CN111250727A - 一种银纳米簇的同分异构体及其制备方法与应用 - Google Patents
一种银纳米簇的同分异构体及其制备方法与应用 Download PDFInfo
- Publication number
- CN111250727A CN111250727A CN201811459032.2A CN201811459032A CN111250727A CN 111250727 A CN111250727 A CN 111250727A CN 201811459032 A CN201811459032 A CN 201811459032A CN 111250727 A CN111250727 A CN 111250727A
- Authority
- CN
- China
- Prior art keywords
- silver
- solution
- nanocluster
- isomer
- organic solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
Abstract
本发明涉及银纳米簇同分异构体的合成技术。本发明的目的是提供一种银纳米簇的同分异构体的制备方法。其方法如下:在采用典型的尺寸刻蚀方法合成金属纳米簇的过程中,在被硼氢化钠还原之前或之后,向反应溶液中加入二价铜离子金属盐,反应5‑9小时后,获得单一尺寸银纳米簇的同分异构体。通过紫外可见吸收光谱表征同分异构体的光学性质的变化。通过培养单晶,解析纳米簇的晶体结构。此发明涉及的方法具有可行性,操作简单,易于控制。本发明合成的银纳米簇的同分异构体具有不同光学性质,可以应用于铜离子检测,也可以应用于纳米簇的结构和性质的构效关系的构建。
Description
技术领域
本发明属于银纳米簇的合成技术领域,具体涉及一种银纳米簇的同分异构体的制备方法。
背景技术
近年来,金属纳米簇作为一种新型的纳米材料备受关注并得到了广泛的研究。纳米簇一般是指尺寸小于2nm,有配体保护的、具有精确原子个数的、具有量子尺寸效应的纳米粒子。由于金属纳米簇具有独特的化学和物理性质,在催化、能源、环保、医学成像、化学传感等领域具有十分广阔的应用前景。
在金属纳米簇的研究中,获得纳米簇的晶体结构是十分重要。结构决定性质,通过获得晶体结构和性质,可以构建金属纳米簇的结构和性质的构效关系。金纳米簇的合成和应用得到最广泛的研究,而银纳米簇的合成和晶体结构的获得相对有限,包括Ag14(Chem.Commun.2013,49,300-302)、Ag16(Nanoscale.2013,5,2674-2677)、Ag21(Angew.Chem.Int.Ed.2015,54,3702-3706)、Ag23(Nat.Commun.2018,9,744)、Ag25(J.Am.Chem.Soc.2015,137,11578-11581)、Ag29(J.Am.Chem.Soc.2015,137,11970-11975)、Ag44(Nature.2013,501,399-402)、Ag67(J.Am.Chem.Soc.2016,138,14727-14732)、Ag141(J.Am.Chem.Soc.2017)、Ag136和Ag374(Nat.Commun.2016,7,12809)。银纳米簇的合成方法包括尺寸刻蚀归一化法、配体交换法等。
同分异构体,对于研究金属纳米簇的构效关系十分重要。尽管分子式相同,结构的细微差别,会导致性质的不同。但在金属纳米簇中,同分异构体并不常见,尤其在银纳米簇中。
发明内容
本发明的目的是提供一种银纳米簇的同分异构体的制备方法。
制备方法如下:在采用典型的尺寸刻蚀方法合成金属纳米簇的过程中,在被硼氢化钠还原之前或之后,向反应溶液中加入二价铜离子金属盐,反应5-9小时后,获得单一尺寸银纳米簇的同分异构体。通过紫外可见吸收光谱表征同分异构体的光学性质的变化。通过培养单晶,解析纳米簇的晶体结构。
所述制备方法,其特征在于:金属纳米簇是由配体保护的银纳米簇;金属纳米簇是银纳米簇;使用的金属盐包括氯化铜、硝酸铜、硫酸铜等所有二价铜离子金属盐;在合成金属纳米簇的过程中,二价铜离子金属盐既可以在被硼氢化钠还原之前加入,也可以在被硼氢化钠还原之后加入;反应时间为5-9小时。
本发明一方面提供一种银纳米簇的同分异构体的制备方法,所述方法包括如下步骤:
(1)将银前驱体溶于有机溶剂A中得到溶液a,将配体A溶于有机溶剂A中得到溶液b,将配体B溶于有机溶剂B中得到溶液c;所述溶液a的浓度为10mg/mL.;所述溶液b的浓度为30mg/mL.;所述溶液c的浓度为15mg/mL。
(2)将铜前驱体加入溶液a中,搅拌10-15min后,加入所述溶液b,然后搅拌25-40min后,加入溶液c,搅拌10-20min后加入平衡离子,最后加入还原剂搅拌5-9h后,经过洗涤提纯得到所述银纳米簇同分异构体。
基于以上技术方案,优选的,所述Ag前驱体为硝酸银、四氟硼化银.;所述铜前驱体为二价铜离子盐。
基于以上技术方案,优选的,所述有机溶剂A为甲醇、乙醇、正己烷等;所述有机溶剂B为二氯甲烷、四氢呋喃、甲苯等。
基于以上技术方案,优选的,在所述合成Ag纳米簇的同分异构体的过程中,铜前驱体加入的顺序为在加入还原剂之前或之后加入均可。
基于以上技术方案,优选的,所述配体A为乙硫醇;所述配体B为三苯基膦。
基于以上技术方案,优选的,所述平衡离子为四苯基溴化磷、六氟锑化钠。
基于以上技术方案,优选的,所述还原剂为硼氢化钠、六氟硼化钠、氢气。
基于以上技术方案,优选的,反应时间为5-6小时。
基于以上技术方案,优选的,所述二价铜离子盐为氯化铜、硝酸铜、硫酸铜。
本发明另一方面提供一种上述制备方法制备的银纳米簇同分异构体。
本发明再一方面提供一种上述银纳米簇同分异构体的应用,其特征在于,所述银同分异构体在铜离子检测和在纳米簇的结构和性质的构效关系的构建中的应用
有益效果
a)本发明为合成银纳米簇的同分异构体提供新的方法,此发明涉及的方法具有可行性,操作简单,易于控制。
b)本发明合成的银纳米簇的同分异构体具有不同光学性质,可以应用于铜离子检测,也可以应用于纳米簇的结构和性质的构效关系的构建。
附图说明
图1为对比例1制备的Ag23纳米簇和实施例1制备的Ag23纳米簇的同分异构体的紫外可见吸收光谱图。
图2为对比例1制备的中Ag23纳米簇和实施例1制备Ag23纳米簇的同分异构体的结构图。
具体实施方式
以下结合实例对本发明做具体的说明
对比例1
Ag23纳米簇的合成
称取24mg硝酸银于50mL圆底烧瓶中,加1mL甲醇,超声溶解;10分钟后,加入38微升苯乙硫醇溶于1mL甲醇;20分钟后,加入214mg三苯基膦溶于12mL二氯甲烷;10分钟后,加入5mg四苯基溴化磷,最后加入13mg硼氢化钠溶于1mL冰水,搅拌6小时。通过紫外可见吸收光谱表征光学性质。如图1所示,NC1对应Ag23纳米簇的紫外可见吸收光谱。旋蒸浓缩,在浓缩液和乙醇的混合液中培养单晶。通过X射线衍射测得晶体结构。如图2所示,NC1对应Ag23纳米簇的结构简图。
实施例1
Ag23纳米簇的同分异构体的合成
称取24mg硝酸银于50mL圆底烧瓶中,加1mL甲醇,超声溶解,再加入7mg二水氯化铜;10分钟后,加入38微升苯乙硫醇溶于1mL甲醇;20分钟后,加入214mg三苯基膦溶于12mL二氯甲烷;10分钟后,加入5mg四苯基溴化磷,最后加入13mg硼氢化钠溶于1mL冰水,搅拌6小时。通过紫外可见吸收光谱表征光学性质。如图1所示,NC2对应Ag23纳米簇同分异构体的紫外可见吸收光谱。旋蒸浓缩,在浓缩液和乙醇的混合液中培养单晶。通过X射线衍射测得晶体结构。如图2所示,NC2对应Ag23纳米簇的结构简图。
实施例2
Ag23纳米簇的同分异构体的合成
称取22mg硝酸银于50mL圆底烧瓶中,加1mL甲醇,超声溶解,;10分钟后,加入36微升苯乙硫醇溶于1mL甲醇;20分钟后,加入198mg三苯基膦溶于12mL二氯甲烷;10分钟后,加入4mg四苯基溴化磷,最后加入12mg硼氢化钠溶于1mL冰水,搅拌3小时。再加入9mg三水硝酸铜,搅拌5小时。通过紫外可见吸收光谱表征光学性质。旋蒸浓缩,在浓缩液和乙醇的混合液中培养单晶。通过X射线衍射测得晶体结构。
Claims (10)
1.一种银纳米簇的同分异构体的制备方法,其特征在于,所述方法包括如下步骤:
(1)将银前驱体溶于有机溶剂A中得到溶液a,将配体A溶于有机溶剂A中得到溶液b,将配体B溶于有机溶剂B中得到溶液c;所述溶液a的浓度为10mg/mL.;所述溶液b的浓度为30mg/mL.;所述溶液c的浓度为15mg/mL;
(2)将铜前驱体加入溶液a中,搅拌10-15min后,加入所述溶液b,然后搅拌25-40min后,加入溶液c,搅拌10-20min后加入平衡离子,最后加入还原剂搅拌5-9h后,经过洗涤提纯得到所述银纳米簇同分异构体。
2.根据权利要求1所述的制备方法,其特征在于:所述银前驱体为硝酸银、四氟硼化银;所述铜前驱体为二价铜离子盐。
3.根据权利要求1所述的制备方法,其特征在于,所述有机溶剂A为甲醇、乙醇、正己烷;所述有机溶剂B为二氯甲烷、四氢呋喃、甲苯。
4.根据权利要求1所述的制备方法,其特征在于,所述配体A为乙硫醇;所述配体B为三苯基膦。
5.根据权利要求1所述的制备方法,其特征在于,所述平衡离子为四苯基溴化磷、六氟锑化钠。
6.根据权利要求1所述的制备方法,其特征在于,所述还原剂为硼氢化钠、六氟硼化钠、氢气。
7.根据权利要求1所述的制备方法,其特征在于:反应时间为5-6小时。
8.根据权利要求2所述的制备方法,其特征在于,所述二价铜离子盐为氯化铜、硝酸铜、硫酸铜。
9.一种权利要求1所述制备方法制备的银纳米簇同分异构体。
10.一种权利要求9所述的银纳米簇同分异构体的应用,其特征在于,所述银同分异构体在铜离子检测中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811459032.2A CN111250727B (zh) | 2018-11-30 | 2018-11-30 | 一种银纳米簇的同分异构体及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811459032.2A CN111250727B (zh) | 2018-11-30 | 2018-11-30 | 一种银纳米簇的同分异构体及其制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111250727A true CN111250727A (zh) | 2020-06-09 |
CN111250727B CN111250727B (zh) | 2021-07-06 |
Family
ID=70923882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811459032.2A Active CN111250727B (zh) | 2018-11-30 | 2018-11-30 | 一种银纳米簇的同分异构体及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111250727B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4815586B2 (ja) * | 2005-08-12 | 2011-11-16 | 国立大学法人 筑波大学 | Au25クラスターの選択的大量合成方法 |
US20120052513A1 (en) * | 2010-08-24 | 2012-03-01 | Pradeep Thalappil | Gold sub-nanoclusters and uses thereof |
US20120267573A1 (en) * | 2011-04-20 | 2012-10-25 | Wu Jau-Yann | Method for making fluorescent gold nano-material |
US8383919B2 (en) * | 2010-12-14 | 2013-02-26 | Xueyun Gao | Highly fluorescent peptide-metallic nanoclusters as bio-probes and methods of synthesis thereof |
US8536119B2 (en) * | 2007-04-10 | 2013-09-17 | Los Alamos National Security, Llc | Synthesis of fluorescent metal nanoclusters |
US9683992B2 (en) * | 2013-07-31 | 2017-06-20 | Colorado State University Research Foundation | Ligand passivated gold nanoparticles |
CN106862584A (zh) * | 2015-12-13 | 2017-06-20 | 中国科学院大连化学物理研究所 | 一种原子个数及粒子尺寸可控银纳米簇的合成方法 |
CN108115149A (zh) * | 2016-11-28 | 2018-06-05 | 中国科学院大连化学物理研究所 | 一种原子个数可控的AgM合金纳米簇的合成方法 |
-
2018
- 2018-11-30 CN CN201811459032.2A patent/CN111250727B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4815586B2 (ja) * | 2005-08-12 | 2011-11-16 | 国立大学法人 筑波大学 | Au25クラスターの選択的大量合成方法 |
US8536119B2 (en) * | 2007-04-10 | 2013-09-17 | Los Alamos National Security, Llc | Synthesis of fluorescent metal nanoclusters |
US20120052513A1 (en) * | 2010-08-24 | 2012-03-01 | Pradeep Thalappil | Gold sub-nanoclusters and uses thereof |
US8383919B2 (en) * | 2010-12-14 | 2013-02-26 | Xueyun Gao | Highly fluorescent peptide-metallic nanoclusters as bio-probes and methods of synthesis thereof |
US20120267573A1 (en) * | 2011-04-20 | 2012-10-25 | Wu Jau-Yann | Method for making fluorescent gold nano-material |
US9683992B2 (en) * | 2013-07-31 | 2017-06-20 | Colorado State University Research Foundation | Ligand passivated gold nanoparticles |
CN106862584A (zh) * | 2015-12-13 | 2017-06-20 | 中国科学院大连化学物理研究所 | 一种原子个数及粒子尺寸可控银纳米簇的合成方法 |
CN108115149A (zh) * | 2016-11-28 | 2018-06-05 | 中国科学院大连化学物理研究所 | 一种原子个数可控的AgM合金纳米簇的合成方法 |
Non-Patent Citations (2)
Title |
---|
CHAO LIU等: "Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework", 《NATURE COMMUNICATIONS》 * |
MAN-BO LI等: "Cu2+ induced formation of Au44(SC2H4Ph)32 and its high catalytic activity for the reduction of 4-nitrophenol at low temperature", 《CHEMCOMM》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111250727B (zh) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kajal et al. | Metal organic frameworks for electrochemical sensor applications: A review | |
CN110724272A (zh) | 一种混合价态铁掺杂沸石咪唑酯骨架纳米材料的制备方法 | |
Yang et al. | A bifunctional POM-based Cu-viologen complex with mixed octamolybdate clusters for rapid oxidation desulfurization and effective photogeneration of hydrogen | |
Wang et al. | An Atomically Precise Pyrazolate‐Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity | |
Shang et al. | Recent Advances on Single‐Atom Catalysts for Photocatalytic CO2 Reduction | |
Zhu et al. | Structural determination of a metastable Ag 27 nanocluster and its transformations into Ag 8 and Ag 29 nanoclusters | |
Liu et al. | Construction of polyoxometalate-based metal− organic frameworks through covalent bonds for enhanced visible light-driven coupling of alcohols with amines | |
Mirtamizdoust et al. | A novel nano-structured three-dimensional supramolecular metal-organic framework for cadmium (II): A new precursor for producing nano cadmium oxide | |
Sheng et al. | Decagram-scale synthesis of heterometallic Ag/Ti cluster as sustainable catalyst for selective oxidation of sulfides | |
Goudarzi et al. | Unprecedented bi-and trinuclear palladium (II)-sodium complexes from a salophen-type Schiff base: Synthesis, characterization, thermal behavior, and in vitro biological activities | |
Nefedov et al. | Palladium (II)–rare-earth metal (III) paddlewheel carboxylate complexes: Easy total acetate to pivalate metathesis | |
CN111250727B (zh) | 一种银纳米簇的同分异构体及其制备方法与应用 | |
Amini et al. | Synthesis and characterization of a new copper-based polyoxomolybdate and its catalytic activity for azide-alkyne cycloaddition reaction under UV light irradiation | |
Yin et al. | Syntheses, crystal structure and luminescence property of novel 4f-3d heterometallic one-dimensional coordination polymers | |
Li et al. | Fine tuning of porphyrin based-paddlewheel framework by imidazole derivative to boost electrochemiluminescence performance | |
CN107417928A (zh) | 一种含混合配体的金属银配位聚合物及其制备方法 | |
Hao et al. | Three bulky conjugated 4-(2, 6-di (pyrazin-2-yl) pyridin-4-yl) benzoate-based chains exhibiting dual photocatalytic and electrocatalytic performances | |
Akhbari et al. | The effects of solvent and ultrasonic irradiation in synthesis of thallium (I) nano supramolecular polymers and use them as template for synthesis of thallium (III) oxide nanostructures with desirable morphology | |
Yang et al. | Green and efficient Knoevenagel condensation catalyzed by pristine Zn-MOFs of amino acid derivatives | |
Lu et al. | Aerobic Oxidative Hydroxylation of Arylboronic Acids under Visible-Light Irradiation without Metal Catalysts or Additives | |
JP3650968B2 (ja) | 三次元錯体の内部空孔での光化学反応によるシクロブタン誘導体の製造方法 | |
Senthil Raja et al. | Synthesis, Crystal Structure, and Luminescence Properties of a New Calcium (II) Coordination Polymer Based on L‐Malic Acid | |
Xia et al. | Silver alkynyl coordination chains and clusters assembled with sulfonates | |
Van Albada et al. | A rare 2D structure of a novel Cu (II) dinuclear-based compound with dicyanamide and 4-nitropyridine-N-oxide as ligands | |
Liu et al. | An unusual Cd-substituted sandwich-type polyoxomolybdate cluster {Mo20Cd2} for photocatalysis of organic pollutant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |