CN111250528A - 一种砷污染土壤的修复方法 - Google Patents

一种砷污染土壤的修复方法 Download PDF

Info

Publication number
CN111250528A
CN111250528A CN202010053519.1A CN202010053519A CN111250528A CN 111250528 A CN111250528 A CN 111250528A CN 202010053519 A CN202010053519 A CN 202010053519A CN 111250528 A CN111250528 A CN 111250528A
Authority
CN
China
Prior art keywords
soil
oxidation
arsenic
reduction potential
contaminated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010053519.1A
Other languages
English (en)
Other versions
CN111250528B (zh
Inventor
衣桂米
张海秀
柳林杉
岳勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jereh Environmental Protection Technology Co Ltd
Original Assignee
Jereh Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jereh Environmental Protection Technology Co Ltd filed Critical Jereh Environmental Protection Technology Co Ltd
Priority to CN202010053519.1A priority Critical patent/CN111250528B/zh
Publication of CN111250528A publication Critical patent/CN111250528A/zh
Application granted granted Critical
Publication of CN111250528B publication Critical patent/CN111250528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种砷污染土壤的修复方法,所述修复方法包括如下步骤:(1)测定污染土壤的氧化还原电位;(2)根据测定的氧化还原电位判断是否需要对土壤进行氧化处理:测定的氧化还原电位与设定标准值进行对比,若测定值低于设定标准值,则向土壤添加氧化剂进行氧化处理,若测定值高于或等于设定标准值,则不需要对土壤进行氧化处理;(3)向步骤(2)处理后的土壤添加稳定化剂进行稳定化处理。有益效果:通过氧化还原电位判断是否需要进行氧化处理,有针对性地选择不同的修复流程;通过土壤氧化还原电位确定氧化剂添加量,通过小试确定稳定化剂添加量,准确确定药剂的添加量,修复彻底,避免投入多余的药剂;土壤pH为4‑6.5,含水率为30‑50%,增加稳定化效果。

Description

一种砷污染土壤的修复方法
技术领域
本发明涉及污染土壤修复领域,具体涉及一种砷污染土壤的修复方法。
背景技术
土壤中砷的天然来源主要为矿物的风化,然而近几十年来化石燃料的燃烧、含砷农药的使用、采矿、冶炼及污水灌溉等人类活动使局部土壤中砷含量不断增加,造成了不同程度的土壤砷污染。土壤中砷的迁移性和毒性取决于它的存在形态,无机砷的毒性大于有机砷,As3+的毒性大于As5+。当人类长期暴露于砷污染土壤条件下,可能会引发各种疾病如皮肤癌、肺癌、肝癌、糖尿病及心血管疾病等。目前,稳定化/固化技术由于具有成本低、药剂来源广、操作简单、见效快、可适用于大面积砷污染土壤等特点而得到广泛应用。稳定化/固化技术通常是先对土壤进行氧化处理将As3+氧化成As5+,降低污染毒性,然后添加稳定化剂将As5+由易溶态转化成难移动态,最后添加固定剂将污染物固化,进一步降低污染物迁移性。现有的稳定化/固化技术通常按照固定的治理流程和固定的药剂添加比例来治理砷污染的不同土壤状况,无法具有针对性的针对不同土壤状况进行治理。治理过程中若药剂添加不足则导致修复不彻底,修复效果不明显;若药剂添加过多,则对土壤的增容效应较大,造成二次污染,显著增加后续土壤处置费用。
发明内容
本发明的目的克服现有技术的不足,提供一种砷污染土壤的修复方法,通过污染土壤的氧化还原电位(Eh)判断是否需要对土壤进行氧化处理,针对不同的污染土壤状况选择不同的修复流程,减少不必要的药剂添加,避免造成二次污染;通过土壤氧化还原电位确定氧化剂的添加量,同时通过小试确定稳定化剂的添加量,可以针对不同的土壤环境准确确定不同的氧化剂和稳定化剂的添加量,既实现了彻底修复,保证了修复效果,又避免投入多余的药剂,进一步避免二次污染;优化了稳定化处理的条件,pH控制为4-6.5,土壤含水率控制在30-50%,提高了稳定化效率,增加了稳定化效果。
本发明的目的是通过以下技术措施达到的:一种砷污染土壤的修复方法,其特征在于,所述修复方法包括如下步骤:
(1)测定污染土壤的氧化还原电位;
(2)根据测定的氧化还原电位判断是否需要对土壤进行氧化处理:测定的氧化还原电位与设定标准值进行对比,若测定值低于设定标准值,则向土壤添加氧化剂进行氧化处理,若测定值高于或等于设定标准值,则不需要对土壤进行氧化处理;
(3)向步骤(2)处理后的土壤添加稳定化剂进行稳定化处理。
进一步地,所述步骤(2)中氧化还原电位的设定标准值为200mV。
进一步地,所述步骤(2)中氧化处理时添加氧化剂后土壤的氧化还原电位测定值若高于200mV,则停止向土壤中添加氧化剂。
进一步地,所述步骤(3)中稳定化处理过程pH控制为4-6.5。
进一步地,所述氧化剂为次氯酸盐或双氧水。
进一步地,所述稳定化剂为三价铁盐或二价铁盐。
进一步地,所述氧化剂为次氯酸盐或所述稳定化剂为铁的氯化盐时,土壤中氯离子的含量控制在1000mg/Kg以下。
进一步地,所述稳定化剂的添加比例通过小试确定。
进一步地,所述步骤(3)中稳定化处理过程中土壤含水率控制在30-50%。
进一步地,所述修复方法还包括固化处理过程,向稳定化处理后的土壤添加固化剂进行固化处理。
进一步地,所述固化剂与污染土壤的添加比例为0.5-2%。
进一步地,所述修复方法还包括施工处理过程,所述施工处理过程包括切割过程和/或混合过程。
进一步地,所述修复方法的修复时间为7-14天。
与现有技术相比,本发明的有益效果是:本砷污染土壤的修复方法,通过污染土壤的氧化还原电位判断是否需要对土壤进行氧化处理,针对不同的污染土壤状况选择不同的修复流程,减少不必要的药剂添加,避免造成二次污染;通过土壤氧化还原电位确定氧化剂的添加量,同时通过小试确定稳定化剂的添加量,可以针对不同的土壤环境准确确定不同的氧化剂和稳定化剂的添加量,既实现了彻底修复,保证了修复效果,又避免投入多余的药剂,进一步避免二次污染;优化了稳定化处理的条件,pH控制为4-6.5,土壤含水率控制在30-50%,提高了稳定化效率,增加了稳定化效果。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本修复方法的工艺流程图。
其中,1.氧化处理,2.稳定化处理,3.固化处理。
具体实施方式
如图1所示,一种砷污染土壤的修复方法,所述修复方法包括如下步骤:
(1)测定污染土壤的氧化还原电位;
(2)根据测定的氧化还原电位判断是否需要对土壤进行氧化处理1:测定的氧化还原电位与设定标准值进行对比,进一步优选,氧化还原电位的设定标准值为200mV。氧化还原电位为200mV时,As3+被氧化成As5+,由此可根据土壤的氧化还原电位来判断土壤中砷的状态,进而判断土壤是否需要进行氧化处理1。若测定值低于设定标准值,则向土壤添加氧化剂进行氧化处理1,若测定值高于或等于设定标准值,则不需要对土壤进行氧化处理1;通过污染土壤的氧化还原电位判断是否需要对土壤进行氧化处理1,针对不同的污染土壤状况选择不同的修复流程,减少不必要的药剂添加,避免造成二次污染。
(3)向步骤(2)处理后的土壤添加稳定化剂进行稳定化处理2;稳定化剂可将土壤中的砷从易溶态转化为难移动态,降低土壤的毒性。进一步优选,所述稳定化剂为三价铁盐或二价铁盐,铁盐与砷酸根形成的沉淀,稳定性好,不易被植物吸收,生物毒性小。所述稳定化剂的添加形式优选液态,液态有助于促进稳定化过程中的稳定化剂对砷的沉淀反应的进行。进一步优选,通过小试确定稳定化剂的添加量。通过小试确定稳定化剂的添加量,具体问题具体对待,可以准确确定不同土壤环境的添加量,有效的避免稳定化不彻底或过多投入稳定化剂的状况。
所述步骤(2)中氧化处理1时添加氧化剂后土壤的氧化还原电位测定值若高于200mV,则停止向土壤中添加氧化剂。进一步优选,所述氧化剂为次氯酸盐或双氧水。通过土壤氧化还原电位确定氧化剂的添加量,既实现了彻底氧化,又避免投入多余的氧化剂。
所述步骤(3)中稳定化处理2过程pH控制为4-6.5。含铁材料表面电荷会随pH值得变化而变化,含铁材料的等电点(pHPZC)多在6.5-8.5之间。当含铁材料所处环境的pH值<pHPZC时,其表面对外呈正电性,能够吸引体系中的阴离子。当pH值>pHPZC时,对外呈负电性,排斥体系中的阴离子。由此4-6.5的pH值有利于促进稳定化剂对含砷离子的吸附作用,增加稳定化处理2的效果。
所述氧化剂为次氯酸盐或所述稳定化剂为铁的氯化盐时,土壤中氯离子的含量控制在1000mg/Kg以下。采用次氯酸盐为氧化剂或铁的氯化盐为稳定化剂时会向土壤中添加氯元素,导致土壤中的氯含量增加,而氯元素过量则会影响植物生长,因此土壤中的氯离子含量要控制在1000mg/Kg以下。
所述稳定化剂的添加比例通过小试确定。由于污染土壤中还含有PO4 3-、SO4 2-、SiO4 4-等固砷“拮抗”因子,因此稳定化剂的添加比例需要根据不同的土壤状况进行具体问题具体分析,稳定化剂的添加比例需要通过小试试验来确定。
所述步骤(3)中稳定化处理2过程中土壤含水率控制在30-50%。若土壤中含水率过低,不利于稳定化剂形成离子态并与含砷离子反应形成沉淀,若含水率过高,则会导致土壤中稳定化剂的流失,导致稳定化处理2不彻底,并造成二次污染。
所述修复方法还包括固化处理3过程,向稳定化处理2后的土壤添加固化剂进行固化处理3。进一步优选,所述固化剂为胶凝材料,进一步所述固化剂还可添加黏土材料以增加固化效果。所述固化剂的添加形式优选固态。进一步优选,所述固化剂与污染土壤的质量百分比为0.5-2%。
所述修复方法还包括施工处理过程,所述施工处理过程包括切割过程和/或混合过程。若土壤中的大颗粒(粒径5cm以上)占比较高,为了保证修复效果,则需要对土壤进行切割处理。若土壤中黏土成分居多,则需要增加混合,以达到药剂与污染土壤充分接触、混合均匀的目的。
所述修复方法的养护时间为7-14天。养护时间过短会导致修复反应不彻底、不充分,降低修复效果,若修复反应已完全,过多延长养护反应时间对修复效果并无影响,并会降低修复效率,因此养护时间优选7-14天。
工作原理:
先判断污染土壤是否是砷污染土壤。先检测污染土壤砷的浸出浓度,若砷的浸出浓度超过标准要求则说明该土壤是砷污染土壤,需要进行固化/稳定化修复处理。
氧化处理1过程:
测定污染土壤的氧化还原电位,若污染土壤的氧化还原电位小于200mV,说明土壤中含有As3+,需要先进行氧化处理1,将As3+氧化成As5+,降低土壤中砷的毒性。向土壤中添加氧化剂,氧化剂添加过程中对污染土壤氧化还原电位进行监测,若氧化还原电位升高到200mV,则停止添加氧化剂,完成氧化处理1过程,进入稳定化处理2过程。若污染土壤的氧化还原电位高于或等于200mV,说明土壤中不含有As3+,不需要先进行氧化处理1,污染土壤可直接进行稳定化处理2过程。
稳定化处理2过程:
污染土壤稳定化处理2之前需要先进行小试试验,通过小试试验来确定该土壤状况的稳定化剂的最佳添加比例。
小试试验:取适量的污染土壤样品,分别制成多组含等质量污染土壤的对比样品。分别测定各组对比样品中污染土壤的氧化还原电位,并根据氧化还原电位判断各组对比样品中污染土壤是否需要进行氧化处理1,若需要进行氧化处理1,则添加氧化剂进行氧化处理1过程,若不需要氧化处理1,则直接进行稳定化处理2过程。分别称取不同质量的铁盐,先将铁盐用适量水溶解,配成不同铁盐浓度的溶液。然后将不同铁盐浓度的溶液分别添加到各组对比样品中,同时控制各组对比样品的pH为4-6.5,调节各组对比样品含水率为30-50%,进行稳定化反应,养护时间为7天。稳定化处理2结束后,分别检测各组对比样品土壤砷的浸出液浓度,并判断砷的浸出液浓度是否满足标准的要求。在能够满足标准要求的对比样品中,铁盐添加量最小的对比样品中铁盐与污染土壤的比例,即为所需要的该污染状况下的土壤的稳定化剂的最佳添加比例。
确定了污染土壤的稳定化剂的最佳添加比例后,即可对污染土壤进行稳定化处理2,根据最佳的添加比例称取铁盐,并将铁盐配置成溶液,向土壤中添加铁盐溶液,同时控制污染土壤的pH为4-6.5,调节污染土壤的含水率为30-50%,进行稳定化处理2。
为了进一步巩固污染土壤的修复效果,在稳定化处理2完成后,可对污染土壤进行固化处理3,进一步增加土壤修复的稳定性。向稳定化处理2后的土壤添加固化剂,所述固化剂为水泥或粉煤灰或石灰等胶凝材料,所述固化剂还可以添加高岭土或凹凸棒土或膨润土等黏土材料,固化剂以固态的形式添加到污染土壤中,固化剂与污染土壤的质量百分比为0.5-2%。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (13)

1.一种砷污染土壤的修复方法,其特征在于,所述修复方法包括如下步骤:
(1)测定污染土壤的氧化还原电位;
(2)根据测定的氧化还原电位判断是否需要对土壤进行氧化处理:测定的氧化还原电位与设定标准值进行对比,若测定值低于设定标准值,则向土壤添加氧化剂进行氧化处理,若测定值高于或等于设定标准值,则不需要对土壤进行氧化处理;
(3)向步骤(2)处理后的土壤添加稳定化剂进行稳定化处理。
2.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述步骤(2)中氧化还原电位的设定标准值为200mV。
3.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述步骤(2)中氧化处理时添加氧化剂后土壤的氧化还原电位测定值若高于200mV,则停止向土壤中添加氧化剂。
4.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述步骤(3)中稳定化处理过程pH控制为4-6.5。
5.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述氧化剂为次氯酸盐或双氧水。
6.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述稳定化剂为三价铁盐或二价铁盐。
7.根据权利要求5或6所述的砷污染土壤的修复方法,其特征在于:所述氧化剂为次氯酸盐或所述稳定化剂为铁的氯化盐时,土壤中氯离子的含量控制在1000mg/Kg以下。
8.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述稳定化剂的添加比例通过小试确定。
9.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述步骤(3)中稳定化处理过程中土壤含水率控制在30-50%。
10.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述修复方法还包括固化处理过程,向稳定化处理后的土壤添加固化剂进行固化处理。
11.根据权利要求10所述的砷污染土壤的修复方法,其特征在于:所述固化剂与污染土壤的质量百分比为0.5-2%。
12.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述修复方法还包括施工处理过程,所述施工处理过程包括切割过程和/或混合过程。
13.根据权利要求1所述的砷污染土壤的修复方法,其特征在于:所述修复方法的养护时间为7-14天。
CN202010053519.1A 2020-01-17 2020-01-17 一种砷污染土壤的修复方法 Active CN111250528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010053519.1A CN111250528B (zh) 2020-01-17 2020-01-17 一种砷污染土壤的修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010053519.1A CN111250528B (zh) 2020-01-17 2020-01-17 一种砷污染土壤的修复方法

Publications (2)

Publication Number Publication Date
CN111250528A true CN111250528A (zh) 2020-06-09
CN111250528B CN111250528B (zh) 2022-09-30

Family

ID=70954275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010053519.1A Active CN111250528B (zh) 2020-01-17 2020-01-17 一种砷污染土壤的修复方法

Country Status (1)

Country Link
CN (1) CN111250528B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114029337A (zh) * 2021-12-09 2022-02-11 中国建筑第四工程局有限公司 一种深层砷污染土的原位预氧化-稳定化联合修复剂及修复方法
CN114180701A (zh) * 2021-11-12 2022-03-15 华中科技大学 一种二价铁活化过氧化脲降解有机砷污染的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406333A (zh) * 2013-08-14 2013-11-27 路域生态工程有限公司 一种高浓度砷渣安全处置方法
CN104624621A (zh) * 2014-12-22 2015-05-20 广西大学 一种适用于砷污染土壤的修复药剂及使用方法
CN105598155A (zh) * 2015-12-31 2016-05-25 陕西清扬环境科技有限公司 一种砷污染土壤的修复方法
CN106001096A (zh) * 2016-07-26 2016-10-12 湖南恒凯环保科技投资有限公司 一种基于高铁酸盐氧化共沉淀的砷污染土壤的修复方法
CN107116097A (zh) * 2017-06-21 2017-09-01 郑州航空工业管理学院 一种修复砷污染土壤的方法
CN107159703A (zh) * 2017-06-14 2017-09-15 甘肃华昱环境检测技术服务有限公司 砷污染土壤修复剂及其应用
CN107597840A (zh) * 2017-11-03 2018-01-19 湖南景翌湘台环保高新技术开发有限公司 一种对砷、镉重金属污染土壤强化超富集植物修复技术
CN107789787A (zh) * 2017-09-22 2018-03-13 广西壮族自治区环境监测中心站 用于修复含砷废渣的稳定化药剂及使用方法
CN110560473A (zh) * 2019-08-21 2019-12-13 生态环境部环境规划院 一种针对土壤氟化物和砷的稳定化方法
CN110616073A (zh) * 2019-03-31 2019-12-27 上海康恒环境修复有限公司 一种高效处理高浓度砷、锑污染土壤的药剂及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406333A (zh) * 2013-08-14 2013-11-27 路域生态工程有限公司 一种高浓度砷渣安全处置方法
CN104624621A (zh) * 2014-12-22 2015-05-20 广西大学 一种适用于砷污染土壤的修复药剂及使用方法
CN105598155A (zh) * 2015-12-31 2016-05-25 陕西清扬环境科技有限公司 一种砷污染土壤的修复方法
CN106001096A (zh) * 2016-07-26 2016-10-12 湖南恒凯环保科技投资有限公司 一种基于高铁酸盐氧化共沉淀的砷污染土壤的修复方法
CN107159703A (zh) * 2017-06-14 2017-09-15 甘肃华昱环境检测技术服务有限公司 砷污染土壤修复剂及其应用
CN107116097A (zh) * 2017-06-21 2017-09-01 郑州航空工业管理学院 一种修复砷污染土壤的方法
CN107789787A (zh) * 2017-09-22 2018-03-13 广西壮族自治区环境监测中心站 用于修复含砷废渣的稳定化药剂及使用方法
CN107597840A (zh) * 2017-11-03 2018-01-19 湖南景翌湘台环保高新技术开发有限公司 一种对砷、镉重金属污染土壤强化超富集植物修复技术
CN110616073A (zh) * 2019-03-31 2019-12-27 上海康恒环境修复有限公司 一种高效处理高浓度砷、锑污染土壤的药剂及其应用
CN110560473A (zh) * 2019-08-21 2019-12-13 生态环境部环境规划院 一种针对土壤氟化物和砷的稳定化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈强: "砷的危害及其污染治理技术 ", 《福建农业科技》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180701A (zh) * 2021-11-12 2022-03-15 华中科技大学 一种二价铁活化过氧化脲降解有机砷污染的方法
CN114029337A (zh) * 2021-12-09 2022-02-11 中国建筑第四工程局有限公司 一种深层砷污染土的原位预氧化-稳定化联合修复剂及修复方法

Also Published As

Publication number Publication date
CN111250528B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
Clancy et al. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water
CN104804747B (zh) 一种钙基重金属土壤修复剂及制备方法
Hicks et al. Electrorestoration of metal contaminated soils
Zheng et al. Effect of moisture regime on the redistribution of heavy metals in paddy soil
CN106978191B (zh) 一种用于修复酸性土壤中铅、镉、砷污染的复合稳定剂
Liu et al. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification
CN111250528B (zh) 一种砷污染土壤的修复方法
US20010048852A1 (en) Stabilization of arsenic-contaminated materials
CN108726823A (zh) 油泥稳定化固化药剂及修复底泥重金属污染土壤的方法
CN104164238A (zh) 一种针对重金属污染土壤的高效固化稳定修复药剂
CN112029508B (zh) 一种铊、砷污染土壤修复剂及其制备方法和应用
CN105414165A (zh) 一种污染土壤修复处理系统
KR100964176B1 (ko) 금속환원 미생물에 의해 향상된 전기동력학적 기술을 이용한 비소 및 중금속으로 오염된 토양의 정화방법
Luo et al. Arsenic, selenium, and sulfate removal using an ethanol-enhanced sulfate-reducing bioreactor
Xue et al. Revealing degradation and enhancement mechanisms affecting copper (Cu) immobilization using microbial-induced carbonate precipitation (MICP)
CN205308948U (zh) 一种污染土壤修复处理系统
CN110079323A (zh) 一种砷、镍复合污染场地土壤修复稳定剂及其处理方法
CN110947751B (zh) 一种电动辅助淋洗修复镉污染土壤的装置及方法
CN105062492A (zh) 适用于砷污染场地土壤修复的化学稳定剂及其使用方法
CN111117630A (zh) 一种Hg污染土壤的微胶囊复合材料、制备方法及修复方法
Kamata et al. The effects of redox conditions on arsenic re-release from excavated marine sedimentary rock with naturally suppressed arsenic release
CN111842471B (zh) 一种农田土壤重金属物质化学活化和电动电离相结合修复的方法
BR112020007882A2 (pt) sistema reagente para tratamento de resíduos sólidos contaminados com um ou mais metais pesados e método de tratamento de material sólido contaminado com metais pesados para se obter um produto final tendo lixiviação de metais pesados reduzida
CN110665958B (zh) 一种利用城市固废修复砷污染土壤的稳定化药剂及方法
Fathi-Gerdelidani et al. Kinetic studies on arsenic release from geogenically enriched soils under oxidized and reduced conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant