CN111233029B - 一种Cr掺杂In2S3的中间带材料及其制备方法 - Google Patents

一种Cr掺杂In2S3的中间带材料及其制备方法 Download PDF

Info

Publication number
CN111233029B
CN111233029B CN202010164013.8A CN202010164013A CN111233029B CN 111233029 B CN111233029 B CN 111233029B CN 202010164013 A CN202010164013 A CN 202010164013A CN 111233029 B CN111233029 B CN 111233029B
Authority
CN
China
Prior art keywords
ball milling
sample
doped
intermediate belt
belt material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010164013.8A
Other languages
English (en)
Other versions
CN111233029A (zh
Inventor
姚海燕
范文亮
周晓娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ordos Institute of Technology
Original Assignee
Ordos Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ordos Institute of Technology filed Critical Ordos Institute of Technology
Priority to CN202010164013.8A priority Critical patent/CN111233029B/zh
Publication of CN111233029A publication Critical patent/CN111233029A/zh
Application granted granted Critical
Publication of CN111233029B publication Critical patent/CN111233029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种Cr掺杂In2S3的中间带材料的制备方法。首先称取In2S3和Cr2S3粉末样品放入球磨罐中;然后球磨罐中加入无水乙醇,密封球磨罐,然后将球磨罐放入球磨机中球磨;再将球磨后的样品取出放入离心管中做离心处理,将离心后的样品中的上层无水乙醇倒出,然后干燥,然后取出,手工研磨,然后放入退火炉中退火,退火后得到Cr‑In2S3中间带材料。本发明的Cr掺杂In2S3的中间带材料的制备方法,其制备方法简单,采用球磨法结合退火处理制备了Cr‑In2S3光吸收层材料,结构中各个元素符合化学计量比,组成元素分布均匀,其光反射强度低,从而导致光吸收强度强,而且能够吸收红外区的光生载流子,降低光生电子‑空穴对复合。

Description

一种Cr掺杂In2S3的中间带材料及其制备方法
技术领域
本发明涉及太阳能电池领域中的一种中间带吸收层材料,具体为一种Cr 掺杂In2S3的中间带材料及其制备方法。
背景技术
In2S3因所处环境温度的不同而具有不同相,该化合物的优点是无毒、稳定性好、光电特性优越。In2S3的应用广泛,可用作标准光照下降解有机污染物、光催化及制备材料太阳电池等,适合制备IBSC吸收层,是一种很有前途的中间带光电吸收材料。
以In2S3作为基体的杂质中间带材料的理论和实验研究已有一些报道,例如现有研究团队利用广义梯度近似下的自旋优化密度泛函理论计算了Ti、V 元素掺杂In2S3可以诱导出部分填充的中间带(以下简称IB),并且与价带和导带没有重叠区。Ho制备出Nb掺杂In2S3中间带材料,且光学带隙随Nb含量的增加而降低。现有期刊记载McCarthy等人采用原子层沉积法制备了 V0.25In1.75S3中间带材料,其优点是元素比例可控性强。现有期刊记载Strandberg和Aguilera从理论上研究了V掺杂In2S3中间带材料的厚度对其光电性能的影响,发现厚度约为1μm时光电转换效率最高。同时,现有期刊记载Raquel Lucena采用溶剂热反应法制备了V掺杂In2S3中间带材料,研究了其光催化性。Chen等人采用固相反应法制备了Fe掺杂In2S3的中间带半导体材料,从光吸收图谱中观察到在0.7和1.25eV处发现两个额外的吸收带,表明有中间带IB形成。但没有作者从理论和实验上分析讨论过Cr掺杂In2S3材料的制备方法。
发明内容
针对现有的技术方案存在的问题,本发明的目的在于提供一种Cr掺杂In2S3的中间带材料及其制备方法,实现掺杂后的Cr-In2S3光吸收层材料,结构中各个元素符合化学计量比,组成元素分布均匀,其光反射强度低,从而导致光吸收强度强,而且能够吸收红外区的光生载流子,降低光生电子-空穴对复合。
为实现上述目的,本发明提供以下技术方案:
一种Cr掺杂In2S3的中间带材料的制备方法,该中间带材料使用Cr2S3掺杂In2S3基制成,Cr2S3掺杂In2S3基材料的化学分子式为Cr-In2S3,制备方法包括以下步骤:
步骤1:制备In2S3材料;
步骤2:制备Cr2S3材料;
步骤3:将In2S3:Cr2S3质量比为30:1的混合物料装入混料机罐体内,通入惰性气体保护,然后利用混料机进行混料;得到混合粉体;对得到的In2S3和Cr2S3混合粉末样品放入真空球磨罐中;
步骤4:向所述步骤3的球磨罐中加入混合物样品质量与乙醇体积比为 40kg/m3的无水乙醇,密封所述球磨罐并抽真空;
步骤5:将所述步骤4中的球磨罐放入球磨机中球磨;球磨机的转速为 300r/min,球磨时间为8h;
步骤6:将步骤5球磨后的混合样品取出放入离心管中做离心处理,离心转速3000rpm,离心力800xg;将离心后的样品中的上层无水乙醇倒出,然后干燥;
步骤7:将干燥后的样品取出,手工研磨至粉体粒度40μm-50μm,然后放入退火炉中退火,退火后得到Cr-In2S3中间带材料。
作为上述方案的进一步改进,步骤3中混料机的转速为20-50r/min,混料时间10-30h,步骤3所述惰性气体为氩气或氮气。
作为上述方案的进一步改进,所述In2S3和Cr2S3纯度均为99.99%。
作为上述方案的进一步改进,步骤5中的干燥条件为真空干燥。
作为上述方案的进一步改进,步骤5中干燥的温度为60℃,干燥时间为 3h。
作为上述方案的进一步改进,步骤7退火炉中放入样品后,一端通入氩气保护,另一端用去离子水密封。
作为上述方案的进一步改进,步骤6中手工研磨的时间为3h。
作为上述方案的进一步改进,步骤6中退火炉的退火温度为550℃。
作为上述方案的进一步改进,球磨罐为玛瑙球磨罐。
作为本发明提供的一种Cr掺杂In2S3的中间带材料,其采用上述采用Cr2S3掺杂In2S3的中间带制备方法制备而成。
与现有技术相比,本发明的有益效果是:
(1)本发明的Cr掺杂In2S3的中间带材料的制备方法,采用球磨法结合退火处理制备了Cr-In2S3光吸收层中间带材料,结构中各个元素符合化学计量比,组成元素分布均匀,而且制备方法简单。经XRD和拉曼光谱分析,该吸收材料主要以α-In2S3结构相为主,因Cr离子半径小于In离子半径,X射线衍射峰向大角度方向偏移。
(2)采用本发明的方法制备得到的Cr-In2S3样品,大大降低了光反射强度,从而间接的表明了其光吸收强度增强,Cr元素的掺杂拓宽了光谱响应,而且光电流瞬态响应明显增强,从而说明该样品能够吸收红外区的光生载流子,降低光生电子-空穴对复合。
附图说明
下面结合附图对本发明进一步说明。
图1为本发明实施例中Cr掺杂In2S3的中间带材料的制备方法的流程图。
图2为本发明550℃下退火处理的对比例In2S3和实施例Cr-In2S3的XRD 图谱。
图3为本发明对比例In2S3和实施例中Cr-In2S3的(311)晶面对应衍射峰的放大图。
图4为本发明实施例中Cr-In2S3的拉曼光谱。
图5为本发明对比例中In2S3和实施例中Cr-In2S3的EDAX图谱。
图6为本发明实施例中Cr-In2S3的EDAX图谱。
图7为本发明对比例中In2S3和实施例中Cr-In2S3的紫外-可见-近红外漫反射光谱。
图8为本发明对比例中In2S3和实施例中Cr-In2S3的(αhν)2和hν关系曲线。
图9为本发明550℃下退火处理的对比例中In2S3和实施例中Cr-In2S3的瞬态光电流响应图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例及附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
本发明实施例中所使用的实验靶材、辅助材料及试剂参数如表1所示:
表1
名称 化学式 规格 生产厂家
三硫化二铟 In<sub>2</sub>S<sub>3</sub> 99.99% 北京兴友经贸有限公司
硫化铬靶材 Cr<sub>2</sub>S<sub>3</sub> 99.99% 北京兴友经贸有限公司
无水乙醇 CH<sub>3</sub>CH<sub>2</sub>OH 99.7% 天津市北联精细化学品开发有限公司
本发明实施例中所使用的实验仪器设备规格如表2所示:
表2
Figure BDA0002406761320000041
Figure BDA0002406761320000051
其中,所使用分析测试方法为:
X射线衍射仪(XRD):表征材料样品的结晶性和晶体结构并对其进行定性分析,扫面范围从20°-80°。
拉曼光谱(Raman spectra):表征分子结构中各个化学键的振动模式,激发波长为514nm。
扫描电子显微镜(SEM):表征材料样品的表面和截面结构形态,与其搭配的EDAX测试材料的元素分布及含量。
X射线光电子能谱仪(XPS):测试材料的成分及元素的化学形态。
紫外可见分光光度计(UV-vis):测试材料的吸收和反射光谱,通过分析光谱获得光学特性,如吸收系数和禁带宽度。
光电流响应检测:入射光是通过在灯和样品之间设置和移除屏障来机械的开关,同时对光电流进行检测。
实施例1
制备流程请参阅图1,本实施例的一种Cr掺杂In2S3的中间带材料的制备方法,其方法步骤如下:
步骤1:制备In2S3材料,纯度99.99%;称重10克。称重采用赛多科斯科学仪器有限公司生产,型号BSA124S-CW的电子天平秤。
步骤2:制备Cr2S3材料,纯度99.99%;称重0.3234克。称重采用赛多科斯科学仪器有限公司生产,型号BSA124S-CW的电子天平秤。
步骤3:将In2S3和Cr2S3的混合物料装入混料机罐体内,混料机的转速为 20r/min,混料时间10h,通入惰性气体氩气保护,然后利用混料机进行混料;得到混合粉体;对得到的In2S3和Cr2S3混合粉末样品放入真空球磨罐中。
步骤4:向所述步骤3的球磨罐中加入混合物样品质量与乙醇体积比为 40kg/m3的无水乙醇,密封所述球磨罐并抽真空。
步骤5:将所述步骤4中的球磨罐放入球磨机中球磨;球磨机的转速为 300r/min,球磨时间为8h,球磨机采用德国弗里奇公司型号PULVERISETTE 6 的球磨机。
步骤6:将步骤5球磨后的混合样品取出放入离心管中做离心处理,离心转速3000rpm,离心力800xg;将离心后的样品中的上层无水乙醇倒出,然后放入真空干燥箱中抽真空干燥3h,干燥温度为60℃。
步骤7:将干燥后的样品取出,手工研磨至粉体粒度40μm-50μm,然后放入退火炉中退火,退火温度为550℃,且退火炉中放入样品后,一端通入氩气保护,另一端用去离子水密封,退火后得到Cr-In2S3中间带材料,退火炉采用合肥科晶材料技术有限公司型号GSL-1100X真空管式退火炉。
实施例2
制备流程请参阅图1,本实施例的一种Cr掺杂In2S3的中间带材料的制备方法,其方法步骤如下:
步骤1:制备In2S3材料,纯度99.99%;称重100克。称重采用赛多科斯科学仪器有限公司生产,型号BSA124S-CW的电子天平秤。
步骤2:制备Cr2S3材料,纯度99.99%;称重3.33克。称重采用赛多科斯科学仪器有限公司生产,型号BSA124S-CW的电子天平秤。
步骤3:将In2S3和Cr2S3的混合物料装入混料机罐体内,混料机的转速为50r/min,混料时间20h,通入惰性气体氮气保护,然后利用混料机进行混料;得到混合粉体;对得到的In2S3和Cr2S3混合粉末样品放入真空球磨罐中。
步骤4:向所述步骤3的球磨罐中加入混合物样品质量与乙醇体积比为 40kg/m3的无水乙醇,密封所述球磨罐并抽真空。
步骤5:将所述步骤4中的球磨罐放入球磨机中球磨;球磨机的转速为 300r/min,球磨时间为8h,球磨机采用德国弗里奇公司型号PULVERISETTE 6 的球磨机。
步骤6:将步骤5球磨后的混合样品取出放入离心管中做离心处理,离心转速3000rpm,离心力800xg;将离心后的样品中的上层无水乙醇倒出,然后放入真空干燥箱中抽真空干燥3h,干燥温度为60℃。
步骤7:将干燥后的样品取出,手工研磨3h,研磨至粉体粒度50μm,然后放入退火炉中退火,退火温度为550℃,且退火炉中放入样品后,一端通入氩气保护,另一端用去离子水密封,退火后得到Cr-In2S3中间带材料,退火炉采用合肥科晶材料技术有限公司型号GSL-1100X真空管式退火炉。
对比例
制备In2S3样品
步骤1:称取In2S3粉末样品30g放入玛瑙球磨罐中;
步骤2:按样品质量与无水乙醇体积比40kg/m3,加入无水乙醇750ml,密封球磨罐;
步骤3:放入球磨机中球磨,设定转速为300r/min,球磨时间为8h;
步骤4:球磨结束后,将样品取出后放入离心管做离心处理;
步骤5:将样品中上层无水乙醇倒出,放入真空干燥箱中抽真空干燥3h,干燥温度为60℃。
步骤6:将干燥后的样品取出,手工研磨3h,放入退火炉中做退火处理,退火温度为550℃,且退火炉中放入样品后,一端通入氩气保护、另一端用去离子水密封,最后得到In2S3材料。
对得到的Ti-CdIn2S4中间带薄膜利用X射线衍射仪(以下简称:XRD)进行衍射分析,同时表征薄膜样品的结晶性和晶体结构并对其进行定性分析:
一、Cr-In2S3材料的物相结构分析
见图2,首先测试了所制备In2S3和Cr-In2S3材料的晶体相结构。图2为 550℃下退火处理的In2S3和Cr-In2S3材料的XRD图谱。由图对比知,与α-In2S3晶体标准卡片JCPDS#65-0459和β-In2S3晶体标准卡片JCPDS#25-0390分别对照,发现各衍射峰与α-In2S3的标准峰相一致,并且无其它杂相峰出现,初步确定该样品主要为α-In2S3晶体畸变八面体尖晶石结构相,有无序的空位点。通过拟合得到In2S3和Cr-In2S3样品的晶格参数a值分别为10.7565和10.7466,发现参数有所减小。从样品的(311)晶面对应衍射峰放大图看,如图3所示,掺杂Cr元素后,衍射峰稍微向大角度方向发生偏移,这是因为掺杂元素Cr离子的半径是小于In离子半径。
见图4,其为Cr-In2S3材料的拉曼光谱,126、244、266和306cm-1处拉曼峰的出现表明该晶体中存在α-In2S3相结构,115、139、177、323和364cm-1处拉曼峰的出现表明该晶体中存在β-In2S3相结构,且244和306cm-1处的拉曼峰分别是由InS6八面体和InS4四面体的对称性伸缩振动模式决定的,这样有助于杂质掺杂形成IB后高低能双光子的吸收。总之该实验结果表明Cr-In2S3晶体中存在两种相结构。从拉曼峰强角度看,该晶体主要以α-In2S3相结构为主,这也很好的与样品的X射线衍射图谱相吻合。
二、Cr-In2S3材料的元素测试及成分分析
见图5和图6,由In2S3材料的EDAX图谱5和Cr-In2S3材料的EDAX图谱6 可看出,所制备样品是由Cr、In和S元素组成。结合表3,表3为在550℃下退火处理的In2S3和Cr-In2S3材料的化学成分,从表中可以看出材料基本符合理论化学计量比。
表3
Figure BDA0002406761320000091
综上,本发明的Cr掺杂In2S3的中间带材料的制备方法,采用球磨法结合退火处理制备了Cr-In2S3光吸收层中间带材料,结构中各个元素符合化学计量比,组成元素分布均匀,而且制备方法简单。经XRD和拉曼光谱分析,该吸收材料主要以α-In2S3结构相为主,因Cr离子半径小于In离子半径,X射线衍射峰向大角度方向偏移。
三、Cr-In2S3材料的光电性能
见图7,其为550℃下退火处理后获得的In2S3和Cr-In2S3材料的紫外-可见-近红外漫反射光谱。从图中看出,在紫外-可见-近红外光照区,样品的相对反射率随光波长的增加而增大。当掺杂Cr元素后,反射率明显减弱,这种现象间接说明掺杂后Cr-In2S3样品的光吸收增强,特别是在近红外区(500nm -1200nm之间)。
见图8,其为In2S3和Cr-In2S3材料的(αhν)2和hν关系曲线。该图谱中的数据点是基于经优化的Kubelka–Munk函数计算获得,Kubelka–Munk函数的具体表达式为:F(R)=(1-R)2/(2R)=α/S,式中R为反射率,α和S分别为吸收系数和散射系数。通过对样品的(αhν)2和hν关系曲线线性部分使用外推法获得两粉末样品的光学带隙值(Eg)分别为2.44eV和2.32eV,结果表明掺杂后吸收系数向低能光子方向偏移,即通过在基体材料In2S3中掺杂Cr元素成功地拓宽了光谱响应。
见图9,为进一步证明以上结果,我们又对样品做了瞬态光电流响应测试,图9为550℃下退火处理的In2S3和Cr-In2S3材料的瞬态光电流响应曲线,该图谱应用标准太阳光模拟器周期性的开关光源,光强度100mW/cm2,周期为20 秒,其中,10秒亮10秒暗,照射样品测试所获得。当光源周期性明暗相间地照射样品时,发现灭光时两种样品的光电流几乎为零,亮光时光电流瞬间增强并达到稳定状态。值得关注的是,亮光时掺杂Cr元素的样品光电流明显更强,说明基体材料In2S3通过掺杂Cr不仅可以吸收可见光范围内的光子而且还能吸收红外光源内的低能光子实现光生载流子的增加。
结合上述实施例和图示数据分析,本发明的Cr掺杂In2S3的中间带材料的制备方法,采用球磨法结合退火处理制备了Cr-In2S3光吸收层中间带材料,结构中各个元素符合化学计量比,组成元素分布均匀,而且制备方法简单。经 XRD和拉曼光谱分析,该吸收材料主要以α-In2S3结构相为主,因Cr离子半径小于In离子半径,X射线衍射峰向大角度方向偏移。
并且,采用本发明的方法制备得到的Cr-In2S3样品,大大降低了光反射强度,从而间接的表明了其光吸收强度增强,Cr元素的掺杂拓宽了光谱响应,而且光电流瞬态响应明显增强,从而说明该样品能够吸收红外区的光生载流子,降低光生电子-空穴对复合。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (8)

1.一种Cr掺杂In2S3的中间带材料的制备方法,其特征在于,该中间带材料使用Cr2S3掺杂In2S3基制成,Cr2S3掺杂In2S3基材料的化学分子式为Cr-In2S3,制备方法包括以下步骤:
步骤1:制备In2S3材料;
步骤2:制备Cr2S3材料;
步骤3:将In2S3:Cr2S3质量比为30:1的混合物料装入混料机罐体内,通入惰性气体保护,然后利用混料机进行混料;得到混合粉体;将得到的In2S3和Cr2S3混合粉末样品放入真空球磨罐中;
步骤4:向所述步骤3的球磨罐中加入混合物样品质量与乙醇体积比为40kg/m3的无水乙醇,密封所述球磨罐并抽真空;
步骤5:将所述步骤4中的球磨罐放入球磨机中球磨;球磨机的转速为300r/min,球磨时间为8h;
步骤6:将步骤5球磨后的混合样品取出放入离心管中做离心处理,离心转速3000rpm,离心力800xg;将离心后的样品中的上层无水乙醇倒出,然后干燥;
步骤7:将干燥后的样品取出,手工研磨至粉体粒度40μm-50μm,然后放入退火炉中退火,退火后得到Cr-In2S3中间带材料,其中,退火炉中放入样品后,一端通入氩气保护,另一端用去离子水密封;退火炉的退火温度为550℃。
2.如权利要求1所述的一种Cr掺杂In2S3的中间带材料的制备方法,其特征在于:步骤3中混料机的转速为20-50r/min,混料时间10-30h,步骤3所述惰性气体为氩气或氮气。
3.如权利要求1所述的一种Cr掺杂In2S3的中间带材料的制备方法,其特征在于:所述In2S3 和Cr2S3纯度均为99.99%。
4.如权利要求1所述的一种Cr掺杂In2S3的中间带材料的制备方法,其特征在于:步骤6中的干燥条件为真空干燥。
5.如权利要求1所述的一种Cr掺杂In2S3的中间带材料的制备方法,其特征在于:步骤6中干燥的温度为60℃,干燥时间为3h。
6.如权利要求1所述的一种Cr掺杂In2S3的中间带材料的制备方法,其特征在于:步骤7中手工研磨的时间为3h。
7.如权利要求1所述的一种Cr掺杂In2S3的中间带材料的制备方法,其特征在于:球磨罐为玛瑙球磨罐。
8.一种Cr掺杂In2S3的中间带材料,其采用Cr2S3掺杂In2S3中间带的制备方法,其特征在于,所述制备方法为如权利要求1至7中任意一项所述的制备方法。
CN202010164013.8A 2020-03-11 2020-03-11 一种Cr掺杂In2S3的中间带材料及其制备方法 Active CN111233029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010164013.8A CN111233029B (zh) 2020-03-11 2020-03-11 一种Cr掺杂In2S3的中间带材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010164013.8A CN111233029B (zh) 2020-03-11 2020-03-11 一种Cr掺杂In2S3的中间带材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111233029A CN111233029A (zh) 2020-06-05
CN111233029B true CN111233029B (zh) 2022-02-08

Family

ID=70871996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010164013.8A Active CN111233029B (zh) 2020-03-11 2020-03-11 一种Cr掺杂In2S3的中间带材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111233029B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789719A (ja) * 1993-09-20 1995-04-04 Hitachi Maxell Ltd 銅インジウム硫化物またはセレン化物の製造法
KR20090049979A (ko) * 2007-11-14 2009-05-19 성균관대학교산학협력단 Ⅰ-ⅲ-ⅵ2 나노입자의 제조방법 및 다결정 광흡수층박막의 제조방법
CN105470321A (zh) * 2015-12-02 2016-04-06 上海电机学院 一种多能带太阳能吸收材料及其制备方法
CN107670674A (zh) * 2017-10-12 2018-02-09 湖南大学 稀土元素共掺杂的硫化铟材料及其制备方法和应用
CN110422874A (zh) * 2019-07-31 2019-11-08 上海电机学院 一种硫化铟基杂质带半导体及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2316287B1 (es) * 2007-07-19 2010-01-29 Consejo Superior De Investigaciones Cientificas Uso fotonico de materiales de banda intermedia basados en un semiconductor tipo calcogenuro.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789719A (ja) * 1993-09-20 1995-04-04 Hitachi Maxell Ltd 銅インジウム硫化物またはセレン化物の製造法
KR20090049979A (ko) * 2007-11-14 2009-05-19 성균관대학교산학협력단 Ⅰ-ⅲ-ⅵ2 나노입자의 제조방법 및 다결정 광흡수층박막의 제조방법
CN105470321A (zh) * 2015-12-02 2016-04-06 上海电机学院 一种多能带太阳能吸收材料及其制备方法
CN107670674A (zh) * 2017-10-12 2018-02-09 湖南大学 稀土元素共掺杂的硫化铟材料及其制备方法和应用
CN110422874A (zh) * 2019-07-31 2019-11-08 上海电机学院 一种硫化铟基杂质带半导体及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Density functional theory study the effects of point defects in b-In2S3";Zongyan Zhao et al.;《Computational Materials Science》;20130330;第73卷;第139-145页 *
"METAL-DEFICIENT SULPHOSPINELS IN THE SYSTEM Cr2S3-In2S3";F. K. Lotgering et al.;《Journal of Inorganic and Nuclear Chemistry》;19711231;第33卷(第3期);第673-678页 *

Also Published As

Publication number Publication date
CN111233029A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
Qaid et al. Band-gap tuning of lead halide perovskite using a single step spin-coating deposition process
Saha et al. Bandgap widening in highly conducting CdO thin film by Ti incorporation through radio frequency magnetron sputtering technique
Thirumoorthi et al. Structural, morphological characteristics and optical properties of Y doped ZnO thin films by sol–gel spin coating method
Wu et al. A favored crystal orientation for efficient printable mesoscopic perovskite solar cells
Jiao et al. Effect of acetic acid on ZnO: In transparent conductive oxide prepared by ultrasonic spray pyrolysis
CN108585048B (zh) 一种具有近红外屏蔽性能的铯掺杂钨青铜纳米粉体的制备方法
Zahedifar et al. Synthesis of LaVO4: Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells
Gul et al. Effects of Cu incorporation on physical properties of ZnTe thin films deposited by thermal evaporation
González-Pérez et al. Luminescent polymeric film containing an Eu (III) complex acting as UV protector and down-converter for Si-based solar cells and modules
Qamhieh et al. Synthesis and characterization of a perovskite film for solar cells applications
Fadel et al. Structure, optical spectroscopy and dispersion parameters of ZnGa2Se4 thin films at different annealing temperatures
Sreedhar et al. Studies of Cu‐doped ZnS thin films prepared by sputtering technique
Lian et al. Characterization and optical properties of (Gd1− x, Prx) 2O2S nano-phosphors synthesized using a novel co-precipitation method
Qiu et al. Fabrication of Cu2ZnSnS4 thin films by microwave assisted sol-gel method
Dogan et al. Investigation of structural, morphological and optical properties of nickel zinc oxide films prepared by sol–gel method
Tripathi et al. Study on formation and characterization of kesterite CZTSSe thin films deposited by thermal evaporation technique for solar cell applications
Xie et al. Fastly steady UV response feature of Mn-doped ZnO thin films
Sawahata Effects of annealing temperature and Eu concentration on the structural and photoluminescence properties of Eu-doped SnO2 thin films prepared by a metal organic decomposition method
CN111233029B (zh) 一种Cr掺杂In2S3的中间带材料及其制备方法
Montaño et al. In-depth study of the effect of annealing temperature on the structural, chemical, and optical properties of MAPI thin films prepared by a one-step deposition method
Barreau et al. A study of bulk NaxCu1− xIn5S8 and its impact on the Cu (In, Ga) Se2/In2S3 interface of solar cells
Luan et al. Growth, structural and photophysical properties of Bi2GaTaO7
Zhu et al. Structure and composition evaluation of heavily Ge-doped ZnO nanocrystal films
Fu et al. Synthesis, crystal structure and optical properties of Ce doped CuInSe2 powders prepared by mechanically alloying
Balestrieri Transparent conductive oxides with photon converting properties in view of photovoltaic applications: the cases of rare earth-doped zinc oxide and cerium oxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant