CN111244564B - 一种锂电池组多目标同时充电方法 - Google Patents

一种锂电池组多目标同时充电方法 Download PDF

Info

Publication number
CN111244564B
CN111244564B CN202010054218.0A CN202010054218A CN111244564B CN 111244564 B CN111244564 B CN 111244564B CN 202010054218 A CN202010054218 A CN 202010054218A CN 111244564 B CN111244564 B CN 111244564B
Authority
CN
China
Prior art keywords
charging
lithium battery
battery pack
time
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010054218.0A
Other languages
English (en)
Other versions
CN111244564A (zh
Inventor
陈剑
陈浩
范晓东
周宓
付源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010054218.0A priority Critical patent/CN111244564B/zh
Publication of CN111244564A publication Critical patent/CN111244564A/zh
Priority to PCT/CN2020/098782 priority patent/WO2021143053A1/zh
Priority to US17/793,417 priority patent/US20230266392A1/en
Application granted granted Critical
Publication of CN111244564B publication Critical patent/CN111244564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种锂电池组多目标同时充电方法。将能量损耗和充电电流转化成带有充电权重系数的锂电池组充电代价模型,采用内点法求解处理获得预设充电电流序列;接着根据预设充电电流序列,计算锂电池组充电时所需要的充电时间,通过自适应动量最速下降算法对锂电池组充电代价模型中的充电权重系数进行调整,得到充电时间最短情况下的充电权重系数,利用充电权重系数再优化锂电池组充电代价模型获得新的预设充电电流序列,利用新的预设充电电流序列进行充电,实现了优化的锂电池组多目标同时充电。本发明极大减小了充电时间和收敛时间的误差,从而在保证充电效率的同时最大减弱了电流对电池的影响。

Description

一种锂电池组多目标同时充电方法
技术领域
本发明属于锂电池应用领域的一种锂电池充电方法,尤其是涉及了一种锂电池组多目标同时充电方法。
背景技术
锂电池具有功率密度大、能量密度高、循环寿命长、输出电压高、绿色环保等优点,被广泛应用在各个领域,提高锂电池充电速率、使用寿命和可用容量是当下研究的热点。目前,锂电池的充电方式有很多,传统充电器充电模式单一、参数固定,且未充分考虑电池的真实状态,充电过程对电池有损伤。锂电池充放电过程是电化学反应过程,其充电特性与电池内部结构、充电参数和外部环境等因素都有关系,充电过程伴随着极化效应和内部的温度变化。
研究表明锂电池存在一条最佳充电曲线,接近这条曲线充电时,充电速度最快、效率最高、电池损伤最小。锂电池智能充电方法是目前比较先进的充电方式,通过检测电池状态参数实时调整充电电流,动态跟踪最佳充电曲线,可实现锂电池快速友好的充电。但该方法在充电初期容易过电流充电,而在充电末期电流较小、效率较低,传统的锂电池充电方法主要有恒流充电、恒压充电、脉冲充电、Relax充电等。Mas.J.A提出瞬时停充或者大电流放电,可消除极化现象,使电池的可接受充电曲线不断右移,从而提高充电效率,这是加快充电速度的理论基础。目前应用最广泛的充电方法是三阶段充电法,存在充电速度慢,效率低,无法消除电池充电时的极化现象等问题。
发明内容
为了解决背景技术中存在的问题,本发明提出了一种锂电池组多目标同时充电方法;在充电过程中,实际充电状态可以在最短时间内收敛到相同值,同时充电时间和收敛时间差最小化,实现更高效率的充电。
如图1所示,本发明所采用的技术方案是:
锂电池组各单体电池在充电时自身存在内阻均会有部分能量损耗,考虑锂电池充电时充电电流的约束,加入充电权重系数,将能量损耗和充电电流转化成带有充电权重系数的锂电池组充电代价模型,进而将该锂电池组充电代价模型表达成二次规划问题,采用内点法求解处理该二次规划问题获得预设充电电流序列;
接着根据预设充电电流序列,计算锂电池组充电时所需要的充电时间,通过自适应动量最速下降算法对锂电池组充电代价模型中的充电权重系数进行调整,得到充电时间最短情况下的充电权重系数,利用充电权重系数再优化锂电池组充电代价模型获得新的预设充电电流序列,利用新的预设充电电流序列进行充电,从而实现充电过程和收敛过程的同时完成,实现了优化的锂电池组多目标同时充电。
本发明在充电过程中,实际充电状态可以在最短时间内收敛到相同值,同时充电时间和收敛时间差最小化。
方法过程具体如下:
步骤1,锂电池组由相互独立的n个单体电池组成,根据锂电池的基本动态特性,建立锂电池组的等效电路模型,并利用预先已知情况进行实现获得的实验数据确定模型参数,模型参数包括锂电池的容量Q、锂电池的内阻R0和充电效率η;
步骤3,设定充电目标,包括预计充电时间和预设充电SOC,考虑在充电过程中的各单体电池温度控制得低些,同时应该在充电过程中实现电池均衡,引入充电权重系数,建立包括预设充电SOC、电池温度和电池均衡的锂电池组充电代价模型;
步骤4,将步骤3的锂电池组充电代价模型作为带约束的二次规划问题,采用二次规划求解方法(例如内点法)对锂电池组充电代价模型进行求解,得到预设充电时间和和预设充电SOC下各时刻各单体电池的预设充电电流ui,k,组成最优充电电流序列,以最优充电电流序列控制锂电池组进行充电;
步骤5、实时检测步骤4控制下的充电过程实时状态的各单体电池的SOCxj,k,按照以下公式处理获得收敛时间T11)和充电时间T22),建立以下同时充电时间函数:
Figure BDA0002372253760000023
Figure BDA0002372253760000021
Figure BDA0002372253760000022
其中,T11),T22)分别表示收敛时间和充电时间,xi(k)和xj(k)表示锂电池组的第i节单体电池k时刻的荷电状态(SOC)的值,ε1和ε2分别表示收敛过程和充电过程的截止误差,T表示采样时间,t表示时间变量,i、j表示锂电池组中的单体电池的序数,χd表示单体电池的SOC的期望值列向量,它是由单体电池的SOC的期望值构成的一个n×1的列向量。
采用自适应动量最速下降算法对同时充电时间函数进行处理,优化锂电池组充电代价模型中的第一权重系数α和第二权重系数β并回到步骤3进行更新,第一权重系数α和第二权重系数β更新表达式为:
Figure BDA0002372253760000031
Figure BDA0002372253760000032
Figure BDA0002372253760000033
其中Δα(k),Δα(k-1)分别表示α在k和k-1时刻的增量,Δβ(k),Δβ(k-1)分别表示β在k和k-1时刻的增量,
Figure BDA0002372253760000034
分别表示同时充电时间T在k和k-1时刻的增量,其中同时充电时间T=max{T11),T22)},θ表示动量因子,ω(k)表示自适应学习率;然后重复步骤4处理,采用更新后获得的最优充电电流序列对锂电池组进行控制充电。
本发明针对多个单体电池组成的锂电池组,同时考虑锂电池组自身的能量损耗和充电方式,提出了一种基于二次规划和自适应动量最速下降算法的电池同时充电多目标优化方式进行处理,在保证充电效率的同时最大减弱了电流对电池的影响。
所述步骤1中,针对锂电池组的每个单体电池建立单体电池等效电路,单体电池等效电路包括电容Cb、恒压源Vsoc、受电压控制电压源Voc和内阻R0,受电压控制电压源Voc为由电容Cb、恒压源Vsoc并联构成的SOC等效电路,SOC等效电路用于模拟单体电池的SOC变化;受电压控制电压源Voc、内阻R0串联后构成电压等效电路,电压等效电路用于模拟单体电池的电压变化。
所述步骤1中,锂电池组的单体电池等效电路模型采用以下公式表示:
Figure BDA0002372253760000035
Figure BDA0002372253760000036
其中,
Figure BDA0002372253760000037
Figure BDA0002372253760000038
分别表示锂电池组的第i节单体电池在k+1和k时刻的荷电状态(SOC)的值,h表示充电效率,T表示采样时间,
Figure BDA0002372253760000039
表示第i节单体电池在k时刻的充电电流值,Q表示锂电池组的单体电池的容量,R0表示锂电池组的单体电池的内阻,
Figure BDA00023722537600000310
Figure BDA00023722537600000311
分别表示第i节单体电池在k时刻的输出端电压和开路电压。
所述步骤3中,建立以下锂电池组充电代价模型:
Figure BDA0002372253760000041
Figure BDA0002372253760000042
Figure BDA0002372253760000043
Figure BDA0002372253760000044
其中,F(x)表示锂电池组充电代价模型的向量,f1(x)表示单体电池之间SOC偏差总和,充电过程中希望各单体电池的SOC能够收敛到一致;f2(x)表示充电过程中在锂电池内部由于内阻产生的能量损耗,f3(x)表示各单体电池充电到相同值的偏差总和,f4(x)表示充电时间;α表示第一权重系数,β表示第二权重系数,xi,k表示第i节单体电池在k时刻的SOC,xj,k表示第j节单体电池在k时刻的SOC,ui,k表示第i节单体电池在k时刻的充电电流,dk表示k时刻的扰动电流,xd表示单体电池的SOC的期望值,i、j表示锂电池组中的单体电池的序数,n表示锂电池组中的单体电池总数,m表示充电步数;
其中锂电池组充电代价模型三个子目标的充电权重系数由同时充电时间确定。
同时建立充电过程中的约束条件,包括:
(1)在k时刻电池组中串联电池的SOC列向量SOC(k)满足:
SOC(k)≤SOCu
其中,SOC(k)和SOCu均为长度为n的列向量,SOCu表示锂电池组SOC的上界值;
(2)在k时刻电池组中各单体电池的充电电流列向量I(k)满足:
I(k)≤IM
其中,I(k)和IM均为长度为n的列向量,IM表示锂电池组中各单体电池的充电电流的上界值;
(3)在k时刻电池组中各单体电池的端电压列向量U(k)满足:
U(k)≤UM
其中,U(k)和UM均为长度为n的列向量,UM表示锂电池组各单体电池的端电压的上界值。
在方法充电过程中,实时检测锂电池组中各单体电池的端电压,如果有单体电池的端电压超过预设的最高电池开路电压(一般为4.2V),则将步骤4获得的最优充电电流序列中的预设充电电流调小(具体实施中可采取调小5%)。
本发明对于一个锂电池组,通过测定初始开路电压,计算各单体电池的初始SOC,根据权利要求5中的充电代价模型,采用二次规划求解算法,计算预设充电电流序列,按照计算得到的预设充电电流序列不断给锂电池组充电,然后计算收敛时间和充电时间,从而得到同时充电时间。根据自适应动量最速下降算法,不断优化锂电池组充电代价模型中的第一权重系数α和第二权重系数β,从而使得同时充电时间达到最短。
本发明的有益效果是:
1)本发明极大减小了充电时间和收敛时间的误差,从而在保证充电效率的同时最大减弱了电流对电池的影响。2)本发明给出一种针对锂电池组同时充电的控制策略,实现锂电池组同时充满,实现对SOC不同的单体电池不同的充电速率,以尽量小的电流减弱对锂电池组的损伤,提升锂电池组自身的健康状态。3)该充电策略综合考虑锂电池组自身约束、能量损耗和同时充电时间,实现多个目标的同时优化。
附图说明
图1是本发明中锂电池同时充电结构示意图。
图2是本发明实施例中给定权重系数下的荷电状态变化曲线图。
图3是本发明实施例中给定权重系数下的充电电流实际值变化曲线图。
图4是本发明实施例中经过自适应动量最速下降算法优化的荷电状态变化曲线图。
图5是本发明实施例中经过自适应动量最速下降算法优化的充电电流实际值变化曲线图。
图6是本发明实施例中自适应动量最速下降算法优化的同时充电时间和两个权重系数变化曲线图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
按照本发明方法实施的实施例如下:
本实验的锂电池组由四个锂电池组成。电池的容量和标称电压分别为3100mAh和3.7V。电池的电流工作范围为[-1A,0],采样时间为T=1s,SOC的上下界设定为100%和5%。电池组各个电池的初始SOC分别为:
SOC1(0)=51%,SOC2(0)=60%,SOC3(0)=50%,SOC4(0)=62%。
本实施例中,通过全局优化控制设定,如果任意两节单体电池之间的SOC差小于0.1%,电池充电的过程将会停止。
2、实验结果
本实施例实时计算获得预设充电电流序列以对锂电池组进行充电,横坐标表示时间(单位为秒),纵坐标表示电池的SOC,带标识的四根线分别表示4节单体电池的实时SOC。用电池1…电池4表示。
图2和图3分别表示在给定的第一权重系数α和第二权重系数β下,经过二次规划求解得到的锂电池组SOC变化情况和充电电流变化,其中α=2,β=10-4,在这种情况下,充电时间接近10000秒,收敛时间为9562秒,相对误差接近5%。
图4和图5表示在经过自适应动量最速下降算法优化第一权重系数α和第二权重系数β之后,锂电池组SOC变化情况和充电电流变化,充电时间和收敛时间分别为5583s和5533s,因此,在充电过程中大大缩短了充电时间和收敛时间,同时,充电时间和收敛时间的相对时间误差也减小了不到1%,这就可以保证锂电池组在同一时间充满并且保证时间最短,从而实现对锂电池组的批次充电,在最短的充电时间内限制锂电池的充电电流,从而对锂电池实现保护。
图6显示了在自适应动量最速下降算法的优化下,同时充电时间有了明显缩短,以及相应的第一权重系数α和第二权重系数β变化情况。由图6可知,在自适应动量最速下降算法的作用下,两个权重系数不断更新到合适值从而缩短同时充电时间,而由于在最速下降算法中加入自适应调节项,保证算法的收敛速度,如图6在不超过20步的迭代次数下已经完成收敛过程。

Claims (5)

1.一种锂电池组多目标同时充电方法,其特征在于:考虑锂电池充电时充电电流的约束,加入充电权重系数,将能量损耗和充电电流转化成带有充电权重系数的锂电池组充电代价模型,采用内点法求解处理获得预设充电电流序列;接着根据预设充电电流序列,计算锂电池组充电时所需要的充电时间,通过自适应动量最速下降算法对锂电池组充电代价模型中的充电权重系数进行调整,得到充电时间最短情况下的充电权重系数,利用充电权重系数再优化锂电池组充电代价模型获得新的预设充电电流序列,利用新的预设充电电流序列进行充电,实现了优化的锂电池组多目标同时充电;
方法过程具体如下:
步骤1,锂电池组由相互独立的n个单体电池组成,根据锂电池的基本动态特性,建立锂电池组的等效电路模型,并利用实验数据确定模型参数;
步骤3,设定充电目标,包括预计充电时间和预设充电SOC,建立包括预设充电SOC、电池温度和电池均衡的锂电池组充电代价模型;
步骤4,采用二次规划求解方法对锂电池组充电代价模型进行求解,得到预设充电时间和预设充电SOC下各时刻各单体电池的预设充电电流ui,k,组成最优充电电流序列,以最优充电电流序列控制锂电池组进行充电;
步骤5、实时检测步骤4控制下的充电过程实时状态的各单体电池的SOCxj,k,按照以下公式处理获得收敛时间T11)和充电时间T22),建立以下同时充电时间函数:
Figure FDA0002960829760000014
Figure FDA0002960829760000011
Figure FDA0002960829760000012
其中,T11),T22)分别表示收敛时间和充电时间,xi(k)和xj(k)表示锂电池组的第i节单体电池k时刻的荷电状态的值,ε1和ε2分别表示收敛过程和充电过程的截止误差,Ts表示采样时间,τ表示时间变量,i、j表示锂电池组中的单体电池的序数,χd表示单体电池的SOC的期望值列向量,它是由单体电池的SOC的期望值构成的一个n×1的列向量;
采用自适应动量最速下降算法对同时充电时间函数进行处理,优化锂电池组充电代价模型中的第一权重系数α和第二权重系数β并回到步骤3进行更新,第一权重系数α和第二权重系数β更新表达式为:
Figure FDA0002960829760000013
Figure FDA0002960829760000021
Figure FDA0002960829760000022
其中Δα(k),Δα(k-1)分别表示α在k和k-1时刻的增量,Δβ(k),Δβ(k-1)分别表示β在k和k-1时刻的增量,
Figure FDA0002960829760000023
分别表示同时充电时间f4(x)在k和k-1时刻的增量,其中同时充电时间f4(x)=max{T11),T22)},θ表示动量因子,ω(k)表示自适应学习率;然后重复步骤4处理,采用更新后获得的最优充电电流序列对锂电池组进行控制充电。
2.根据权利要求1所述的一种锂电池组多目标同时充电方法,其特征在于:所述步骤1中,针对锂电池组的每个单体电池建立单体电池等效电路,单体电池等效电路包括电容Cb、恒压源Vsoc、受电压控制电压源Voc和内阻R0,受电压控制电压源Voc为由电容Cb、恒压源Vsoc并联构成的SOC等效电路,SOC等效电路用于模拟单体电池的SOC变化;受电压控制电压源Voc、内阻R0串联后构成电压等效电路,电压等效电路用于模拟单体电池的电压变化。
3.根据权利要求1所述的一种锂电池组多目标同时充电方法,其特征在于:所述步骤1中,锂电池组的单体电池等效电路模型采用以下公式表示:
Figure FDA0002960829760000024
Figure FDA0002960829760000025
其中,
Figure FDA0002960829760000026
Figure FDA0002960829760000027
分别表示锂电池组的第i节单体电池在k+1和k时刻的荷电状态的值,η表示充电效率,T表示采样时间,
Figure FDA0002960829760000028
表示第i节单体电池在k时刻的充电电流值,Q表示锂电池组的单体电池的容量,R0表示锂电池组的单体电池的内阻,
Figure FDA0002960829760000029
Figure FDA00029608297600000210
分别表示第i节单体电池在k时刻的输出端电压和开路电压。
4.根据权利要求1所述的一种锂电池组多目标同时充电方法,其特征在于:
所述步骤3中,建立以下锂电池组充电代价模型:
Figure FDA0002960829760000034
Figure FDA0002960829760000031
Figure FDA0002960829760000032
Figure FDA0002960829760000033
其中,F(x)表示锂电池组充电代价模型的向量,f1(x)表示单体电池之间SOC偏差总和;f2(x)表示充电过程中在锂电池内部由于内阻产生的能量损耗,f3(x)表示各单体电池充电到相同值的偏差总和,f4(x)表示同时充电时间;α表示第一权重系数,β表示第二权重系数,xi,k表示第i节单体电池在k时刻的SOC,xj,k表示第j节单体电池在k时刻的SOC,ui,k表示第i节单体电池在k时刻的充电电流,dk表示k时刻的扰动电流,xd表示单体电池的SOC的期望值,i、j表示锂电池组中的单体电池的序数,n表示锂电池组中的单体电池总数,m表示充电步数;
同时建立充电过程中的约束条件,包括:
(1)在k时刻电池组中串联电池的SOC列向量SOC(k)满足:
SOC(k)≤SOCu
其中,SOC(k)和SOCu均为长度为n的列向量,SOCu表示锂电池组SOC的上界值;
(2)在k时刻电池组中各单体电池的充电电流列向量I(k)满足:
I(k)≤IM
其中,I(k)和IM均为长度为n的列向量,IM表示锂电池组中各单体电池的充电电流的上界值;
(3)在k时刻电池组中各单体电池的端电压列向量U(k)满足:
U(k)≤UM
其中,U(k)和UM均为长度为n的列向量,UM表示锂电池组各单体电池的端电压的上界值。
5.根据权利要求1所述的一种锂电池组多目标同时充电方法,其特征在于:
在方法充电过程中,实时检测锂电池组中各单体电池的端电压,如果有单体电池的端电压超过预设的最高电池开路电压,则将步骤4获得的最优充电电流序列中的预设充电电流调小。
CN202010054218.0A 2020-01-17 2020-01-17 一种锂电池组多目标同时充电方法 Active CN111244564B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010054218.0A CN111244564B (zh) 2020-01-17 2020-01-17 一种锂电池组多目标同时充电方法
PCT/CN2020/098782 WO2021143053A1 (zh) 2020-01-17 2020-06-29 一种锂电池组多目标同时充电方法
US17/793,417 US20230266392A1 (en) 2020-01-17 2020-06-29 Multi-objective simultaneous charging method for lithium-ion battery packs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010054218.0A CN111244564B (zh) 2020-01-17 2020-01-17 一种锂电池组多目标同时充电方法

Publications (2)

Publication Number Publication Date
CN111244564A CN111244564A (zh) 2020-06-05
CN111244564B true CN111244564B (zh) 2021-06-08

Family

ID=70864720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010054218.0A Active CN111244564B (zh) 2020-01-17 2020-01-17 一种锂电池组多目标同时充电方法

Country Status (3)

Country Link
US (1) US20230266392A1 (zh)
CN (1) CN111244564B (zh)
WO (1) WO2021143053A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244564B (zh) * 2020-01-17 2021-06-08 浙江大学 一种锂电池组多目标同时充电方法
CN113707960B (zh) * 2021-08-06 2024-01-26 湖南领湃达志科技股份有限公司 锂离子动力电池快充的方法
CN116653645B (zh) * 2023-07-26 2023-10-24 中南大学 重载货运列车自组网电池状态监测下的自适应充电方法、系统及介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7535195B1 (en) * 2005-08-25 2009-05-19 National Semiconductor Corporation Battery charger that employs current sharing to simultaneously power an application and charge a battery
CN102420447B (zh) * 2011-12-02 2013-12-11 上海交通大学 串联电池组的充放电复合型自动均衡电路及均衡方法
US9535480B2 (en) * 2013-11-26 2017-01-03 Nec Corporation Power coordination system for hybrid energy storage system
KR102554151B1 (ko) * 2017-10-24 2023-07-12 삼성전자주식회사 배터리 충전 방법 및 장치
CN108306358A (zh) * 2017-12-29 2018-07-20 国网北京市电力公司 充电站电池储能配置方法和装置
CN111244564B (zh) * 2020-01-17 2021-06-08 浙江大学 一种锂电池组多目标同时充电方法

Also Published As

Publication number Publication date
US20230266392A1 (en) 2023-08-24
CN111244564A (zh) 2020-06-05
WO2021143053A1 (zh) 2021-07-22

Similar Documents

Publication Publication Date Title
CN111244564B (zh) 一种锂电池组多目标同时充电方法
CN110635187A (zh) 一种考虑老化的锂电池充电方法
CN110429693B (zh) 一种基于电池组一致性的储能电池组功率控制方法
CN107196371A (zh) 电池充电方法、装置、设备和存储介质
CN110783987B (zh) 一种针对电池组电池均衡的分层最优控制方法
CN110247451B (zh) 一种锂离子动力电池组全寿命周期均衡控制方法
CN110362897B (zh) 一种串联电池组多目标优化均衡方法
CN107134827A (zh) 总线式锂电池组均衡系统预测控制方法
CN107276171B (zh) 一种基于滑模控制的电池组均衡方法
US11316212B2 (en) Method, system and device for active balance control of battery pack
CN111668894B (zh) 基于充电与均衡组合优化的锂电池组快速充电控制方法
CN107342608A (zh) 电池充电方法、装置、设备和存储介质
CN104852423B (zh) 一种充电均衡控制电路、电池组充电管理系统及方法
CN115906613A (zh) 一种基于粒子群和自适应模糊神经网络的电池组均衡方法
CN118100369A (zh) 一种集散式储能系统的电池均衡系统
CN117154906A (zh) 一种具有制冷功能的无线充电调控方法
CN114977152A (zh) 能源管理系统的控制方法、装置、存储介质及设备
CN105932745B (zh) 一种多模块并联充电的电池限流控制方法
CN110707788A (zh) 一种分布式储能电站中储能电池阵列快速均衡系统及方法
CN209001618U (zh) 一种电池管理系统的主动均衡架构
CN112649734A (zh) 基于改进pngv模型和扩展卡尔曼算法的soc估算方法
CN116258417A (zh) 一种基于nsga-2遗传算法的锂电池均衡指标优化方法
CN115765086A (zh) 一种基于时间最优的锂离子电池组主动均衡方法
CN112491099B (zh) 一种电池主动均衡控制方法及装置
CN112117792B (zh) 一种基于模型的被动均衡系统及均衡电流估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant