CN111226141B - 压缩成像方法和系统 - Google Patents

压缩成像方法和系统 Download PDF

Info

Publication number
CN111226141B
CN111226141B CN201880066944.5A CN201880066944A CN111226141B CN 111226141 B CN111226141 B CN 111226141B CN 201880066944 A CN201880066944 A CN 201880066944A CN 111226141 B CN111226141 B CN 111226141B
Authority
CN
China
Prior art keywords
mask
radiation
aperture
sensing
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880066944.5A
Other languages
English (en)
Other versions
CN111226141A (zh
Inventor
D·博德曼
M·格内特
A·弗林
A·萨布特
L·查蒂尔
J·伊尔特
D·普罗科波维奇
G·瓦特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Australian Nuclear Science and Technology Organization
Original Assignee
Australian Nuclear Science and Technology Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2017904259A external-priority patent/AU2017904259A0/en
Application filed by Australian Nuclear Science and Technology Organization filed Critical Australian Nuclear Science and Technology Organization
Publication of CN111226141A publication Critical patent/CN111226141A/zh
Application granted granted Critical
Publication of CN111226141B publication Critical patent/CN111226141B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/295Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using coded aperture devices, e.g. Fresnel zone plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/362Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2907Angle determination; Directional detectors; Telescopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2992Radioisotope data or image processing not related to a particular imaging system; Off-line processing of pictures, e.g. rescanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/365Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with ionisation detectors, e.g. proportional counter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/366Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with semi-conductor detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/043Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers changing time structure of beams by mechanical means, e.g. choppers, spinning filter wheels

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

本申请公开了一种用于入射辐射的压缩感测的掩模,该掩模包括:由调制感兴趣的入射辐射的强度的材料形成的主体。主体具有多个掩膜孔口区域,每个掩膜孔口区域包括至少一个掩膜孔口,该掩膜孔口相对于相应掩膜孔口区域的其他部分允许辐射的更高的透射,该相对透射足以允许重建压缩感测测量;掩模具有关于掩模孔口区域的一个或多个旋转对称轴线;掩模孔口具有在绕着一个或多个旋转对称轴线旋转之后提供对称性的形状;并且由相应掩模孔口区域的旋转产生的感测矩阵的互相干小于1。还提供了一种包括该掩模的用于入射辐射的压缩感测的成像系统。

Description

压缩成像方法和系统
相关申请
本申请要求2017年10月20日提交的澳大利亚专利申请号2017904259的提交和优先权日期的权益,其内容通过引用并入本文。
技术领域
本发明涉及压缩成像方法和系统,该压缩成像方法和系统特别是但绝不意味着排他地应用于放射性源或材料的伽马射线成像中。
背景技术
WO2015/176115公开了一种用于入射辐射(诸如伽马射线辐射)的压缩感测的掩模装置。该掩模装置包括一个或多个编码掩模,每个掩模具有调制入射辐射的强度的材料的主体。掩模具有多个掩模孔口区域,其相对于一个或多个编码掩模的其他部分允许辐射的更高的透射,该更高的透射足以允许压缩感测测量。WO2015/176115举例说明了一对嵌套的球形、半球形或圆柱形掩模,以及嵌套在半球形掩模内的球形掩模。
发明内容
根据本发明的第一广泛方面,提供了一种用于入射辐射的压缩感测的掩模,包括:
由调制感兴趣的入射辐射的强度(诸如通过衰减入射辐射或通过散射至少一些入射辐射)的材料形成的主体;并且
其中主体具有多个掩模孔口区域(诸如面或面的部分),每个掩模孔口区域包括至少一个掩模孔口(或窗),该至少一个掩模孔口相对于相应掩模孔口区域的其他部分允许辐射的更高的透射,相对透射足以允许重建压缩感测测量;
掩模具有关于掩模孔口区域的一个或多个旋转对称轴线;
掩模孔口具有在绕着一个或多个旋转对称轴线旋转之后提供对称性的形状;并且
由相应掩模孔口区域的旋转产生的感测矩阵的互相干小于1。
应当理解,掩模孔口(即,孔口位置“打开的”地方)仍可以包括(掩模主体或其他的)某种材料,但是构成孔口,因为其相比于“闭合的”孔口位置提供辐射的更高的透射。这可以通过提供与靠近“闭合的”孔口的材料相同但更薄的材料来实现,或者通过提供更能透射入射辐射的不同材料来实现。在这样的实施例中,可以将孔口比作玻璃窗——即至少部分地透射。然而,在其他实施例中,可以通过完全省略或去除任何材料来提供掩模孔口(参见无玻璃窗)。在本文中,这两个都称为“孔口”或“打开的”孔口位置。
因此,具有一个或多个(并且通常是多个)旋转对称轴线的几何形状提供了优于现有方法的优点。在各种实施例中,仅需要单个掩模,并且可以在所有方向上进行成像(即有效地4π或全向成像)。单个掩模意味着制造成像设备的成本节省和降低的系统重量。
互相干可以表示为其中:
其中是包含M×N2行的感测矩阵的矩阵,其由M次测量和N2个像素图像产生。
可替代地,互相干可以表示为其中:
其中是包含M×N2行的感测矩阵的矩阵,其由M次测量和N2个像素图像产生,/>是/>的列。
在一个实施例中,感测矩阵的互相干是最小的互相干,即,已经通过适当的技术被最小化。
掩模可以是立方(具有三个旋转对称轴线)或其他柏拉图固体(即四面体、八面体、十二面体或二十面体)。可替代地,掩模可以是截头二十面体或其他阿基米德固体(即具有两种或更多种常规多边形的面)。实际上,在一个实施例中,掩模是球形,其中掩模孔口区域被限定为使得掩模具有关于掩模孔口区域的一个或多个旋转对称轴线。
根据本发明的第二广泛方面,提供了一种用于入射辐射的压缩感测的检测器,该检测器包括:
根据上述第一方面的掩模;
一个或多个辐射传感器,其在所述掩模内并且对入射辐射敏感;以及
驱动器,其用于使掩模绕着所述一个或多个旋转对称轴线中的至少一个旋转。
在一个实施例中,检测器包括多个辐射传感器和被布置为相互屏蔽辐射传感器的辐射屏蔽件。
根据该方面,还提供了一种辐射检测方法,包括利用根据该方面的检测器进行压缩感测测量。
该方面还提供了一种用于入射辐射的压缩感测的成像系统,该成像系统包括:
根据上述第一方面的掩模;
一个或多个辐射传感器,其在所述掩模内并且对入射辐射敏感;以及
驱动器,其用于使掩模绕着所述一个或多个旋转对称轴线中的至少一个旋转。
成像系统可以包括多个辐射传感器和被布置为相互屏蔽辐射传感器的辐射屏蔽件。
成像系统可以包括一个或多个光学和/或红外相机。
根据该方面,还提供了一种成像方法,包括利用根据第二方面的成像系统成像。
成像方法还可以包括制作成像系统的视场或其一部分的光学和/或红外图像,以及将光学和/或红外图像与利用成像系统生成的图像叠加。
根据第三广泛方面,本发明提供了一种核反应堆拆除(decommissioning)、辐射安全监测或调查、放射性废物表征、安全或防卫监测、医学成像、放射疗法、粒子疗法、伽马射线天文学、X射线天文学、远程表征或检测带电粒子加速器光束或辐射诱导光束中的未对准或边界安全的方法,该方法包括根据第二广泛方面的辐射检测方法或成像方法。
根据该方面,本发明还提供了一种用于核反应堆拆除、辐射安全监测或调查、放射性废物表征、安全或防卫监测、医学成像、放射疗法、粒子疗法、伽马射线天文学、X射线天文学、远程表征或检测带电粒子加速器光束或放射线诱导光束中的未对准或边界安全的系统,该系统包括根据第二广泛方面的检测器或成像系统。
应当注意,本发明的每个上述方面的任何各种单独的特征,以及包括权利要求在内的在本文描述的实施例的任何各种单独的特征都可以根据需要适当地组合。另外,可以通过适当地组合所公开的实施例中公开的多个部件来提供各种实施例。例如,可以从公开的实施例中删除一些部件。此外,不同实施例的部件可以适当地组合。
附图说明
为了可以更好地确定本发明,现在将通过示例并参考附图来描述实施例,其中:
图1是根据本发明的实施例的辐射成像系统的示意图;
图2A和图2B是根据本发明的实施例的图1的系统的掩模的示意图,该掩模用于入射辐射的压缩感测;
图3是根据本发明的实施例的用于入射辐射的压缩感测的截头二十面体掩模的示意图;
图4是根据本发明的实施例的用于入射辐射的压缩感测的圆柱形掩模的示意图;
图5是在图1的成像系统中支撑掩模(例如截头二十面体掩模)的示例性万向架的视图;
图6是用于图1的辐射成像系统中的具有多个相互屏蔽的辐射传感器的多个传感器几何形状的示意图;
图7A、图7B和图7C是利用根据图1的实施例的成像系统测量的点源的重建图像,其中传感器分别等于或小于掩模孔口的尺寸,大于掩模孔口的尺寸,以及大于掩模孔口的尺寸但是通过在压缩感测重建期间或之后发生的反卷积处理已经消除了由PSF引起的降晰(blurring);
图8A至图8C为了清楚性起见以相反形式再现了图7A至图7C的图像;
图9A和图9B示出了针对点辐射源的不同位置的图1的成像系统的图像响应的差异,图9A描绘了当点源(点)位于孔口的中心时的图像PSF/降晰(灰色),图9B描绘了当点源(点)位于孔口的拐角处时的图像PSF/降晰(灰色);
图10描绘了图1的成像系统所采用的phi矩阵集合的相变图;并且
图11A和图11B示出了流程图,该流程图示出了根据本发明的实施例的可以如何在自适应测量过程的控制中使用度量和相图信息。
具体实施方式
图1是根据本发明的实施例的辐射成像系统10的示意图。成像系统10包括检测器12,检测器12本身包括:具有相关联的读出电子器件的一个或多个辐射传感器14(在该实施例中,对伽马射线辐射敏感);围绕传感器14以用于促进入射辐射(在该示例中,伽马射线辐射)的压缩感测的掩膜16;一个或多个(在该示例中,四个)光学和/或红外相机18,其覆盖或可以旋转以覆盖成像系统10的整个视场;以及距离信息获取单元(未示出),其包括例如一个或多个激光测距仪(例如,LIDAR)、结构光、超声或立体相机,以用于提供有关局部环境的距离信息。
在该示例中,辐射传感器14通过附接到掩模16的内侧的杆(未示出)而安装到掩模16的内侧。期望地,该杆与掩模16的旋转轴线(通常是最内轴线-如下所述)重合以最小化传感器信号和电源电缆的旋转。这样的信号可以利用这样的电缆,或者沿着杆本身(可以是复合杆)或者无线地从检测器12传输。而且,如果采用这样的杆并且它是由衰减材料制成的,则期望将杆定位成在具有闭合的孔口位置的一个或多个位置处锚定到掩模16的内侧。
在该示例中,掩模16的主体为大致立方体形状,其每个面构成掩模孔口区域。每个掩模孔口区域(或在该示例中的面)包括多个孔口位置,每个孔口位置可以是“打开的”(并且可以称为窗或孔口,尽管在某些示例中可能仍具有某种衰减材料)或“闭合的”。在该示例中,掩模16被描绘为每面具有4×4个孔口位置,但是,如下文所讨论的,可以使用其他数量的孔口位置。被描述为“打开的”孔口位置相对于相应掩模孔口区域的其他(或“闭合的”)孔口位置允许入射辐射的更高的透射。打开的孔口位置和闭合的孔口位置都可以透射至少一些入射辐射和/或衰减入射辐射,但前提是相对透射足以允许重建压缩感测测量。
成像系统10适合于主要检测伽马射线辐射,但是应当理解,在其他实施例中,辐射传感器和掩模可以适合于检测和压缩感测其他形式的辐射,或者实际上是多种形式的辐射。这可以通过采用对多种类型的辐射(例如中子和伽马射线)敏感的一个或多个传感器,或者通过采用具有不同辐射灵敏度的多个传感器来实现。同样,将采用具有不同透射/衰减特性的掩模,该掩模根据感兴趣的入射辐射的一种或多种类型来选择。
成像系统10包括运动控制系统20,该运动控制系统20包括一个、两个、三个或更多个步进马达(在该示例中为三个)、多圈编码器和用于控制掩模16的运动(在该示例中为旋转)使得可以使用完整旋转对称性范围的马达驱动器。成像系统10还包括:图像数据和控制通道22,其用于将控制信号传输到相机18并从相机18接收图像数据;以及前置放大器24、放大器和集成ADC/MCA28,其接收并处理来自辐射传感器14的输出信号。
成像系统10包括计算系统(其可以嵌入在系统10中或在系统10外部),该计算系统包括控制器30(其接收并操纵来自相机18的图像数据以及来自辐射传感器14的处理后的输出信号)和用户界面32(其包括专家和非专家的图形用户界面),用于控制数据和图像获取,控制运动控制系统20以及由此控制掩模16的运动,分析数据,重建压缩感测测量,生成辐射和光学/红外图像叠加以及执行放射性核素的鉴定和定量。控制器30还用于经由用户界面32控制成像系统10。
成像系统10还包括向运动控制系统20、检测器12、相机18、距离信息获取单元和计算系统提供电力的电源。
更具体地,控制器30包括处理器34和存储器36。处理器34实施了若干部件,包括:用于控制用户界面32的显示的显示控制器;感兴趣区域(ROI)模块;感兴趣区域计数器;用于控制运动控制系统20的马达控制器;强度确定器;叠加器;频谱获取器;稀疏性确定器;峰搜索器;用于分析利用传感器14收集的辐射光谱的多元统计分析器(例如,采用主成分分析和Fisher线性判别分析);以及用于从度量中确定测量时间和测量次数的自适应测量器,这些度量包括:稀疏性确定度量、均方误差(MSE)度量和压缩感测相变数据。处理器34还实施压缩感测重建器,其被配置为重建压缩感测测量。此外,尽管在图1中,前置放大器24、放大器26和ADC/MCA 28被描述为分立部件,但应理解它们中的一个或多个可以在计算系统内部或由控制器30实施。
存储器36存储默认系统参数、相图(如下所述)、参考光谱(供峰搜索器用来识别所获取的光谱中的峰)以及所获取的光谱和图像(分别由传感器14和相机18收集)。
可选地,成像系统10可以包括位于或可位于检测器12或掩模16上方并且对感兴趣的(一种或多种)辐射类型透明(或基本上透明)的防水或防尘外壳(未示出)。
图2A是掩模16’(掩模16的一种变型)的示意图。很明显,掩模16’具有六个面38的形式的六个掩模孔口区域,和三个旋转对称轴线x、y、z。如该图中所描绘的,掩模16’在每个面38上具有四个孔口位置;每个孔口位置可以包括或可以不包括孔口,尽管每个面38应该有至少一个孔口。在该示例中,这总共提供了24个掩模孔口位置。图2A中的不同阴影表示掩模16’的每个面38中的每个孔口位置的“闭合的”(即低透射)或“打开的”(即高透射)状态——较暗意味着较低的透射。图2B是掩模16’的另一较少示意图,再次根据该示例,每个面具有四个孔口位置。
1.旋转对称
系统10的掩模16的几何形状约束位于掩模16内(并且期望地在其近似中心处)的一个或多个检测器14,以观察周围场景或环境的不同线性投影,并且掩模16绕着掩模16的每个旋转对称轴线x、y、z旋转。对于这些x、y、z轴线中的每一个,可以将每个面38连续旋转90°,从而产生四个不同的取向,这总共提供可以生成的72种不同的掩模图案。期望选择总的掩模图案,其在phi矩阵和基础之间提供最低的相干性。phi矩阵(或感测矩阵)是在每个连续的掩模旋转之后产生的整体掩模图案中的每一个的矩阵表示。phi矩阵的每一行都是一个整体掩模图案,并且每一列表示每个掩模孔口位置。phi矩阵的值表示特定孔口位置的打开的/闭合的状态(或透射级别)。该基础表示在其中对信号采样的域。
在替代实施例中,掩模16的每个面38可以被进一步划分,使得每个面-例如-具有每个面上的3×3=9个孔口(提供总共9×6=54个掩模孔口位置),每个面上的4×4=16个孔口(提供总共16×6=96个掩模孔口位置)或每个面上的5×5=25个孔口(提供总共25×6=150个掩模孔口位置)。因此,通常,具有n×n正方形阵列的孔口位置(其中n=1、2、3、……)的立方体掩模将具有n×n×6个掩模孔口位置(尽管应注意,孔口位置不需要布置成正方形阵列-也可接受其他布置)。更大数量的孔口位置导致与掩模一起使用的成像系统10的更小的角分辨率。
可以对其他掩膜几何形状进行类似的分析。例如,具有八个均匀面和n×n正方形阵列的孔口位置的八面体形状的掩模将具有n×n×8个掩模孔口位置。如果将孔口位置布置为填充八面体的每个三角形面,例如,使得每个孔口位置本身就是三角形且大小相等,则每个面可以具有n×n(其中n≥2)个三角形孔口位置或其倍数(4、16、64……倍数)。
掩模可以符合具有一个或多个旋转对称轴线的任何形状。根据另一实施例,成像系统包括截头二十面体掩模,如图3中示意性示出地。图3是截头二十面体掩模40的示意图,其示出了六边形42和五边形44可以细分为三角形孔口位置46,这些孔口位置46可以打开的(未填充衰减材料)或闭合的(填充衰减材料),并根据需要进一步划分。线48表示60个旋转对称轴线中的三个;截头二十面体的对称度(symmetry order)为120。
在某个实施例中,截头二十面体图案设置在球体上。其他掩模形状可以包括但不限于十二面体、金字塔和球体。一些实施例使可能的掩模图案的数量等于或大于掩模孔口位置的数量。这将提供低稀疏性图像可能需要的完整采样,尽管对于稀疏图像而言,可能的掩模图案数量小于掩模孔口的数量仍然适用。使可能的掩模图案的数量大于掩模孔口的数量的优点是图像可以被过采样,这可能在某些应用中带来图像质量的好处。
掩模孔口的形状可以是圆形、正方形、三角形、菱形或旋转后提供对称性的任何其他形状。即,当旋转掩模时,(例如)六边形掩模位置被旋转到另一个六边形掩模位置,而不是例如说旋转到五边形掩模位置。
图4是根据本发明的实施例的用于入射辐射的压缩感测的掩模50的示意图,其形式为具有单行孔口位置和仅一个旋转对称轴线的圆柱体(或包括多个平面的准圆柱体)。可能的测量的数量等于掩模50的列或孔口位置的数量,每个位置为打开的52或闭合的54。利用掩模50的成像系统将只能生成一维图像。然而,可以堆叠多个单行圆柱形掩模和检测器系统以生成二维图像。
掩模16由万向架支撑并位于其内。图5是支撑截头二十面体掩模62的合适的万向架60的示例的视图。在某些变型中,万向架60和/或运动控制系统20被包含在掩模内,使得从掩模内控制掩模的取向和移动。另外,在采用万向架的实施例中,运动控制系统20或处理器34的马达控制器可以被配置为当使用多于一个自由度时防止不期望的万向架锁定。
在另一个实施例中,成像系统10包括在掩模内相互屏蔽的多个(诸如,两个、三个或四个)检测器,使得它们各自独立地观察FOV(视场)的不同区域。图6是这种传感器几何形状70的示意图,其中四个传感器72通过掩模76内的十字形辐射吸收屏蔽件74屏蔽彼此的FOV。在所示的示例中,掩模76具有圆形横截面,但是此技术可以与其他掩模几何形状一起使用。
在该示例中,每个传感器72最多观察FOV的四分之一。通常,对于n个传感器,每个传感器最多观察FOV的1/n。内部屏蔽件74被配置为确保单个检测器不会观察(或最小地观察)来自FOV的其余四分之三的信号。康普顿(Compton)相机可以用于提供不需要使用屏蔽材料的电子准直形式。
一种可替代的方法采用如图6所示的多个传感器,但没有屏蔽件。在这样的配置中,采用了提供相互作用深度信息的传感器(例如化合物半导体和闪烁体检测器),因此可以用于确定入射辐射的方向。例如,低能量光子将在这样的传感器的表面附近相互作用,因此可以将成像系统配置为确定辐射没有来自传感器的相对侧。可以使用多个传感器,这些传感器被定位成使其保持系统的原始对称性。只要不对称性得到精确建模并在图像重建过程中得到考虑,就可以使用不保持原始对称性的多个传感器。
通常,将在根据本发明的实施例的成像系统中使用的掩模、传感器和马达的数量之间进行权衡。
根据这些实施例的用于生成用于掩模14、40、50、76的phi矩阵的phi矩阵生成方法包括以下步骤:
1)生成掩模形状的顶点
2)从顶点定义形状面和/或掩模孔口(打开的或闭合的孔)
3)定义x、y和z旋转矩阵和要旋转的角度
4)利用期望的旋转矩阵递增地旋转顶点,使得产生所有旋转组合。
5)比较新的面位置和原始取向的面位置
6)跨不同的旋转映射原始面值,在这种情况下,该原始面值将与掩模孔口的透射值相关
7)生成感测(phi)矩阵
8)将phi矩阵中的面值设置为掩模孔口的相关联的透射值
2.压缩感测
压缩感测测量过程可以通过等式1来描述:
其中y是测量值的M×1向量,x是N2像素图像的N2×1向量,包含M×N2行的感测矩阵,并且ε是噪声项。对于较大的检测器,测量过程还可以包括降晰项B,对于该降晰项,等式1变为
降晰项B有效地表示系统点扩展函数(PSF),并且可以通过测量每个源平面孔口(或子孔口)位置中的点源的系统响应来(通过实验或通过仿真)确定降晰项B。
当以不同的基础(诸如小波)操作时,x可以在等式1或2中用x=ψs代替,其中ψ是N2×N2逆基础变换矩阵,并且s是变换系数的N2×1向量。
通过以下方式找到重建图像:求解凸优化问题min||x||1,并遵守约束该凸优化问题min||x||1寻找具有与信息y一致的最小l1范数的系数的对象x[1,2]。
已经提出了大量的恢复算法,以找到针对介绍中描述的最小化问题的不同公式的稀疏解。这些恢复算法通常分为三大类:凸算法、贪婪算法和组合算法。在测量中存在噪声的情况下,凸优化问题可以写为
其中τ表示目标函数的两个项之间的相对权重。目标函数的第一项是查看解和观测值之间的差异的误差项,其加强了数据的一致性。第二项是稀疏性诱导l1范数正则化项,其鼓励x的小分量变为零,因此促进了稀疏解。这两项一起寻求找到与所获取数据一致的可压缩解。
先前已经示出,可以从
随机测量以高概率重建图像,其中c是小常数,并且K是信号内的稀疏性水平(非零数量)[1,2]。因此,有可能以与其信息内容成比例的速率对信号进行采样。
确定感测矩阵的有限等距性质(RIP)是NP难题,并且因此对于压缩系统的计算是不切实际的(尽管它用于评估掩模图案的质量)。感测矩阵的互相干性质提供了用于评估掩模设计中不相干性的机制:
互相关性提供了phi矩阵的列之间最差相似性的度量。其中phi矩阵的每一列表示特定孔口位置的打开的/闭合的状态(或透射)。如果任何两个掩模孔口位置在所有测量中同时打开和闭合,则它们将被认为是相干的,并且因此无法确定辐射源是否驻留于其他孔口之一中。期望地,掩模设计被优化为具有低相干性。可以生成数以万计的随机掩模图案(或更多个),并且然后使用等式(5)评估每个图案的相干性。具有最低相干性的掩模图案将具有最好的质量和最快的重建性能。较低的相干掩模允许使用较少的测量进行准确的图像重建。互相干还可以查看phi矩阵与基础(即小波)之间的相似度。用于生成低相干掩模图案的其他方法可以包括生成优化函数,该优化函数输出低相干掩模图案作为解。其他掩模图案可以包括哈达玛(Hadamard)图案或已知为phi矩阵产生较小相干值的其他图案。
存在多种用于求解上述凸优化问题的算法,包括迭代阈值和梯度投影稀疏重建(GPSR)[3,4]。GPSR重建算法采用梯度投影算法求解等式(1),是本文采用的方法,因为已显示出它优于其他几种重建方法[4]。
与传统的成像技术(诸如光栅扫描、针孔相机和编码孔口)相比,压缩感测的好处在于为了生成图像所需的测量次数更少。压缩伽马射线成像技术还可以生成具有非常好/高的信噪比的图像。
3.用于不同波长和粒子/增益稳定性的检测器/多个传感器
如上所述,传感器14可以是伽马射线检测器、中子检测器、UV检测器、双伽马/中子检测器、用于EM光谱的任何部分或任何粒子的检测器/接收器、可以提供多波长成像的检测器的任何组合(即在伽马/中子检测器周围镶嵌了多个UV检测器)。根据本发明的实施例,可以采用检测感兴趣的一种或多种类型的辐射的任何传感器14。对于可以聚焦的波长,可以在掩模内(例如,掩模的中心)另外设置透镜,该透镜将入射光聚焦到掩模内某个其他位置中的传感器上。可能需要这样的透镜来聚焦来自整个系统视场(FOV)和只是部分FOV的光。
所描述的布置的优点是可以使用低成本的非位置敏感传感器。然而,位置敏感传感器阵列仍可以在本发明的实施例中使用。另一个优点是,常规伽马射线光谱仪的传感器的标准几何形状可以与成像系统10一起使用(诸如,圆柱形、立方平行六面体、平面、半球形、球形传感器等)。因此,潜在的用户可以将现有的非定向光谱仪与成像系统10一起使用以便提供成像能力。用于伽马射线成像的传感器可以包括但不限于:NaI、LaBr、SrI2、CLYC、CLLBC、CsI、CeBr、LSO、LYSO、BGO、PbW、PVT、GM管、HPGE、CdZnTe、CdTe、HgI2、CdMnTe、金刚石、液体闪烁体、TlBr、气体检测器。闪烁体检测器可以耦合到常规光电倍增管(PMT)或硅光电倍增器(SiPM)。诸如CLYC、CLLBC、CdTe和CdZnTe的检测器可以用于双伽马/中子检测。
使用SiPM的闪烁体检测器具有坚固耐用、成本适中、物理尺寸小、分辨率好以及在低偏置电压(数十伏量级)下操作的显着优势。然而,这些闪烁体的光输出在%/℃的负值水平上对温度有很大的依赖性,这意味着当需要保持感兴趣的精密区域时,由于环境温度变化引起的峰位移是主要问题。这种检测器系统的信号输出是偏置电压的强函数。通过在靠近传感器的位置使用温度传感器,可以使用与温度成比例的缩放模拟电压,以在施加的检测器偏置电压上施加正温度系数,从而确定缩放比例,以使引起的偏置电压的正温度依赖性精确补偿检测器材料的负温度依赖性。这种方法可以在温度变化期间提供增益稳定性。
也可以使用不同的传感器增益稳定性方法,其包括:闪烁体检测器的LED稳定,使用嵌入式辐射源,在操作温度范围内校准传感器响应,将传感器保持在恒定温度或用于增益稳定的任何其他方法。
本实施例可以结合在掩模外部的传感器(诸如GM管、硅传感器或先前提到的任何类型的检测器),因此其检测到的信号强度不受掩模旋转的影响。这样的实施例将允许系统补偿到达掩模内的一个或多个传感器的辐射场的任何与时间有关的变化,否则该变化会干扰重建过程。
4.大型检测器和反卷积
在图7A中示出了由成像系统10通过实验产生的重建图像,其具有敏感面积等于或小于孔口的尺寸的传感器。源位置落在来自一个孔口的视场的中心内。一些应用需要短的测量时间,并且因此需要高灵敏度。这样的应用可以包括但不限于在入境口岸对商业流程进行成像以及医学成像应用。灵敏度的提高可以通过传感器体积的增加以及掩模几何形状的相应增加来实现。然而,在没有掩模几何形状的相关联的增加的情况下增加传感器体积,即具有大于单个掩模孔口的尺寸的传感器,可能是有利的。具有大于孔口的尺寸的传感器使得在多个孔口中观察到辐射源。通过实验获得的这种效果的示例在图7B中示出,其中中心传感器从点辐射源位置的角度覆盖了3×3个孔口。检测到的系统计数的增加将来自传感器对向辐射源的立体角增加和较厚传感器的衰减增加(假设较大的传感器在所有维度上都较大)。
图像反卷积过程可以通过多种方式发生。首先,可以将降晰函数合并到成像系统的感测矩阵中。这使得压缩感测图像重建和去降晰/反卷积能够同时发生。另一个优点是可以获得较低辐射水平的图像。该方法的缺点是它可能降低感测矩阵的相干性,并且成像过程可能需要更多的测量、重建算法的更多迭代和更长的重建时间。
第二种方法涉及直接通过压缩感测方法重建降晰图像,并且然后通过Richardson-Lucy方法、最大似然期望最大化或某种其他方法分别执行PSF的反卷积。这种方法的缺点是,点源现在具有较少的稀疏响应(在上面给出的示例中,K=9而不是K=1),这将需要更多的测量。
第三种方法涉及使用压缩反卷积方法,该方法在等式3的目标函数中利用了另一项,并指导重建以包括去降晰步骤。这些方法中任何一种的最终效果是产生图像(诸如图7C的图像),该图像类似于图7A所示的小图像,尽管预计某些图像伪影/降晰可能驻留在经过去降晰的图像中。
(请注意,为了清楚起见,图8A至图8C以相反形式再现了图7A至图7C的图像。)
与直觉相反,使用较大传感器通过检测到的响应中的不对称性能够获得更高的角度分辨率。孔口视场中的辐射源位置将对最近邻居中的孔口具有不同的贡献。例如,图9A和图9B示出了针对点辐射源的不同位置的图像响应的差异。图9A描绘了当点源(点)位于孔口中心时的图像PSF/降晰(灰色),而图9B描绘了当点源(点)位于孔口的拐角处时的图像PSF/降晰(灰色)。
图9B的12个部分阴影像素反映了这些像素的计数将不如四个完全阴影像素多。可以使用辐射传输仿真软件(即Geant4)来测量或仿真这样的检测器响应或点扩展函数(PSF)。
5.掩模
有利地,掩模可以具有但不必要具有锥形孔口。WO2015/176115的双掩模方法公开了一种掩模装置,该掩模装置采用锥形孔口以便为每个孔口保持一致的FOV,但是这对于本发明的单个掩模方法不是必需的。
如所讨论的,掩模的闭合的孔口位置调制入射辐射。这种调制可以通过入射信号的衰减或通过散射入射信号而发生。例如,需要高密度和高原子序数的材料(例如钨和铅)来衰减伽马射线。低原子序数的材料将具有较高的散射截面,并且因此可以通过康普顿散射相互作用来调制入射信号。对于中子,掩模材料应具有高的中子截面。中子掩模材料可以包括但不限于硼、镉和具有高氢含量的材料。
掩模可以被认为是有源掩模,其中闭合的孔口位置是不同的检测器元件。该有源掩模可以与一个或多个中央传感器14结合使用,以产生压缩伽马射线图像和康普顿伽马射线图像。对于这种情况,有源掩模和中央检测器使用康普顿散射的运动学来定位伽马射线的源。
6.系统可配置性
成像系统10的设计的优点在于,它允许重新配置系统。例如,较高或较低分辨率的掩模16可以被代替用于需要不同角度分辨率的应用。取决于操作剂量率要求,可以替代不同尺寸的传感器14。例如,对于较高的操作剂量率,可以使用较小的传感器14。
7.不同的基础
不同的图像场景可能在不同的基础上表现更好。可以使用的基础包括:正则、小波、曲波、离散余弦变换、傅立叶或任何字典学习的基础。所采用的基础可以是先前提到的任何域的组合,或者是在这种情况下未提到的其他基础。字典学习的基础可以被训练,并且对于当前问题可能是最优的。可以通过并行使用几个不同的基础(域)来重建一组测量。这可以具有允许最终用户或智能软件选择最佳重建图像的优势。在测量过程期间,基础的选择可以改变。对于更多或更少的复杂场景,可以随时改变基础,并且因此将允许使用最优基础。
8.子孔口掩模移动
可以通过将掩模16(在所示的和其他实施例中)旋转小于单独孔口所对向的角度来实现提高的图像角度分辨率。可以通过将每个孔口(围绕着相应的旋转轴线)视为两个相邻的相同孔口,并将每个掩模旋转半个孔口步长,使角度分辨率加倍。提高分辨率不限于以半个孔口步长加倍;可以通过与单个孔口的四分之一相对应的角度步长来实现使分辨率成四倍。通过以马达分辨率允许的任何分数移动来旋转掩模16,可以将其有效地扩展到任意小的角度分辨率。
9.自动化(相变仿真、稀疏性度量、图像质量度量)
在实际应用中,用户可能不了解正在利用成像系统10测量的场景信号的稀疏性。系统10适用于确定稀疏性水平并控制测量过程。在这种情况下,测量过程是所需测量的数量和测量时间。结合监测测量数据和重建过程的若干度量的成像系统10的性能的仿真可以用于预测和控制测量过程。下面提供了有关压缩成像仿真的详细信息以及可以使用的一些度量。
a.相变仿真
对于高斯测量矩阵,Donoho和Tanner先前已经表明存在相变,这表示成功恢复信号的概率从0突变为1[5,6,7]。Donoho和Tanner随后开发了通用性假设,该假设指出,通过l1最小化重建时,许多随机矩阵族也将表现出与高斯系综相同的相变行为[8]。这些相变显示在相图上,其中一个示例在图10中示出,它是phi矩阵系综的相变图。交叉多面体函数也被叠加为黑色虚线。图10的竖直轴线ρ=k/n表示稀疏性分数,其中k为非零值的数量,并且n为线性测量的数量。水平轴线δ=n/N表示欠采样分数,其中N是初始信号长度。过渡区的宽度已经表明与N成比例,随着N→∞,该区的宽度趋于零[8]。图10中所示的叠加虚线是交叉多面体函数:该凸多面体是从组合几何形状派生的,并且看出粗略地标记出针对成功恢复的相变的位置。
来自Monajemi等人的用于产生相图的方法紧随其后[9]。初始信号的长度表示掩模中的孔口的数量。随后,仅需要对n和k的组合进行采样,但要遵守0<ρ≤1的约束。之所以要执行该约束,是因为在任何情况下,如果ρ>1(即其中k>n),您将永远无法准确地重建原始图像。对于k=1:N的每个值,将随机生成具有k个非零元素的信号,并且CS技术被用于尝试使用n=1:256的测量次数来准确地重建此信号。每种k、n组合重复进行100次试验的重建过程,并记录重建成功的次数。如果重建信号和原始信号之间的相对误差小于某个阈值水平(例如0.5),则认为信号恢复成功,否则就认为信号恢复失败。用于相对误差的等式为:
其中x0是原始信号,x1是重建信号,||x||1是L1范数,而||x||2是L2范数。
然后计算与每种k、n组合的试验总数相比,成功重建的次数,其中该值对应于相图中的一个数据点。
成像系统的phi矩阵的最终相图提供了针对给定信号稀疏性准确重建信号所需的测量次数。可以针对各种不同的操作条件(诸如信号强度、信号噪声水平、检测器几何形状和使用的基础(即小波或曲波))计算相图,并将其存储在存储器36中。因此,通过分析一组先前生成的用于成像系统10的相图,可以设置将需要多少测量以在100%的时间精确地重建具有一定稀疏性值的信号的上限。
b.稀疏性确定度量
在没有对原始信号的任何先验知识的情况下,用于(由处理器34的稀疏性确定器)确定信号的稀疏性的方法的开发具有很大的价值。已经开发出的一种用于确定稀疏性的方法是通过使用等式
对于任何非零x,它始终满足1≤s(x)≤N[10,11]。等式7中的范数||x||α被定义为
在没有噪声的情况下,||x||0(l0范数)将是用于计算稀疏性的理想量,因为它仅计数信号中非零值的数量,而与大小无关。然而,这将导致l0范数对噪声非常不稳定,并且因此在现实世界中不会实际使用[10,11]。等式1通过保持对原始信号中噪声的存在的稳定性来解决此下降问题,从而为稀疏性提供了一种有价值的度量。
等式7是基于熵的稀疏性度量([10])系列的特例,其广义形式的等式给出为:
其中,参数α控制在计算稀疏性时对信号中的小值(即噪声)设置的权重量。随着α值的增加,设置在小值上的权重量减少[10]。
用于确定信号的稀疏性的一种可替代方法是通过使用基尼指数(Gini Index)[12,13,14]。最初引入基尼指数作为经济学中财富不平等的一种度量[14],但该指数在稀疏性方面的有用性先前也已经说明[12,13]。用于基尼指数的等式给出为:
其中数据x必须按升序排列,即x1≤x2≤x3≤…≤xN
本实施例使用上述稀疏性确定度量之一或可以确定或估计所测量信号中的稀疏性的任何其他度量。由于在所有稀疏性和噪声水平上的稳定性和性能,本实施例可以使用等式(9),其中将α设置为3。本方法在每次测量之后确定/估计稀疏性水平,并根据测量次数跟踪该值。监测稀疏性确定度量的收敛可以提供给出稀疏性估计的置信水平。稀疏性估计中的后续小变化可以指示已经达到准确的稀疏性估计。
c.MSE度量
该度量用于跟踪随着测量次数的进展重建图像的均方误差(MSE)的演变,从而跟踪最新图像解与从解中排除最新图像解和/或若干最新测量的图像解之间的MSE。当通过进一步的测量收集附加信息时,这有效地提供有关图像解改变多少的信息。MSE度量可以用于确定在当前解与先前解之间的均方误差低于特定阈值时已经达到正确解的可能性,并因此确定置信度。
d.流程图
图11A和图11B示出了流程图80,该流程图示出了根据本发明的实施例的可以如何在自适应测量过程的控制中使用度量和相图信息。
参照图11A和图11B,在步骤82处,处理器34从存储器36读取默认的测量时间和测量次数,并导入预定的ROI或用户定义的ROI。然后开始适当的处理。
在步骤84处,在频谱获取器的控制下获取频谱,并且在步骤86处,峰搜索器和ROI计数器分别执行峰识别和确定ROI计数率。在步骤88处,来自先前步骤的光谱输出(包括实际光谱、峰识别、ROI计数率、总计数、总计数率和ROI总计数)被保存到存储器36,并且在步骤90处,处理器34的强度确定器确定调制信号的强度。
在步骤92处,处理器34的稀疏性确定器确定稀疏性,并且在步骤94处,从存储器36导入适当的相图信息。在步骤96处,处理器34的自适应测量器确定最小所需的测量次数和测量时间,并且在步骤98处,更新先前导入的最小所需测量次数和测量时间的默认值。
在步骤100处,确定当前的测量次数是否大于预测数量。如果否,则处理在步骤102处继续,在步骤102处旋转掩模。然后处理在步骤84处继续。
如果在步骤100处确定当前的测量次数大于预测数量,则处理在步骤104处继续,在步骤104处确定MSE度量是否建议正确的解。如果否,则处理在步骤102处继续,在步骤102处旋转掩模,然后在步骤84处继续。
如果在步骤104处确定MSE度量建议了正确的解,则处理在步骤106处继续,在步骤106处将解显示给用户界面32。在步骤108处,提示用户指示是否应继续测量。如果用户指示测量应该继续,则处理在步骤102处继续,在步骤102处旋转掩模,然后处理在步骤84处继续。如果在步骤108处用户指示测量不应该继续,则处理结束。
10.发明的应用
应用可以包括但不限于:核工业(例如,反应堆拆除表征活动、安全监测/调查、废物表征)、防卫、国家安全、急救人员应用、医疗保健行业(例如,医学成像、辐射安全监测、放射疗法、粒子疗法)、伽马射线/X射线天文学、任何安全监测/调查/辐射防护活动、远程表征/检测带电粒子加速器光束(包括电子和带电原子/离子)或可以诱导辐射的任何其他光束或任何具有辐射发射的设施的未对准。
参考文献
1.D.L.Donohue,Compressed sensing,IEEE Trans Inf Theory 52(2006),1289-1306
2.E.J.Candes,J.Romberg,T.Tao,Robust Uncertainty Principles:ExactSignal Reconstruction from Highly Incomplete Frequency Information,IEEE TransInf Theory,52(2006),489-509
3.Daubechies,M.Defrise,C.D.Mol,An iterative thresholding algorithmfor linear inverse problems with a sparsity constraint,Communications on pureand applied mathematics,57(2004),1413-1457
4.M.A.T.Figueiredo,R.D.Nowak,S.J.Wright,Gradient Projection forSparse Reconstruction:Application to Compressed Sensing and Other InverseProblems,IEEE Journal of Selected Topics in Signal Processing 1(2007),586-597
5.D.L.Donoho,“For most large underdetermined systems of equations,theminimal l1-norm solution is also the sparsest solution”,Commun.PureAppl.Math,59(6)(2006),797–829
6.D.L.Donoho,“For most large underdetermined systems of equations,theminimal l1-norm near-solution approximates the sparsest near-solution”,Commun.Pure Appl.Math,59,(7)(2006),907–934
7.D.L.Donoho,and J.Tanner,“Sparse nonnegative solution ofunderdetermined linear equations by linear programming”,Proc.Nat.Acad.Sci.,102(27)(2005),9446–9451
8.D.L.Donoho,and J.Tanner,“Observed universality of phase transitionsin high-dimensional geometry,with implications for modern data analysis andsignal processing”,Phil.Trans.R.Soc.A.,367(1906)(2009),4273–4293
9.H.Monajemi,S.Jafarpour,and M.Gavish,Stat 330/CME 362Collaboration,and D.L.Donoho,“Deterministic matrices matching the compressed sensing phasetransitions of Gaussian random matrices,”Proc.Nat.Acad.Sci.,110(2013),1181–1186
10.M.E.Lopes,“Unknown Sparsity in Compressed Sensing:Denoising andInference”,IEEE Transactions on Information Theory,62(9)(2016),5145-5166
11.M.E.Lopes,“Estimating unknown sparsity in compressed sensing”,Proc.30th International Conference on Machine Learning,(2013),217–225
12.N.Hurley and S.Rickard,“Comparing measures of sparsity,”IEEETransactions on Information Theory,55(10)(2009),4723–4741
13.S.Rickard and M.Fallon,“The Gini index of speech,”inProc.Conf.Inf.Sci.Syst.,Princeton,NJ,2004.
14.C.Gini,“Measurement of inequality of incomes,”Economic Journal,31(1921),124–126
本领域技术人员可以容易地实现本发明范围内的修改。因此,应当理解,本发明不限于通过上面的示例描述的特定实施例。
在所附权利要求和本发明的先前描述中,除非上下文另外由于表达语言或必要的暗示而需要,否则词语“包括”或诸如“将……包括”或“包含”的变体以包括性含义使用,也就是说,在本发明的各个实施例中,指定所述特征的存在但不排除其他特征的存在或增加。
此外,本文对现有技术的任何引用均无意暗示此类现有技术在任何国家形成或形成了公知常识的一部分。

Claims (15)

1.一种用于对入射辐射进行压缩感测测量的掩模,所述掩模包括:
调制感兴趣的入射辐射的强度的材料;
多个掩模孔口区域;以及
一个或多个旋转对称轴线;
其中所述多个掩模孔口区域中的每个包括掩模孔口位置的图案和至少一个掩模孔口,所述至少一个掩模孔口相对于相应掩模孔口区域的其他部分允许所述辐射的更高的透射,相对透射足以允许从所述压缩感测测量重建图像;
所述掩模孔口具有在绕着所述旋转对称轴线中的一个或多个进行掩模旋转之后能够提供所述掩模孔口位置的不变性的形状;并且
由所述相应掩模孔口区域的所述旋转产生的感测矩阵的互相干小于1;并且
所述感测矩阵是在每个连续的掩模旋转之后产生的整体掩模图案中的每一个的矩阵表示,所述感测矩阵的每一行是整体掩模图案,所述感测矩阵的每一列表示每个掩模孔口位置,并且所述感测矩阵的值表示特定掩模孔口位置的打开状态、闭合状态或透射级别。
2.根据权利要求1所述的掩模,其中所述互相干表示为其中:
其中是包含M×N2行的感测矩阵的矩阵,其由M次压缩感测测量和N2个像素图像的图像产生,并且/>和/>是/>的列。
3.根据权利要求1所述的掩模,其中,所述互相干表示为其中:
其中是包含M×N2行的感测矩阵的矩阵,其由M次压缩感测测量和N2个像素图像的图像产生,并且/>和/>是/>的列。
4.根据前述权利要求中任一项所述的掩模,其中所述感测矩阵的所述互相干是相对于所述整体掩模图案最小化的互相干。
5.根据前述权利要求中任一项所述的掩模,其中所述掩模是(i)立方或其他柏拉图固体,或(ii)截头二十面体或其他阿基米德固体,或(iii)圆柱形。
6.根据权利要求1至4中任一项所述的掩模,其中所述掩模是球形的。
7.一种用于对入射辐射进行压缩感测测量的检测器,所述检测器包括:
根据前述权利要求中任一项所述的掩模;
一个或多个辐射传感器,其在所述掩模内并且对所述入射辐射敏感;以及
驱动器,其用于使所述掩模绕着所述一个或多个旋转对称轴线中的至少一个旋转。
8.根据权利要求7所述的检测器,包括多个辐射传感器和被布置为相互屏蔽所述辐射传感器的辐射屏蔽件。
9.一种辐射检测方法,包括:
利用根据权利要求7或8所述的检测器进行压缩感测测量。
10.一种成像系统,包括:
根据权利要求1至6中任一项所述的掩模;
一个或多个辐射传感器,其在所述掩模内并且对所述入射辐射敏感;以及
驱动器,其用于使所述掩模绕着所述一个或多个旋转对称轴线中的至少一个旋转。
11.根据权利要求10所述的成像系统,包括多个辐射传感器和被布置为相互屏蔽所述辐射传感器的辐射屏蔽件。
12.一种成像方法,包括利用根据权利要求10或11所述的成像系统成像。
13.根据权利要求12所述的成像方法,还包括制作所述成像系统的视场或其一部分的光学和/或红外图像,以及将所述光学和/或红外图像与利用所述成像系统生成的图像叠加。
14.一种核反应堆拆除、辐射安全监测或调查、放射性废物表征、安全或防卫监测、医学成像、伽马射线天文学、X射线天文学、远程表征或检测带电粒子加速器光束或辐射诱导光束中的未对准或边界安全的方法,所述方法包括根据权利要求9所述的辐射检测方法或根据权利要求12所述的成像方法。
15.一种用于核反应堆拆除、辐射安全监测或调查、放射性废物表征、安全或防卫监测、医学成像、放射疗法、粒子疗法、伽马射线天文学、X射线天文学、远程表征或检测带电粒子加速器光束或辐射诱导光束中的未对准或边界安全的系统,所述系统包括根据权利要求7所述的检测器或根据权利要求10所述的成像系统。
CN201880066944.5A 2017-10-20 2018-10-22 压缩成像方法和系统 Active CN111226141B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2017904259 2017-10-20
AU2017904259A AU2017904259A0 (en) 2017-10-20 Compressive Imaging Method and System
PCT/AU2018/051144 WO2019075531A1 (en) 2017-10-20 2018-10-22 METHOD AND SYSTEM FOR COMPRESSIVE IMAGING

Publications (2)

Publication Number Publication Date
CN111226141A CN111226141A (zh) 2020-06-02
CN111226141B true CN111226141B (zh) 2023-12-26

Family

ID=66173000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880066944.5A Active CN111226141B (zh) 2017-10-20 2018-10-22 压缩成像方法和系统

Country Status (12)

Country Link
US (1) US11555935B2 (zh)
EP (1) EP3698175A4 (zh)
JP (1) JP7244505B2 (zh)
KR (1) KR20200081398A (zh)
CN (1) CN111226141B (zh)
AU (1) AU2018352481A1 (zh)
CA (1) CA3076763C (zh)
MX (1) MX2020002223A (zh)
RU (1) RU2020116355A (zh)
SG (1) SG11202001566TA (zh)
UA (1) UA126687C2 (zh)
WO (1) WO2019075531A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471147B (zh) * 2018-09-25 2022-10-18 中国辐射防护研究院 一种基于变权重离散的γ剂量率计算方法及系统
CN112505744A (zh) * 2020-11-24 2021-03-16 南昌华亮光电有限责任公司 双材事例分离并能连续运行的伽马事例处理机及方法
KR102389288B1 (ko) * 2021-10-07 2022-04-22 제주대학교 산학협력단 중성자 차폐 부호화구경 및 이를 이용한 이중입자 영상 융합장치
KR102533179B1 (ko) * 2022-11-08 2023-05-17 한전케이피에스 주식회사 부호화구경 조립체 및 이를 포함하는 방사선 검출기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083031A (en) * 1986-08-19 1992-01-21 International Sensor Technology, Inc. Radiation dosimeters
US8519343B1 (en) * 2011-04-25 2013-08-27 U.S. Department Of Energy Multimode imaging device
WO2015176115A1 (en) * 2014-05-22 2015-11-26 Australian Nuclear Science And Technology Organisation Gamma-ray imaging
CN105283552A (zh) * 2013-03-13 2016-01-27 澳大利亚核科学和技术组织 具有非功能性tspo基因的转基因非人类生物体

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530517A (en) * 1944-11-01 1950-11-21 X Ray Electronic Corp X-ray testing and measuring method and apparatus
US3700895A (en) * 1969-08-14 1972-10-24 Research Corp Scatterhole camera and method for using same including the step of convoluting the image
US3801785A (en) * 1972-11-01 1974-04-02 Raytheon Co Spatially modulated imaging system
DE2514988C3 (de) * 1975-04-05 1980-03-13 Philips Patentverwaltung Gmbh, 2000 Hamburg Verfahren zur schichtweisen Darstellung dreidimensionaler Objekte mittels kodierter Simultan-Überlagerungsbilder
US4075483A (en) * 1976-07-12 1978-02-21 Raytheon Company Multiple masking imaging system
DE2756659A1 (de) * 1977-12-19 1979-06-21 Philips Patentverwaltung Anordnung zur bestimmung der absorptionsverteilung
AU4326979A (en) * 1978-01-13 1979-07-19 N.V. Philips Gloeilampenfabrieken X-ray apparatus for tomosynthesis
US4209780A (en) * 1978-05-02 1980-06-24 The United States Of America As Represented By The United States Department Of Energy Coded aperture imaging with uniformly redundant arrays
US4228420A (en) * 1978-09-14 1980-10-14 The United States Government As Represented By The United States Department Of Energy Mosaic of coded aperture arrays
US4360273A (en) * 1980-02-14 1982-11-23 Sperry Corporation Optical alignment of masks for X-ray lithography
FR2526575A1 (fr) * 1982-05-04 1983-11-10 Thomson Csf Procede de traitement d'image radiologique en vue de corriger ladite image des defauts dus au rayonnement diffuse
WO2002056055A2 (en) * 2000-09-29 2002-07-18 Massachusetts Inst Technology Systems and methods for coded aperture imaging of radiation- emitting sources
US20060261278A1 (en) 2003-04-30 2006-11-23 Roberto Accorsi Soft x-ray imager with ten micrometer resolution
WO2005010799A2 (en) * 2003-07-16 2005-02-03 Shrenik Deliwala Optical encoding and reconstruction
EP1596223B1 (en) * 2004-05-10 2009-01-21 GFE Gesellschaft für Forschungs- und Entwicklungsservice mbh High energy gamma probe with position sensing capability
US7283231B2 (en) * 2004-07-20 2007-10-16 Duke University Compressive sampling and signal inference
FR2884618B1 (fr) * 2005-04-19 2008-06-06 Commissariat Energie Atomique Dispositif limitant l'apparition d'artefacts de decodage pour gamma camera a masque code.
EP1880524B1 (en) * 2005-04-21 2013-10-30 William Marsh Rice University Method and apparatus for compressive imaging device
US7463712B2 (en) * 2006-05-18 2008-12-09 The Board Of Trustees Of The Leland Stanford Junior University Scatter correction for x-ray imaging using modulation of primary x-ray spatial spectrum
JP2010507811A (ja) 2006-10-24 2010-03-11 サーモ ニトン アナライザーズ リミテッド ライアビリティ カンパニー 符号化ビームを使用して物体を検査するための装置
US8194821B2 (en) * 2008-09-26 2012-06-05 Varian Medical Systems, Inc. Methods, systems, and computer-program products to correct degradation in tomographic images caused by extraneous radiation
JP4847568B2 (ja) 2008-10-24 2011-12-28 キヤノン株式会社 X線撮像装置およびx線撮像方法
EP2638413A2 (en) * 2010-11-09 2013-09-18 Savannah River Nuclear Solutions, LLC System and method for the identification of radiation in contaminated rooms
US9783880B2 (en) * 2013-12-19 2017-10-10 General Electric Company Slurry and a coating method
JP6605483B2 (ja) * 2014-02-06 2019-11-13 バー‐イラン、ユニバーシティー ピンホールアレイを用いた撮像システム及び方法
US10170274B2 (en) * 2015-03-18 2019-01-01 Battelle Memorial Institute TEM phase contrast imaging with image plane phase grating
WO2016149676A1 (en) * 2015-03-18 2016-09-22 Battelle Memorial Institute Electron beam masks for compressive sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083031A (en) * 1986-08-19 1992-01-21 International Sensor Technology, Inc. Radiation dosimeters
US8519343B1 (en) * 2011-04-25 2013-08-27 U.S. Department Of Energy Multimode imaging device
CN105283552A (zh) * 2013-03-13 2016-01-27 澳大利亚核科学和技术组织 具有非功能性tspo基因的转基因非人类生物体
WO2015176115A1 (en) * 2014-05-22 2015-11-26 Australian Nuclear Science And Technology Organisation Gamma-ray imaging
CN106663489A (zh) * 2014-05-22 2017-05-10 澳大利亚核科学和技术组织 伽马射线成像

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
随机间距稀疏三元循环相位掩膜矩阵可压缩成像;张成;程鸿;沈川;韦穗;夏云;;电子与信息学报(06);1374-1379 *

Also Published As

Publication number Publication date
WO2019075531A1 (en) 2019-04-25
JP2020537751A (ja) 2020-12-24
US11555935B2 (en) 2023-01-17
RU2020116355A3 (zh) 2021-11-23
EP3698175A1 (en) 2020-08-26
RU2020116355A (ru) 2021-11-23
AU2018352481A1 (en) 2020-05-21
JP7244505B2 (ja) 2023-03-22
US20210199819A1 (en) 2021-07-01
MX2020002223A (es) 2020-12-09
CN111226141A (zh) 2020-06-02
CA3076763A1 (en) 2019-04-25
EP3698175A4 (en) 2021-07-14
CA3076763C (en) 2024-01-16
SG11202001566TA (en) 2020-03-30
UA126687C2 (uk) 2023-01-11
KR20200081398A (ko) 2020-07-07

Similar Documents

Publication Publication Date Title
CN111226141B (zh) 压缩成像方法和系统
Van Dam et al. Improved nearest neighbor methods for gamma photon interaction position determination in monolithic scintillator PET detectors
KR102393273B1 (ko) 감마선 이미징
US9057684B2 (en) Gamma ray imaging systems and methods
Frazin et al. Tomography of the solar corona. II. Robust, regularized, positive estimation of the three-dimensional electron density distribution from LASCO-C2 polarized white-light images
US11243312B2 (en) Imaging detector system for gamma radiation using unidirectional and bidirectional Compton scattering processes
KR102123562B1 (ko) 방사선 실시간 정보 획득용 영상처리 시스템 및 이에 적용되는 부호화구경
JP2022520977A (ja) 医用画像処理システムとその画像再構成方法のためのコリメータ
Da Silva et al. Polarization degree and direction angle effects on a CdZnTe focal plane performance
US9953463B2 (en) Radiation imaging method and system
Frame et al. A dual-modality volumetric gamma-ray imager for near-field applications
US11263792B1 (en) Calibration method for a spectral computerized tomography system
Boardman et al. Single pixel compressive gamma-ray imaging with randomly encoded masks
Rowe A system for three-dimensional SPECT without motion
Olesen Low-information radiation imaging using rotating scatter mask systems and neural network algorithms
Ivanov Control and image decoding software for portable gamma-ray imaging system with coded aperture
Shah Adaptive imaging with a cylindrical, time-encoded imaging system
Shah et al. Improved Localization Precision and Angular Resolution of a Cylindrical, Time-Encoded Imaging System From Adaptive Detector Movements
Fan et al. Development and Performance evaluation of a prompt gamma imaging system for real-time proton therapy monitoring
Olesen et al. Advanced Radiation Imaging Algorithms with Rotating Scatter Masks.
Hellfeld et al. Optimization of a spherical active coded mask gamma-ray imager
Ma et al. A model of spatial resolution uncertainty for Compton camera imaging
Du Development of a prototype Compton scattering camera using three-dimensional position sensitive CZT detectors
Liu et al. Radioactive Source Localization Method for the Partially Coded Field-of-View of Coded-Aperture Imaging in Nuclear Security Applications
Brubaker Aperture-based radiation imaging techniques.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant