CN111262610A - 一种基于等效信道码本反馈的自适应混合预编码方法 - Google Patents

一种基于等效信道码本反馈的自适应混合预编码方法 Download PDF

Info

Publication number
CN111262610A
CN111262610A CN202010046623.8A CN202010046623A CN111262610A CN 111262610 A CN111262610 A CN 111262610A CN 202010046623 A CN202010046623 A CN 202010046623A CN 111262610 A CN111262610 A CN 111262610A
Authority
CN
China
Prior art keywords
base station
equivalent channel
channel
method based
precoding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010046623.8A
Other languages
English (en)
Other versions
CN111262610B (zh
Inventor
许威
赵雅琼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010046623.8A priority Critical patent/CN111262610B/zh
Publication of CN111262610A publication Critical patent/CN111262610A/zh
Application granted granted Critical
Publication of CN111262610B publication Critical patent/CN111262610B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0851Joint weighting using training sequences or error signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种基于等效信道码本反馈的自适应混合预编码方法,包括:步骤1,基站根据原始信道训练的结果设计模拟预编码矩阵;步骤2,基站发送经过模拟预编码A的等效信道训练序列;步骤3,用户根据接收信号估计与基站之间的等效信道状态信息,使用具备信道统计特征的码本对等效信道状态信息进行量化,并将量化后的有效信道反馈给基站;步骤4,基站计算信噪比门限值;判断当前信噪比小于信噪比门限值时执行步骤5;否则执行步骤6;步骤5,基站根据等效信道设计数字预编码矩阵;步骤6,基站将数字预编码矩阵设置为缺省矩阵设计方式。本发明能够有效提升系统性能,对信道信息不完美时的系统速率进行了分析,更加符合实际情况。

Description

一种基于等效信道码本反馈的自适应混合预编码方法
技术领域
本发明属于大规模天线技术领域,涉及通信编码方法,尤其涉及一种基于等效信道码本反馈的自适应混合预编码方法。
背景技术
大规模天线作为5G移动通信中的一项关键技术受到人们的广泛关注。由于它具备消除干扰和抑制噪声的能力,即使用简单的线性预编码方案也可以实现近乎理想的性能。然而在传统预编码方案中,每个天线都需要由一个专用的射频链来驱动,因此在天线大规模部署时系统的成本和能耗很高。针对这一问题,学术界提出了纯模拟预编码和混合预编码两种设计方案。前者完全依赖于模拟域处理,因此可以降低对射频硬件的要求,而后者结合了数字处理和模拟处理的优点,牺牲了少量复杂度以获取更多的自由度。尽管现有文献中大多考虑的是混合预编码,但已有学者证明纯模拟预编码在一些特定设置下可以取得比混合预编码更优的性能。因此,根据系统参数自适应的调整预编码方案以取得更优的性能成为了一个值得研究的问题。
现有的比较纯模拟与混合预编码性能的方案是基于基站端具有完美信道信息的假设,由于成本和硬件工艺的限制这在实际中很难实现,因此在不完美信道信息下比较纯模拟预编码和混合预编码的性能更具有实际意义。而目前,尚缺乏令人满意的解决方案。
发明内容
为解决上述问题,本发明提出了一种实际情况中比较纯模拟预编码与混合预编码性能的定量指标,定量地比较信道信息不完美时纯模拟预编码与混合预编码的性能优劣,从而可以根据系统参数的不同自适应调整预编码方案,由此提供的基于等效信道码本反馈的自适应混合预编码方法能够在降低成本的同时提升系统性能。
为了达到上述目的,本发明提供如下技术方案:
一种基于等效信道码本反馈的自适应混合预编码方法,包括如下步骤:
步骤1,基站向所有用户发送原始信道的训练序列,根据训练获得的信道估计结果来设计模拟预编码矩阵A;
步骤2,基站向所有用户发送经过模拟预编码A的等效信道训练序列;
步骤3,用户根据接收信号估计与基站之间的等效信道状态信息,使用具备信道统计特征的码本Γ根据
Figure BDA0002369636130000021
对等效信道状态信息进行量化,并将量化后的有效信道反馈给基站;
步骤4,基站根据发送天线数、子阵列结构、用户数和反馈比特数B计算信噪比门限值;若当前信噪比小于信噪比门限值,则采用混合预编码方案,执行步骤5;否则采用纯模拟预编码方案,执行步骤6;
步骤5,基站根据等效信道设计数字预编码矩阵;
步骤6,基站将数字预编码矩阵设置为缺省矩阵设计方式。
进一步的,在步骤1中,A=[a1,a2,…,aK],用户k的模拟预编码向量ak为:
ak={ak,i|i=1,2,…,M}
Figure BDA0002369636130000022
其中,ak,i为ak的第i个元素,hk为用户k到基站的上行信道状态信息向量,hk,i为hk的第i个元素,M为基站天线数目,
Figure BDA0002369636130000023
为每个射频链路所连接的天线数,K为射频链路数目。
进一步的,在步骤2中,第k个用户到基站之间的等效信道定义为:
Figure BDA0002369636130000024
进一步的,在步骤3中,对于用户k而言,基于信道统计量的码本Γ定义如下:
Figure BDA0002369636130000025
其中,Rk为用户k等效信道的自相关阵,vi为服从独立同分布的随机复高斯向量,B为反馈比特数。
进一步的,在步骤3中,用户k到基站之间等效信道的自相关阵Rk为:
Figure BDA0002369636130000026
其中,
Figure BDA0002369636130000027
进一步的,在步骤4中,信噪比门限值根据下面公式计算:
Figure BDA0002369636130000028
进一步的,在步骤5中,基站采用最大比传输预编码设计方式。
进一步的,在步骤6中,基站直接取数字预编码矩阵为单位阵。
与现有技术相比,本发明具有如下优点和有益效果:
1、本发明考虑到系统中采用量化信道状态信息反馈的情况,提出根据系统参数自适应调整混合预编码方案,能够有效提升系统性能。
2、本发明方法对信道信息不完美时的系统速率进行了分析,更加符合实际情况;其中提出的针对信道不完美时的系统性能分析可以拓展至基站端有完美信道状态信息的情况,适用范围广。
3、本发明方法为通信系统提供了一种根据系统参数自适应调整预编码方案的机制,保证了系统性能的最优性。
4、本发明方法计算出的指标只取决于系统信噪比,实现方便。
附图说明
图1是本发明提出的基于等效信道码本反馈的自适应混合预编码方法的流程图;
图2是本发明提出的基于等效信道码本反馈的自适应混合预编码方法的系统框图。
图3是本发明与纯模拟预编码和混合预编码在信道状态信息完美时的性能对比图。
图4是本发明与纯模拟预编码和混合预编码在信道状态信息不完美时的性能对比图。
具体实施方式
以下将结合具体实施例对本发明提供的技术方案进行详细说明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
本发明提出的基于等效信道码本反馈的自适应混合预编码方法,其系统框图如图2所示,流程如图1所示,包括以下步骤:
(1)基站向所有用户发送原始信道的训练序列,根据训练获得的信道估计结果来设计模拟预编码矩阵A,其中A=[a1,a2,…,aK]。用户k的模拟预编码向量ak为:
ak={ak,ii|=1,2,…,M}
Figure BDA0002369636130000031
其中,ak,i为ak的第i个元素,hk为用户k到基站的上行信道状态信息向量,hk,i为hk的第i个元素,M为基站天线数目,
Figure BDA0002369636130000032
为每个射频链路所连接的天线数,K为射频链路数目。
(2)基站向所有用户发送经过模拟预编码A的等效信道训练序列,第k个用户到基站之间的等效信道定义为:
Figure BDA0002369636130000041
其中A=[a1,a2,…,aK]为基站侧的模拟预编码矩阵。
(3)用户根据接收信号估计与基站之间的等效信道状态信息,使用具备信道统计特征的码本Γ根据
Figure BDA0002369636130000042
对等效信道状态信息进行量化,并将量化后的有效信道反馈给基站。对于用户k而言,基于信道统计量的码本Γ定义如下:
Figure BDA0002369636130000043
其中,Rk为用户k等效信道的自相关阵,vi为服从独立同分布的随机复高斯向量。Rk满足:
Figure BDA0002369636130000044
其中,
Figure BDA0002369636130000045
(4)根据基站天线数、子阵列结构、用户数和反馈比特数B计算信噪比门限值,若当前信噪比小于信噪比门限值,则采用混合预编码方案,执行步骤(5);否则采用纯模拟预编码方案,执行(6)。信噪比门限值根据下面公式计算为:
Figure BDA0002369636130000046
(5)基站根据等效信道设计数字预编码矩阵,如采用最大比传输预编码设计方式;
(6)基站将数字预编码矩阵设置为缺省矩阵设计方式,如直接取数字预编码矩阵为单位阵。
图3和图4分别是信道信息完美和不完美时本发明所提出的基于等效信道码本反馈的自适应混合预编码方法与单独纯模拟和单独混合预编码的性能对比图。从图中可以明显看出,本发明所提的自适应预编码方案结合了原有的两种预编码的优点,通过判断系统参数与给定门限的关系切换预编码方案,从而有效地提升了系统性能。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (8)

1.一种基于等效信道码本反馈的自适应混合预编码方法,其特征在于,包括如下步骤:
步骤1,基站向所有用户发送原始信道的训练序列,根据训练获得的信道估计结果来设计模拟预编码矩阵A;
步骤2,基站向所有用户发送经过模拟预编码A的等效信道训练序列;
步骤3,用户根据接收信号估计与基站之间的等效信道状态信息,使用具备信道统计特征的码本Γ根据
Figure FDA0002369636120000011
对等效信道状态信息进行量化,并将量化后的有效信道反馈给基站;
步骤4,基站根据发送天线数、子阵列结构、用户数和反馈比特数B计算信噪比门限值;若当前信噪比小于信噪比门限值,则采用混合预编码方案,执行步骤5;否则采用纯模拟预编码方案,执行步骤6;
步骤5,基站根据等效信道设计数字预编码矩阵;
步骤6,基站将数字预编码矩阵设置为缺省矩阵设计方式。
2.根据权利要求1所述的基于等效信道码本反馈的自适应混合预编码方法,其特征在于,在步骤1中,A=[a1,a2,…,aK],用户k的模拟预编码向量ak为:
ak={ak,i|i=1,2,…,M}
Figure FDA0002369636120000012
其中,ak,i为ak的第i个元素,hk为用户k到基站的上行信道状态信息向量,hk,i为hk的第i个元素,M为基站天线数目,
Figure FDA0002369636120000013
为每个射频链路所连接的天线数,K为射频链路数目。
3.根据权利要求1所述的基于等效信道码本反馈的自适应混合预编码方法,其特征在于,在步骤2中,第k个用户到基站之间的等效信道定义为:
Figure FDA0002369636120000014
4.根据权利要求1所述的基于等效信道码本反馈的自适应混合预编码方法,其特征在于,在步骤3中,对于用户k而言,基于信道统计量的码本Γ定义如下:
Figure FDA0002369636120000015
其中,Rk为用户k等效信道的自相关阵,vi为服从独立同分布的随机复高斯向量,B为反馈比特数。
5.根据权利要求4所述的基于等效信道码本反馈的自适应混合预编码方法,其特征在于,在步骤3中,用户k到基站之间等效信道的自相关阵Rk为:
Figure FDA0002369636120000021
其中,
Figure FDA0002369636120000022
6.根据权利要求1所述的基于等效信道码本反馈的自适应混合预编码方法,其特征在于,在步骤4中,信噪比门限值根据下面公式计算:
Figure FDA0002369636120000023
7.根据权利要求1所述的基于等效信道码本反馈的自适应混合预编码方法,其特征在于,在步骤5中,基站采用最大比传输预编码设计方式。
8.根据权利要求1所述的基于等效信道码本反馈的自适应混合预编码方法,其特征在于,在步骤6中,基站直接取数字预编码矩阵为单位阵。
CN202010046623.8A 2020-01-16 2020-01-16 一种基于等效信道码本反馈的自适应混合预编码方法 Active CN111262610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010046623.8A CN111262610B (zh) 2020-01-16 2020-01-16 一种基于等效信道码本反馈的自适应混合预编码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010046623.8A CN111262610B (zh) 2020-01-16 2020-01-16 一种基于等效信道码本反馈的自适应混合预编码方法

Publications (2)

Publication Number Publication Date
CN111262610A true CN111262610A (zh) 2020-06-09
CN111262610B CN111262610B (zh) 2022-06-03

Family

ID=70954178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010046623.8A Active CN111262610B (zh) 2020-01-16 2020-01-16 一种基于等效信道码本反馈的自适应混合预编码方法

Country Status (1)

Country Link
CN (1) CN111262610B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120257579A1 (en) * 2009-12-22 2012-10-11 Bin Li Method for feeding back channel state information, and method and device for obtaining channel state information
CN107707284A (zh) * 2017-07-25 2018-02-16 东南大学 一种基于信道统计量码本量化反馈的混合预编码方法
US20180191535A1 (en) * 2016-12-31 2018-07-05 Shanghai Research Center For Wireless Communicatio ns Adaptive parameter adjustment method for hybrid precoding millimeter-wave transmission system
CN108347267A (zh) * 2018-01-04 2018-07-31 东南大学 一种面向大规模mimo的自适应混合检测接收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120257579A1 (en) * 2009-12-22 2012-10-11 Bin Li Method for feeding back channel state information, and method and device for obtaining channel state information
US20180191535A1 (en) * 2016-12-31 2018-07-05 Shanghai Research Center For Wireless Communicatio ns Adaptive parameter adjustment method for hybrid precoding millimeter-wave transmission system
CN107707284A (zh) * 2017-07-25 2018-02-16 东南大学 一种基于信道统计量码本量化反馈的混合预编码方法
CN108347267A (zh) * 2018-01-04 2018-07-31 东南大学 一种面向大规模mimo的自适应混合检测接收方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JINBO DU等: ""Hybrid Precoding Architecture for Massive Multiuser MIMO With Dissipation: SubConnected or Fully Connected Structures?"", 《 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS》 *
JINBO DU等: ""Quantized Hybrid Precoding for Massive Multiuser MIMO with Insertion Loss"", 《GLOBECOM 2017 - 2017 IEEE GLOBAL COMMUNICATIONS CONFERENCE》 *

Also Published As

Publication number Publication date
CN111262610B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
US7684761B2 (en) Closed-loop signalling method for controlling multiple transmit beams and correspondingly adapted transceiver devices
EP3171525B1 (en) System and method for channel information feedback in a wireless communications system
CN108880774B (zh) 频分双工多用户大规模多天线系统及其下行导频信号长度设计方法
WO2017000752A1 (zh) 一种fdd大规模mimo系统下行链路训练序列设计方法
US8331426B2 (en) Method, system and apparatus for improving throughput performance of space division multiple access system
CN101166047B (zh) 利用信道几何均值分解的多天线通信系统的发送装置、接收装置、发送方法及接收方法
US20070147536A1 (en) Wireless communication device employing interference-sensitive mode selection and associated methods
US20200136700A1 (en) Channel Prediction for Adaptive Channel State Information (CSI) Feedback Overhead Reduction
CN108063634B (zh) 一种低精度量化大规模mimo中最优正则预编码方法
CA2642893A1 (en) System, apparatus, and method for asymmetrical beamforming with equal-power transmissions
CN113644952B (zh) 基于分布式csi的多测控站多星mimo上行抗干扰方法
WO2008098442A1 (fr) Procédé et moyen de réglage de débit et de puissance d'un sous-canal en fonction de l'espace
CN107707284B (zh) 一种基于信道统计量码本量化反馈的混合预编码方法
CN103595455B (zh) 基于用户满意度的lte‑a非码本波束赋形方法
Zhang et al. Cell-free massive MIMO with low-resolution ADCs over spatially correlated channels
CN111262610B (zh) 一种基于等效信道码本反馈的自适应混合预编码方法
CN110912590A (zh) 基于信道反转技术的大规模衰落mimo系统的干扰抑制预编码方法
CN108683441B (zh) 混合预编码中的多用户波束赋形方法
CN1585297A (zh) 一种智能天线的波束赋形方法及其装置
CN107579762B (zh) 一种基于量化和统计信道信息的多小区协作预编码方法
Yang et al. Performance analysis of massive MIMO systems with low-resolution ADCs and IQI
CN113691287B (zh) 一种基于平均误比特率约束的大规模mimo系统自适应调制方法
CN114513268A (zh) 一种基于双阈值的联合感知通信波形获取方法
CN102710371B (zh) 多天线两跳中继系统中利用有限反馈信息的传输方法
CN104702384A (zh) 基于量化信息的上行mu-mimo系统检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant