坐标系来表示;
所述医疗程序规划模块,用于识别与解剖结构相对应的一个或多个图像上的目标位置;
所述导航模块,用于根据三维地图上的入口点和目标位置,创建柔性器械的行进路径;
所述人机交互模块,用于生成对驱动器的驱动器控制器的控制指令,进而控制柔性器械的运动。
CN202010120178.5A 2020-02-26 2020-02-26 体内医疗器械自动引导机器人系统及其自动引导方法 Active CN111281544B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010120178.5A CN111281544B (zh) 2020-02-26 2020-02-26 体内医疗器械自动引导机器人系统及其自动引导方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010120178.5A CN111281544B (zh) 2020-02-26 2020-02-26 体内医疗器械自动引导机器人系统及其自动引导方法

Publications (2)

Publication Number Publication Date
CN111281544A CN111281544A (zh) 2020-06-16
CN111281544B true CN111281544B (zh) 2023-05-12

Family

ID=71030872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010120178.5A Active CN111281544B (zh) 2020-02-26 2020-02-26 体内医疗器械自动引导机器人系统及其自动引导方法

Country Status (1)

Country Link
CN (1) CN111281544B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113350662B (zh) * 2021-06-29 2022-11-29 杭州德诺脑神经医疗科技有限公司 导管控制器
CN114504388A (zh) * 2022-03-15 2022-05-17 山东大学齐鲁医院 一种柔性手术机器人系统及其控制方法
CN115192200B (zh) * 2022-09-14 2023-01-13 北京云力境安科技有限公司 一种手术机器人系统及柔性手术器械
CN115363648B (zh) * 2022-09-14 2023-03-10 北京云力境安科技有限公司 一种柔性手术器械、柔性器械及其器械输送单元
CN115363649B (zh) * 2022-09-14 2023-02-17 北京云力境安科技有限公司 一种柔性手术器械及其器械驱动装置
CN115414129B (zh) * 2022-11-04 2023-04-07 北京云力境安科技有限公司 一种柔性手术器械、柔性器械及其器械输送单元
CN117770739B (zh) * 2024-02-27 2024-05-31 北京云力境安科技有限公司 一种器械输送及介入装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648361A (zh) * 2011-05-13 2014-03-19 直观外科手术操作公司 提供用于图像引导的外科手术的解剖结构的模型的动态配准的医疗系统
CN107028659A (zh) * 2017-01-23 2017-08-11 新博医疗技术有限公司 一种ct图像引导下的手术导航系统及导航方法
CN108095777A (zh) * 2013-05-16 2018-06-01 直观外科手术操作公司 用于与外部成像集成的机器人医疗系统的系统和方法
CN108882966A (zh) * 2016-12-28 2018-11-23 奥瑞斯健康公司 用于柔性器械插入的装置
CN109715103A (zh) * 2016-06-24 2019-05-03 港大科桥有限公司 用于核磁共振成像引导的心血管介入术的机器人导管系统
CN109925058A (zh) * 2017-12-18 2019-06-25 吕海 一种脊柱外科微创手术导航系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090182226A1 (en) * 2001-02-15 2009-07-16 Barry Weitzner Catheter tracking system
US7458977B2 (en) * 2003-02-04 2008-12-02 Zimmer Technology, Inc. Surgical navigation instrument useful in marking anatomical structures
US8046049B2 (en) * 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
KR100695468B1 (ko) * 2005-10-07 2007-03-16 한양대학교 산학협력단 수술도구 위치 설정용 다자유도 로봇
US20080262513A1 (en) * 2007-02-15 2008-10-23 Hansen Medical, Inc. Instrument driver having independently rotatable carriages
US10039473B2 (en) * 2012-05-14 2018-08-07 Intuitive Surgical Operations, Inc. Systems and methods for navigation based on ordered sensor records
EP3033132B1 (en) * 2013-08-15 2021-01-06 Intuitive Surgical Operations, Inc. Graphical user interface for catheter positioning and insertion
WO2017044874A1 (en) * 2015-09-10 2017-03-16 Intuitive Surgical Operations, Inc. Systems and methods for using tracking in image-guided medical procedure
US10143526B2 (en) * 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
WO2017114855A1 (en) * 2015-12-29 2017-07-06 Koninklijke Philips N.V. System, control unit and method for control of a surgical robot
US9931025B1 (en) * 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
US10588622B2 (en) * 2016-12-07 2020-03-17 Ethicon, Inc. Applicator instruments having articulating shafts for dispensing surgical fasteners
CN110464967A (zh) * 2019-08-05 2019-11-19 上海大学 一种微创血管介入手术机器人辅助进丝装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648361A (zh) * 2011-05-13 2014-03-19 直观外科手术操作公司 提供用于图像引导的外科手术的解剖结构的模型的动态配准的医疗系统
CN108095777A (zh) * 2013-05-16 2018-06-01 直观外科手术操作公司 用于与外部成像集成的机器人医疗系统的系统和方法
CN109715103A (zh) * 2016-06-24 2019-05-03 港大科桥有限公司 用于核磁共振成像引导的心血管介入术的机器人导管系统
CN108882966A (zh) * 2016-12-28 2018-11-23 奥瑞斯健康公司 用于柔性器械插入的装置
CN107028659A (zh) * 2017-01-23 2017-08-11 新博医疗技术有限公司 一种ct图像引导下的手术导航系统及导航方法
CN109925058A (zh) * 2017-12-18 2019-06-25 吕海 一种脊柱外科微创手术导航系统

Also Published As

Publication number Publication date
CN111281544A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN111281544B (zh) 体内医疗器械自动引导机器人系统及其自动引导方法
US20220125527A1 (en) Methods and systems for mapping and navigation
JP7404342B2 (ja) 手動及びロボット制御可能な医療用器具
US11395708B2 (en) Systems and methods for automatic guidance of medical catheters and endoscopes
JP7427654B2 (ja) 付随する医療処置を行うためのシステム及び方法
JP7098723B2 (ja) ナビゲーション経路追跡用に構成されたロボットシステム
US20230301493A1 (en) Systems and methods for use of a variable stiffness flexible elongate device
US20200100855A1 (en) Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures
JP2022527834A (ja) 付随する処置のためのシステム、方法、及びワークフロー
JP4166277B2 (ja) 体内プローブを用いた医療方法および装置
JP2020526252A (ja) 医療器具の圧縮の補償のためのシステムおよび方法
JP2020535883A (ja) ロボットアームの境界を示すロボットシステム
KR20200140299A (ko) 위치 센서의 정합을 위한 시스템 및 방법
US20230076439A1 (en) Methods and systems for disposable endoscope
JP2023508539A (ja) ロボット医療用システム用の検体コレクタ
US20220202500A1 (en) Intraluminal navigation using ghost instrument information
US11147629B2 (en) Surgical navigation system with automatically driven endoscope
JP2023529291A (ja) トリプル画像化ハイブリッドプローブのためのシステム及び方法
US20240099777A1 (en) Systems and methods for updating a target location using intraoperative image data
US20220273189A1 (en) Six degrees of freedom from a single inductive pickup coil sensor
KR20230040308A (ko) 로봇 내시경 점막하 절제술을 위한 시스템 및 방법
WO2023225052A1 (en) Medical procedures and systems using active implants
CN116669804A (zh) 双铰接导管
CN115721349A (zh) 用于经支气管介入诊疗的机器人系统
CN116456925A (zh) 机器人式可控场发生器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant