CN111229827A - 一种屈服强度450MPa级热轧H型钢及其生产方法 - Google Patents

一种屈服强度450MPa级热轧H型钢及其生产方法 Download PDF

Info

Publication number
CN111229827A
CN111229827A CN202010137017.7A CN202010137017A CN111229827A CN 111229827 A CN111229827 A CN 111229827A CN 202010137017 A CN202010137017 A CN 202010137017A CN 111229827 A CN111229827 A CN 111229827A
Authority
CN
China
Prior art keywords
rolling
controlled
blank
stage
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010137017.7A
Other languages
English (en)
Other versions
CN111229827B (zh
Inventor
彭林
吴保桥
吴湄庄
程鼎
张卫斌
何军委
汪杰
黄琦
夏勐
丁朝晖
邢军
彦井成
魏银丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maanshan Iron and Steel Co Ltd
Original Assignee
Maanshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maanshan Iron and Steel Co Ltd filed Critical Maanshan Iron and Steel Co Ltd
Priority to CN202010137017.7A priority Critical patent/CN111229827B/zh
Publication of CN111229827A publication Critical patent/CN111229827A/zh
Application granted granted Critical
Publication of CN111229827B publication Critical patent/CN111229827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

本发明提供了一种屈服强度450MPa级热轧H型钢及其生产方法,与现有技术相比,本发明坯料选型时,坯料与最终产品之间的压缩比为8~15;粗轧阶段结束后坯料的翼缘厚度与最终产品之间的翼缘厚度压缩比为5~7。采用适当含量的合金元素,再配合合理的轧制工艺;利用细晶强化、析出强化机制,得到铁素体+珠光体的复相组织的细小晶粒的H型钢组织,珠光体占比达到20%~40%;产品屈服强度450MPa以上,抗拉强度550MPa以上,延伸率为20%以上,–20℃纵向V型冲击功KV2均值120J以上。满足道路交通、能源化工等领域的专用车车架纵梁用轻型、高强、高品质热轧H型钢的要求。

Description

一种屈服强度450MPa级热轧H型钢及其生产方法
技术领域
本发明涉及一种车辆用钢及其生产方法,具体涉及一种屈服强度450MPa级专用车车架纵梁用热轧H型钢及其生产方法。
背景技术
近年来,随着工业现代化进程的飞速提高,道路交通、能源化工等领域的专用车需求量长期保持高位增长。专用车车架纵梁由于其服役条件恶劣,使得纵梁用热轧H钢必须具备优异的综合力学性能、焊接性能以及良好的尺寸精度和表面质量。随着国家环保和治超政策的不断推进和落实以及力度的不断的加大,各大专用车生产企业迫切需求轻型、高强、高品质热轧H型钢来实现车身轻量化的目标。
目前我国大部分H型钢生产企业已成功开发出屈服强度345MPa、390MPa、420MPa级别的轻型高强高精度热轧H型钢。为保证钢的强度等指标达到标准要求,都是采用添加较高含量合金元素Nb、V、Mn的常规热轧方法生产。屈服强度超过420MPa级的热轧H型钢均采用添加较高含量合金元素(V含量0.10~0.15wt%,Mn含量高达1.30~1.70wt%,同时会添加Nb、Mo等昂贵金属)并配以控轧控冷工艺来获得所需的机械性能。由于合金元素含量较高,且需要利用轧后穿水控制冷却工艺,导致生产成本提高,同时较高含量的合金元素使钢的焊接性能进一步恶化,穿水冷却带来的钢的组织不均使钢的抗疲劳性进一步恶化。
公开号为CN103938076B,公开日为2016年4月20日,名称为“500MPa级叉车用门架型钢的生产方法”的专利文献,本发明公开了一种500MPa级叉车用门架型钢的生产方法,该方法依次包括铁水预脱硫、转炉冶炼、LF精炼、全保护连铸、轧制步骤,按重量百分比所述500MPa级叉车用门架型钢由以下化学成分组成:C:0.24~0.30%、Si:0.15~0.30%、Mn:1.05~1.30%、P:≤0.025%、S:≤0.015%、V:0.05~0.08%,其余为铁和不可避免的杂质。本发明主要通过提高碳含量,降低硫、磷含量,微合金化仅为钒,没有添加其他元素,轧后不控冷且不需进行热处理,得到的钢力学性能良好,屈服强度平均为531MPa,抗拉强度平均为685MPa,延伸率平均为23.5%,布氏硬度大于210,20℃冲击功平均59J。未提及-20℃时的冲击功。
公开号为CN101899616B,公开日为2012年5月23日,名称为“一种600MPa级别高强工程机械用钢及其生产方法”的专利文献,该钢的化学成分按重量百分比为C:0.06-0.09%、Si:0.15-0.25%、Mn:1.4-1.6%、P:≤0.020%、S:≤0.010%、Alt:0.020-0.060%、Nb:0.040-0.060%、Ti:0.09-0.12%,其余为Fe及不可避免的杂质。该钢无需添加Mo、V等昂贵元素,生产出屈服强度达600MPa以上,-20℃V型夏比冲击功≥40J的优良强韧性的低成本热轧板卷。但轧后需采用层流冷却控冷工艺,冷却速度控制在5~10℃/s,生产能耗增加,且厚度规格限定为5~16mm。
公开号为CN101824581B,公开日为2012年5月30日,名称为“一种屈服强度450MPa级高强耐候钢板及其生产方法”的专利文献,所述钢的成分质量百分比为:C:0.040%~0.080%,Si:0.15%~0.35%,Mn:1.20%~1.40%,P:≤0.025%,S:≤0.008%,Nb:0.015%~0.035%,Cu:0.25%~0.40%,Ni:0.1 2%~0.35%,Cr:0.45%~0.75%,Als:0.020%~0.045%,其余为Fe和不可避免的杂质元素。生产出屈服强度≥485MPa,抗拉强度≥590MPa,延伸率≥28%,-40℃V型缺口夏比冲击功≥105J的钢。但该钢轧后需要进行层流冷却,生产能耗增加,且钢的厚度限定在8mm以下。
公开号为CN102644034A,公开日为2012年8月22日,名称为“一种屈服强度500MPa级高耐候性热轧H型钢轧后冷却方法”的专利文献,所述钢的成分按质量百分比计为:C:0.06~0.12,Si:0.30~0.60,Mn:0.80~1.20,P:0.010~0.030,S:0.001~0.015,Cu:0.20~0.35,Cr:0.20~0.40,Ni:0.15~0.30,Nb:0.040~0.060,Als:0.003~0.030,其余为铁和残余的微量杂质,轧后需要通过两段式快速冷却(第一段冷却速度75~150℃/s,第二段冷却速度为20~45℃/s)来获得所需的机械性能,生产能耗增加,且对冷却设备要求极高。
公开号为CN103290331A,公开日为2013年9月11日,名称为“一种屈服强度450MPa的高强度高耐腐蚀性能钢板材及其生产方法”的专利文献,所述钢的成分配比为(Wt):C:0.002~0.005、Si:0.15~0.35、Mn:0.1~0.9、P:≤0.012、S:≤0.008、Cu:0.25~0.5、Cr:2.80~4.0、Ni:0.12~0.35、Al:0.01~0.05、Nb:0.015-0.030,余量为Fe和不可避免的杂质元素。生产出屈服强度≥450MPa,抗拉强度≥550~750MPa,延伸率20%以上,耐大气腐蚀性的相对腐蚀速率为Q345B的30%以下的钢。但该发明轧后需采用特殊的控冷工艺(分段式层流冷却工艺:前段冷却到700~740℃,冷却速率5~10℃/s,然后空冷10~15s,再用后段冷却,冷却速率5~10℃/s冷却到卷取温度),生产能耗增加,且该发明未提及冲击功性能。
公开号为CN103695772A,公开日为2014年4月2日,名称为“屈服强度为550MPa级耐火耐候抗震建筑用钢及其生产方法”的专利文献,其组分及wt%为:C:0.041~0.125%,Si:0.31~0.62%,Mn:1.81~2.40%,P:≤0.008%,S:≤0.002%,Nb:0.041~0.065%,Ti:0.007~0.020%,Mo:0.41~0.63%,W:0.07~0.10%,Mg:0.0071~0.0098%,O:≤0.0012%。该发明Mn含量较高,且添加了较高含量的贵重金属Nb、Mo贵重金属,生产成本较高,轧后需要通过控冷工艺来实现机械性能要求,生产能耗增加。
公开号为CN102925798B,公开日为2014年7月2日,名称为“一种铁路货车零部件用屈服强度450MPa级钢及生产方法”的专利文献,所述钢的组分及wt%为:C:0.01~0.07%、Si:≤0.045%、Mn:0.45~1.15%、P:≤0.025%、S:≤0.010%、Nb:0.01~0.08%、V:0.02~0.10%、N:0.0030~0.010%。本发明由于以C-Mn为基础,并配以匹配的工艺,使晶粒细化及沉淀强化,生产出屈服强度≥450MPa,抗拉强度≥550MPa,延伸率≥20%,-40℃V型缺口夏比冲击功≥70J,同时具有良好的焊接性能及成本低廉的钢。但该钢轧后需要进行层流冷却,控制冷却速度在25~45℃/s,这对冷却设备要求较高且生产成本高,同时钢的厚度限定在14mm以下。
公开号为CN102676919B,公开日为2014年12月31日,名称为“一种屈服强度550MPa低合金热轧H型钢轧后冷却方法”的专利文献,所述钢的成分按质量百分比计为:C:0.13~0.18,Si:0.30~0.50,Mn:1.40~1.60,P:≤0.025,S:≤0.025,V:0.10~0.12,N:0.010~0.014,Als:0.003~0.030,其余为铁和残余的微量杂质。轧后需要通过两段式快速冷却(第一段冷却速度75~150℃/s,第二段冷却速度为20~45℃/s)来获得所需的机械性能,生产能耗增加,且对冷却设备要求极高。
公开号为CN103255353B,公开日为2015年10月7日,名称为“一种屈服强度450MPa级含钒耐候热轧H型钢的轧制工艺”的专利文献,本发明公开了一种屈服强度450MPa级含钒耐候热轧H型钢的轧制工艺,该含钒耐候热轧H型钢,按质量百分比计,成分配比为:C:0.09~0.11,Si:0.45~0.52,Mn:1.25~1.38,P:0.015~0.022,S:0.008~0.014,Cu:0.27~0.33,Cr:0.35~0.42,Ni:0.25~0.32,V:0.073~0.087,A1S:0.010~0.025,其余为铁和残余的微量杂质。轧后需要通过两段式快速冷却(第一段冷却速度85~120℃/s,第二段冷却速度为37~47℃/s)来获得所需的机械性能,生产能耗增加,且对冷却设备要求极高。
公开号为CN103243272B,公开日为2015年10月7日,名称为“一种屈服强度500MPa级含钒耐候热轧H型钢的轧制工艺”的专利文献,本发明公开了一种屈服强度500MPa级含钒耐候热轧H型钢的轧制工艺,该含钒耐候热轧H型钢,按质量百分比计,成分配比为:C:0.09~0.12,Si:0.43~0.55,Mn:1.39~1.49,P:0.013~0.017,S:0.011~0.016,Cu:0.27~0.36,Cr:0.32~0.38,Ni:0.25~0.32,V:0.098~0.110,A1S:0.014~0.023,其余为铁和残余的微量杂质。轧后需要通过两段式快速冷却(第一段冷却速度97~128℃/s,第二段冷却速度为36~45℃/s)来获得所需的机械性能,生产能耗增加,且对冷却设备要求极高。
公开号为CN104962807B,公开日为2017年6月23日,名称为“一种高强度热轧钢及其制备方法和应用”的专利文献,其化学成分按重量百分比为:C 0.05%~0.10%,Mn1.30%~1.60%,V 0.06~0.09%,Si≤0.30%,P≤0.020%,S≤0.010%,余量为Fe和不可避免杂质。本发明采用锰、钒微合金化方式,生产出屈服强度达到600MPa以上,抗拉强度达到650MPa以上,延伸率达到15%以上的钢。但该发明需要通过轧后控制冷却的方式(轧制后的板坯以5~30℃/s的冷却速度冷却至720℃,空冷8~10s;再以5~30℃/s的冷却速度冷却至350~450℃)来获得所需的机械性能,生产能耗增加,且未提及冲击功性能。
发明内容
本发明的目的在于提供一种屈服强度450MPa级热轧H型钢,屈服强度450MPa以上,抗拉强度550MPa以上,延伸率为20%以上,–20℃纵向V型冲击功KV2均值120J以上。
本发明另一目的在于提供一种屈服强度450MPa级热轧H型钢的生产方法,通过合理的成分配比以及轧制工艺,特别是通过坯料选型、压下量分配以及控温轧制,利用细晶强化、析出强化、相变强化机制,及轧后空冷的工艺,得到综合力学性能优异的翼缘厚度10~30mm、屈服强度450MPa级专用车车架纵梁用热轧H型钢。
本发明具体技术方案如下:
一种屈服强度450MPa级热轧H型钢,包括以下质量百分比的元素:C:0.14~0.18%,Si:0.25~0.40%,Mn:1.40~1.50%,P:≤0.025%,S:≤0.015%,V:0.04~0.06%,Nb:0.010~0.020%,其余为Fe及不可避免的杂质元素。
本发明化学成分采用Nb+V设计思路,结合适量的C、Si、Mn等元素,考虑生产成本,严格控制Nb+V总量≤0.08%,各成分含量控制如下:
C:0.14~0.18%,C作为钢中的基本元素,对提高钢的强度起着非常重要的作用,为了获得较高的强度,同时降低炼钢脱C的难度,下限值设定为0.14%,C含量过高将严重恶化钢的塑性、韧性及焊接性,上限设定为0.18%。
Si:0.25~0.40%,适当含量的Si能起到较强的固溶强化作用,Si还是炼钢过程中重要的还原和脱氧元素,为了获得较高的强度,下限值设定为0.25%,但Si含量不能太高,研究表明Si含量过高将加速高温剥层,降低韧性和抗层状撕裂性能,且容易在钢的表面生成红色的氧化铁皮,影响产品的表面质量,上限值设定为0.40%。
Mn:1.40~1.50%,Mn作为钢中的强化元素,可以提高钢的强度和淬透性,为了保证钢的强度,下限值设定为1.40%,但Mn含量不能过高,过高将导致铸坯偏析的可行性显著增加,对钢的成形性能产生不利影响,上限值设定为1.50%。
P、S作为杂质元素,会对钢的塑性、韧性和焊接性产生不利影响,应严格控制,考虑炼钢控制难度,实际生产中控制P:≤0.025%,S:≤0.015%。
V:0.040~0.060%,V作为强碳化物形成元素,与C、N元素形成的V(C、N)弥散化合物对控制奥氏体晶粒大小作用不大,主要是通过在奥氏体向铁素体的相变过程中以及相变之后析出来起到析出强化的作用,为了提高强度,下限值设定为0.040%,但V含量过高,超过一定值将起不到相应的作用,有研究表明,当V含量超过0.12%时,析出强化作用趋于饱和,考虑生产成本因素,上限值设定为0.060%。
Nb:0.010~0.020%,Nb是强烈的碳、氮化合物形成元素,主要是在高温下通过细化晶粒来提高钢的强度,固溶的Nb对奥氏体晶粒的长大起到溶质拖拽的作用,阻止奥氏体晶粒长大,同时,未溶解的Nb与C、N元素形成Nb(C、N)化物可以显著的钉扎在奥氏体晶界,细化奥氏体晶粒,并对最终产品组织起到细化的作用,为了提高钢的强度和塑性,下限值设定为0.010%,但Nb含量过高,容易导致铸坯表面出现裂纹,影响最终产品表面质量,且有研究表明,当Nb含量超过0.04%时,强度将出现饱和现象,且晶粒细化效果趋于不变,同时较高的Nb含量也不利于成本控制,上限值设定为0.020%。
一种屈服强度450MPa级热轧H型钢的生产方法,生产工艺过程为:铁水预处理→转炉冶炼→吹氩精炼→LF精炼→异型坯或矩形坯全保护浇铸→坯料加热→轧制→轧后空冷。
所述轧制包括粗轧阶段和精轧阶段。
生产过程中,坯料的选型为:坯料与最终产品之间的压缩比为8~15;粗轧阶段结束后坯料的翼缘厚度与最终产品之间的翼缘厚度压缩比为5~7。
坯料与最终产品之间的压缩比为坯料截面面积与成品产品截面面积比。最终产品即成品。
H型钢的轧制具体为:
1)铸坯进入加热炉,经加热炉加热至1200~1250℃,保温时间15~25min,确保合金元素充分固溶,同时避免过烧以及奥氏体晶粒过度粗化;
2)粗轧阶段开轧温度控制在1150~1180℃,终轧温度控制在1020℃以上,本阶段翼缘厚度方向压缩比控制在5%~10%,坯料总的压缩比控制在30%~40%。
3)精轧采用两阶段控制轧制,第一阶段开轧温度控制在980~1000℃,终轧温度控制在950℃以上,本阶段翼缘厚度方向压缩比控制在20%~30%,坯料累计压缩比控制在50%~60%。本阶段之前均处于奥氏体再结晶温度范围内,通过较大的轧制变形和奥氏体的反复再结晶不断细化奥氏体晶粒,随着0.010%~0.020%的Nb合金元素加入,固溶Nb的溶质拖拽作用,以及Nb(C、N)化物的钉扎作用进一步细化奥氏体晶粒,避免翼缘区域奥氏体在微变形情况下的过度粗化,使得最终产品的铁素体晶粒度达到9.0级以上;第二阶段开轧温度控制在900~920℃,避开两段之间的奥氏体部分再结晶温度范围内进行轧制,以免造成奥氏体晶粒不均,导致最终产品性能下降,终轧温度控制在830~850℃,翼缘厚度方向余下的变形在本阶段完成。本阶段处于奥氏体非再结晶温度范围内,较大的变形使翼缘区域奥氏体晶粒被拉长,形成大量的变形带、孪晶和位错,增加了形核点位置,同时较大的变形导致的应变储存能也为珠光体相变提供了足够的动能,Nb、V合金元素的加入使得C曲线右移,使得珠光体转变的鼻尖温度上移,扩大了珠光体相变温度区间,进一步促进了珠光体转变,使得珠光体占比达到20%~40%,而珠光体含量的增加有利于强度的提升。随着0.040%~0.060%的V合金元素加入,V(C、N)化物的析出作用也进一步提高了强度和韧性,使得最终产品的屈服强度≥450MPa,抗拉强度≥550MPa,延伸率A50≥20%,–20℃纵向V型冲击功KV2≥120J。
采用本技术方案得到的热轧H型钢其组织为铁素体+珠光体的复相组织,铁素体晶粒度等级9.0级以上,珠光体占比达到20%~40%;其屈服强度≥450MPa,抗拉强度≥550MPa,延伸率A50≥20%,–20℃纵向V型冲击功KV2≥120J。
与现有技术相比,本发明在综合考虑成本及质量的情况下,该屈服强度450MPa级高强热轧H型钢的轧制工艺,采用合理的成分配比以及轧制工艺,特别是坯料压缩比的合理选择以及压下量的分配,再配合控温轧制工艺;利用细晶强化、析出强化、相变强化机制,得到铁素体+珠光体的复相组织,铁素体晶粒度等级9.0级以上,其中珠光体占比达到20%~40%;通过该屈服强度450MPa级热轧H型钢的轧制工艺生产的H型钢,屈服强度450MPa以上,抗拉强度550MPa以上,延伸率为20%以上,–20℃纵向V型冲击功KV2均值120J以上;满足道路交通、能源化工等领域的专用车车架纵梁用轻型、高强、高品质热轧H型钢的要求。而且,本发明不采用轧后穿水控制冷却,因此,生产工艺也更简单,生产能耗小,吨钢生产成本能够降低约10~20元。
附图说明
图1为实施例1得到H型钢显微组织,该组织为铁素体+珠光体的复相组织,晶粒度等级为9.5级,珠光体占比达到32%;
图2为实施例2得到H型钢显微组织,该组织为铁素体+珠光体的复相组织,晶粒度等级为9.0级,珠光体占比达到30%;
图3为实施例3得到H型钢显微组织,该组织为铁素体+珠光体的复相组织,晶粒度等级为9.0级,珠光体占比达到27%。
具体实施方式
下面通过对最优实施例和对比例的描述,对本发明的具体实施方式作进一步详细的说明。
实施例1-实施例3
一种屈服强度450MPa级热轧H型钢,包括以下质量百分比的元素:具体见下表1;其余为Fe及不可避免的杂质元素。
本发明实施列1-3所述屈服强度450MPa级热轧H型钢生产工艺过程为:铁水预处理→转炉冶炼→吹氩精炼→LF精炼→异型坯或矩形坯全保护浇铸→坯料加热→轧制(包括粗轧阶段和精轧阶段)→轧后空冷。
具体按照以下步骤生产:
1)铁水经预处理后至转炉冶炼;
2)冶炼过程中吹惰性气体氩气,清除钢种溶解的气体和悬浮的非金属夹杂物,净化钢水;
3)经LF炉精炼,控制夹杂物析出,进一步控制各合金元素含量,然后连铸成坯;
4)生产过程中,坯料的选型为:坯料与最终产品之间的压缩比(坯料截面面积与成品截面面积比)为8~15;粗轧阶段结束后坯料的翼缘厚度与最终产品之间的翼缘厚度压缩比为5~7。
5)铸坯进入加热炉,经加热炉加热至1200~1250℃,保温时间15~25min,
6)粗轧阶段开轧温度控制在1150~1180℃,终轧温度控制在1020℃以上,本阶段翼缘厚度方向压缩比控制在5%~10%,坯料总的压缩比控制在30%~40%。
7)精轧采用两阶段控制轧制,第一阶段开轧温度控制在980~1000℃,终轧温度控制在950℃以上,本阶段翼缘厚度方向压缩比20%~30%,坯料总的压缩比控制在50%~60%,第二阶段开轧温度控制在900~920℃,终轧温度控制在830~850℃,翼缘厚度方向余下的变形在本阶段完成。
8)轧后空冷。
实施例1-实施例3所述屈服强度450MPa级热轧H型钢的生产过程中工艺参数控制如下表2。
对比例1-对比例4
一种热轧H型钢,包括以下质量百分比的元素:具体见下表1;其余为Fe及不可避免的杂质元素。
对比例1-对比例4所述热轧H型钢的生产工艺步骤同本申请实施例,不同在于各步骤参数控制,具体工艺参数如下表2。
表1本发明各实施例1-3及对比例1-4化学成分的取值列表(wt%),
余量为Fe和不可避免的杂质
Figure BDA0002397691500000081
表2本发明实施例1-3及对比例1-4的主要工艺参数列表
Figure BDA0002397691500000082
实施例1-3及对比例1-4生产的H型钢性能检测情况如下表3。
表3本发明实施例1-3及对比例1-4性能检测情况的列表
Figure BDA0002397691500000083
Figure BDA0002397691500000091
需要说明的是对比例1~3为采用的本发明钢的成分,并在所限定的范围内取值,工艺采用现有技术;对比例4为采用现有技术的成分,工艺采用本发明的工艺。
通过表3可以看出,通过本发明生产工艺得到的热轧H型钢其组织为铁素体+珠光体的复相组织,铁素体晶粒度等级9.0级以上,珠光体占比达到20%~40%;其屈服强度≥450MPa,抗拉强度≥550MPa,延伸率A50≥20%,–20℃纵向V型冲击功KV2≥120J。

Claims (10)

1.一种屈服强度450MPa级热轧H型钢的生产方法,其特征在于,所述生产方法工艺流程为:铁水预处理→转炉冶炼→吹氩精炼→LF精炼→异型坯或矩形坯全保护浇铸→坯料加热→轧制→轧后空冷;所述轧制包括粗轧阶段和精轧阶段;
生产过程中,坯料的选型为:坯料与最终产品之间的压缩比为8~15;粗轧阶段结束后坯料的翼缘厚度与最终产品之间的翼缘厚度压缩比为5~7。
2.根据权利要求1所述的生产方法,其特征在于,所述轧制包括:铸坯进入加热炉,经加热炉加热至1200~1250℃,保温时间15~25min。
3.根据权利要求1或2所述的生产方法,其特征在于,粗轧阶段开轧温度控制在1150~1180℃,终轧温度控制在1020℃以上。
4.根据权利要求1-3任一项所述的生产方法,其特征在于,粗轧阶段翼缘厚度方向压缩比控制在5%~10%,坯料总的压缩比控制在30%~40%。
5.根据权利要求1-4任一项所述的生产方法,其特征在于,精轧采用两阶段控制轧制,精轧第一阶段开轧温度控制在980~1000℃,终轧温度控制在950℃以上。
6.根据权利要求5所述的生产方法,其特征在于,精轧第一阶段翼缘厚度方向压缩比控制在20%~30%,坯料累计压缩比控制在50%~60%。
7.根据权利要求5或6所述的生产方法,其特征在于,精轧第二阶段开轧温度控制在900~920℃,终轧温度控制在830~850℃。
8.根据权利要求7所述的生产方法,其特征在于,翼缘厚度方向余下的变形在精轧第二阶段完成。
9.一种权利要求1-8任一项所述生产方法生产的屈服强度450MPa级热轧H型钢,其特征在于,所述的屈服强度450MPa级热轧H型钢,含有以下质量百分比成分:C:0.14~0.18%,Si:0.25~0.40%,Mn:1.40~1.50%,P:≤0.025%,S:≤0.015%,V:0.04~0.06%,Nb:0.010~0.020%,其余为Fe及不可避免的杂质元素。
10.根据权利要求10所述的屈服强度450MPa级热轧H型钢,其特征在于,Nb+V总量≤0.08%。
CN202010137017.7A 2020-03-02 2020-03-02 一种屈服强度450MPa级热轧H型钢及其生产方法 Active CN111229827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010137017.7A CN111229827B (zh) 2020-03-02 2020-03-02 一种屈服强度450MPa级热轧H型钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010137017.7A CN111229827B (zh) 2020-03-02 2020-03-02 一种屈服强度450MPa级热轧H型钢及其生产方法

Publications (2)

Publication Number Publication Date
CN111229827A true CN111229827A (zh) 2020-06-05
CN111229827B CN111229827B (zh) 2021-07-23

Family

ID=70867655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010137017.7A Active CN111229827B (zh) 2020-03-02 2020-03-02 一种屈服强度450MPa级热轧H型钢及其生产方法

Country Status (1)

Country Link
CN (1) CN111229827B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112517639A (zh) * 2020-10-20 2021-03-19 包头钢铁(集团)有限责任公司 一种450MPa含Nb高强合金钢的制造方法
CN112795755A (zh) * 2020-12-30 2021-05-14 日照钢铁控股集团有限公司 一种柔性生产低合金高强度热轧h型钢的方法
CN114369764A (zh) * 2022-01-17 2022-04-19 马鞍山钢铁股份有限公司 一种屈服强度460MPa级高性能厚重热轧H型钢及其生产方法
CN114405996A (zh) * 2021-10-29 2022-04-29 马鞍山钢铁股份有限公司 一种csp流程低碳钢钢板及其制造方法
CN115011869A (zh) * 2022-05-05 2022-09-06 包头钢铁(集团)有限责任公司 一种海洋工程结构用超高强度热轧h型钢及其生产方法
CN115821154A (zh) * 2022-09-07 2023-03-21 马鞍山钢铁股份有限公司 一种具有良好z向性能的超厚热轧h型钢及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255527A (zh) * 2008-03-17 2008-09-03 莱芜钢铁股份有限公司 一种具有良好低温冲击韧性的加硼h型钢及其制备方法
CN102021475A (zh) * 2010-10-25 2011-04-20 莱芜钢铁股份有限公司 一种耐低温结构用热轧h型钢及其制备方法
CN102330023A (zh) * 2010-07-12 2012-01-25 马鞍山钢铁股份有限公司 屈服强度500MPa级H型钢用钢及其控轧控冷工艺
CN104004957A (zh) * 2014-06-12 2014-08-27 莱芜钢铁集团有限公司 利用氧化物冶金技术生产小压缩比低温用h型钢的方法
CN104862588A (zh) * 2015-06-03 2015-08-26 马钢(集团)控股有限公司 一种热轧h型钢及其生产方法
CN109972042A (zh) * 2019-04-17 2019-07-05 北京科技大学 一种屈服强度800MPa级耐低温耐腐蚀H型钢及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255527A (zh) * 2008-03-17 2008-09-03 莱芜钢铁股份有限公司 一种具有良好低温冲击韧性的加硼h型钢及其制备方法
CN102330023A (zh) * 2010-07-12 2012-01-25 马鞍山钢铁股份有限公司 屈服强度500MPa级H型钢用钢及其控轧控冷工艺
CN102021475A (zh) * 2010-10-25 2011-04-20 莱芜钢铁股份有限公司 一种耐低温结构用热轧h型钢及其制备方法
CN104004957A (zh) * 2014-06-12 2014-08-27 莱芜钢铁集团有限公司 利用氧化物冶金技术生产小压缩比低温用h型钢的方法
CN104862588A (zh) * 2015-06-03 2015-08-26 马钢(集团)控股有限公司 一种热轧h型钢及其生产方法
CN109972042A (zh) * 2019-04-17 2019-07-05 北京科技大学 一种屈服强度800MPa级耐低温耐腐蚀H型钢及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112517639A (zh) * 2020-10-20 2021-03-19 包头钢铁(集团)有限责任公司 一种450MPa含Nb高强合金钢的制造方法
CN112795755A (zh) * 2020-12-30 2021-05-14 日照钢铁控股集团有限公司 一种柔性生产低合金高强度热轧h型钢的方法
CN114405996A (zh) * 2021-10-29 2022-04-29 马鞍山钢铁股份有限公司 一种csp流程低碳钢钢板及其制造方法
CN114405996B (zh) * 2021-10-29 2023-08-29 马鞍山钢铁股份有限公司 一种csp流程低碳钢钢板及其制造方法
CN114369764A (zh) * 2022-01-17 2022-04-19 马鞍山钢铁股份有限公司 一种屈服强度460MPa级高性能厚重热轧H型钢及其生产方法
CN115011869A (zh) * 2022-05-05 2022-09-06 包头钢铁(集团)有限责任公司 一种海洋工程结构用超高强度热轧h型钢及其生产方法
CN115821154A (zh) * 2022-09-07 2023-03-21 马鞍山钢铁股份有限公司 一种具有良好z向性能的超厚热轧h型钢及其生产方法
CN115821154B (zh) * 2022-09-07 2023-12-01 马鞍山钢铁股份有限公司 一种具有良好z向性能的超厚热轧h型钢及其生产方法

Also Published As

Publication number Publication date
CN111229827B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN111229827B (zh) 一种屈服强度450MPa级热轧H型钢及其生产方法
CN111187990B (zh) 一种屈服强度500MPa级热轧H型钢及其生产方法
CN111304531B (zh) 一种屈服强度550MPa级热轧H型钢及其生产方法
CN111455278A (zh) 低温韧性优异的800MPa级冷成型用厚规格热轧高强钢板卷及其制造方法
CN109536846B (zh) 屈服强度700MPa级高韧性热轧钢板及其制造方法
CN113862558B (zh) 一种屈服强度700MPa级低成本高韧性高强调质钢及其制造方法
KR101417231B1 (ko) 저온인성 및 인장특성이 우수한 압력용기용 극후강판 및 그 제조 방법
CN111172466B (zh) 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法
CN113416889B (zh) 焊接性能良好超高强热镀锌dh1470钢及制备方法
CN110284053B (zh) 一种高p高强韧性高耐候性热连轧钢及其制造方法
CN113430458B (zh) 一种屈服强度1040MPa以上级超高强钢板及其制造方法
CN112680655B (zh) 700MPa级汽车用低合金高强冷轧钢板及制备方法
CN110578085A (zh) 一种屈服强度500MPa级耐大气腐蚀用热轧钢板
KR20230059810A (ko) 980MPa급의 구멍 확장성이 높은 베이나이트강 및 이의 제조 방법
CN112626421A (zh) 一种650MPa级汽车车轮用钢及其制备方法
CN114369764A (zh) 一种屈服强度460MPa级高性能厚重热轧H型钢及其生产方法
CN112813344A (zh) 一种屈服强度620MPa级高强高韧易焊接结构钢板及其制备方法
JP5194572B2 (ja) 耐溶接割れ性が優れた高張力鋼材の製造方法
CN110863143B (zh) 具有优异低温韧性的960MPa级超高强度钢的制造方法
CN115216708B (zh) 一种低成本高屈强比1200MPa级冷轧双相钢及其制备方法
CN114717482A (zh) 一种低屈强比稀土钛耐候钢及其生产方法
JP2011074445A (ja) 大入熱溶接熱影響部靱性に優れた非調質厚肉高張力鋼の製造方法。
CN116200662B (zh) 一种回火型低屈强比高性能桥梁耐候钢及其制造方法
CN115449715B (zh) 一种冷轧耐候钢板及其生产方法、一种在同种成分下生产不同级别冷轧耐候钢板的方法
CN115369328B (zh) 一种耐低温热轧型钢及其生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant