CN111224139B - 一种复合型结构的质子陶瓷膜燃料电池及制备 - Google Patents
一种复合型结构的质子陶瓷膜燃料电池及制备 Download PDFInfo
- Publication number
- CN111224139B CN111224139B CN201811431673.7A CN201811431673A CN111224139B CN 111224139 B CN111224139 B CN 111224139B CN 201811431673 A CN201811431673 A CN 201811431673A CN 111224139 B CN111224139 B CN 111224139B
- Authority
- CN
- China
- Prior art keywords
- porous layer
- layer
- cathode
- anode
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1231—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/1253—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/126—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
本发明涉及一种复合型结构的质子陶瓷膜燃料电池,所述燃料电池由阴极多孔层、电解质多孔层、阳极多孔层与阴极致密层、阳极致密层五部分组成。其中,阴极多孔层和阳极多孔层起气体传输和表面催化作用;阴极致密层和阳极致密层起阻隔气体、改善界面连接作用;电解质多孔层起传导离子、阻隔电子作用。该复合型结构的质子陶瓷膜燃料电池可将制备温度降至1200℃‑1300℃,突破传统质子型电解质高温难烧结及界面电阻大等问题,从而降低制备成本,扩大其应用范围。
Description
技术领域
本发明属于固体氧化物燃料电池领域,具体涉及一种复合型结构的质子陶瓷膜燃料电池。
背景技术
传统固体氧化物燃料电池以氧离子为载流子,运行温度较高(800℃-1000℃)存在密封困难、启停时间长、各部件扩散反应严重等问题。以质子为载流子固体氧化物燃料电池,质子理论传输活化能较氧离子低三个数量级,运行温度可降至350℃-550℃之间,因而在中低温固体氧化燃料电池温度方向极具潜力。目前质子陶瓷膜燃料电池主要以掺杂BaCeO3基、BaZrO3基等为电解质,其本征质子电导高,但烧结活性较差,例如纯BZY烧结温度通常在1700℃-2200℃之间,过高的烧结温度既浪费能源,又导致Ba挥发严重,影响电解质的实际离子电导率。另外,质子陶瓷膜电解质大都为碱性氧化物,存在酸性气氛下稳定性差问题。常见低温制备质子陶瓷膜方法:一方面添加助剂,利用液相烧结促进电解质致密,但该方法易在晶界存留杂相而增大晶界电阻,降低电池性能;另一方面,脉冲激光沉积、磁控溅射、化学气相沉积等方法已应用制备质子陶瓷膜,但操作复杂,成本较高,不利于批量生产。综上所述,本领域需要设计一种可在低温下(1200℃-1300℃)烧结成型且稳定性较高的质子陶瓷膜燃料电池。
发明内容
为解决质子陶瓷膜燃料电池烧结性与长期稳定性问题,从而降低制备成本与能耗,实现批量生产,本发明提出一种复合型结构的质子陶瓷膜燃料电池,所述质子陶瓷膜燃料电池由多孔阴极多孔层、电解质多孔层、阳极多孔层及阴极致密层、阳极致密层五部分组成。
所述的复合型结构的质子陶瓷膜燃料电池,阴极多孔层与阳极多孔层厚度为500微米~800微米,孔隙率为55%~65%,起到气体传输和催化反应作用;电解质层厚度为10微米~20微米,起到传输离子阻隔电子作用。
所述的复合型结构的质子陶瓷膜燃料电池,电解质多孔层组成为BCY、BZY、BCZY、BCZYYb中的一种或两种;阳极组成为NiO与电解质混合物,质量比为60:40;阴极组成为BSCF、LSCF、BCF中的一种。
所述的复合型结构的质子陶瓷膜燃料电池,阴极致密层、阳极致密层与阴极多孔层、阳极多孔层组成相同,厚度为2微米~5微米。
所述的复合型结构的质子陶瓷膜燃料电池,其阴极致密层、阳极致密层与电解质多孔层采用流延-三层共烧法制备,在1150℃~1250℃下共烧5h~8h;阴极多孔层、阳极多孔层采用丝网印刷法制备,在750℃~950℃下烧结2h~3h。
所述的复合型结构的质子陶瓷膜燃料电池,阴极致密层、阳极致密层与电解质多孔层的流延浆料中粉体:鱼油:PVB胶:有机溶剂质量比为30:0.4:24:20,有机溶剂为乙醇,正丁醇,甲苯中的一种或两种,体积比为1:1。
所述的复合型结构的质子陶瓷膜燃料电池,其特征在于阴极多孔层、阳极多孔层的丝网印刷浆料中粉体:有机溶剂质量比为10:3,有机溶剂为含质量分数为3%~9%的乙基纤维素的松油醇。
本发明的有益效果是:质子陶瓷膜电解质以质子为载流子,传输活化能低,低温下仍满足性能要求;采用复合型结构可降低烧结温度,简化制备工艺,利于大规模生产与应用;另外,阴极致密层与阳极致密层可降低界面电阻,有效隔绝反应气,从而提高稳定性,得到性能较高的复合型结构的质子陶瓷膜燃料电池。
其中,阴极多孔层和阳极多孔层起气体传输和表面催化作用;阴极致密层和阳极致密层起阻隔气体、改善界面连接作用;电解质多孔层起传导离子、阻隔电子作用。该复合型结构的质子陶瓷膜燃料电池可将制备温度降至1200℃-1300℃,突破传统质子型电解质高温难烧结及界面电阻大等问题,从而降低制备成本,扩大其应用范围。
具体实施方式
实施例1
按照流延浆料配方分别制备阴极、电解质及阳极浆料,流延所得三层层叠的BSCF/BZY/BZY-NiO共烧于1200℃下8h,得到致密度分别为96.3%和92.0%,厚度为2微米的阴极致密层与阳极致密层。将预先制备的阴极与阳极丝网印刷浆料分别涂覆在致密层表面,室温下干燥8h后,在700℃下烧结2h后,阴极多孔层与阳极多孔层厚度为600微米,电解质多孔层厚度为15微米,得到五层层叠的BSCF/BSCF/BZY/BZY/BZY-NiO/BZY-NiO复合结构的质子陶瓷膜燃料电池。测试电池性能的工作条件为:含以高纯H2为燃料气,流量为10mL/min;空气为氧化剂,流量为10mL/min,500℃开路电压为1.223V,功率可达到234mW·cm2。
实施例2
按照流延浆料配方分别制备阴极、电解质及阳极浆料,流延所得三层层叠的BZY/BCZY/BCZY-NiO共烧于1150℃下8h,得到致密度分别为97.1%和90.0%,厚度为3微米的阴极致密层与阳极致密层。将预先制备的阴极与阳极丝网印刷浆料分别涂覆在致密层表面,室温下干燥5h后,在800℃下烧结5h后,阴极多孔层与阳极多孔层厚度为650微米,电解质多孔层厚度为10微米,得到LSCF/LSCF/BZY/BCZY/BCZY-NiO/BCZY-NiO复合结构的质子陶瓷膜燃料电池。测试电池性能的工作条件为:含以高纯H2为燃料气,流量为10mL/min;空气为氧化剂,流量为10mL/min,550℃开路电压为1.273V,功率可达到174mW·cm2。
实施例3
按照流延浆料配方分别制备阴极、电解质及阳极浆料,流延所得三层层叠的BSC/BCZYYb/BZY-NiO共烧于1250℃下4h,得到致密度分别为96.3%和92.0%,厚度为4微米的阴极致密层与阳极致密层。将预先制备的阴极与阳极丝网印刷浆料分别涂覆在致密层表面,室温下干燥3h后,在750℃下烧结2h后,阴极多孔层与阳极多孔层厚度为800微米,电解质多孔层厚度为20微米,得到五层层叠的BSC/BSC/BCZYYb/BZY-NiO/BZY-NiO复合结构的质子陶瓷膜燃料电池。测试电池性能的工作条件为:含以高纯H2为燃料气,流量为8mL/min;空气为氧化剂,流量为8mL/min,500℃开路电压为1.1983V,功率可达到354mW·cm2。
Claims (6)
1.一种复合型结构的质子陶瓷膜燃料电池,其特征在于:所述质子陶瓷膜燃料电池包括阴极多孔层、电解质多孔层、阳极多孔层及阴极致密层、阳极致密层五部分;由阴极多孔层、阴极致密层、电解质多孔层、阳极致密层、阳极多孔层层叠构成;阴极致密层与阴极多孔层组成相同、阳极致密层与阳极多孔层组成相同,阴极致密层、阳极致密层厚度分别为2微米~5微米。
2.如权利要求1所述的复合型结构的质子陶瓷膜燃料电池,其特征在于:阴极多孔层与阳极多孔层厚度为500微米~800微米,孔隙率为55%~65%,起到气体传输与催化反应作用;电解质多孔层厚度为10微米~20微米,孔隙率为78%~86%,起到传输离子阻隔电子作用。
3.如权利要求1或2所述的复合型结构的质子陶瓷膜燃料电池,其特征在于:电解质多孔层组成为BCY、BZY、BCZY、BCZYYb中的一种或两种以上;阳极多孔层组成为NiO与电解质混合物,质量比为60:40,电解质为BCY、BZY、BCZY、BCZYYb中的一种或两种以上;阴极多孔层组成为BSCF、LSCF、BCF中的一种或两种以上。
4.一种权利要求1-2所述的复合型结构的质子陶瓷膜燃料电池的制备方法,其特征在于:阴极致密层、阳极致密层与电解质多孔层采用流延-三层共烧法制备,在1200℃~1300℃下共烧5h~8h;阴极多孔层、阳极多孔层采用丝网印刷法制备,在750℃~950℃下烧结2h~3h。
5.如权利要求4所述的复合型结构的质子陶瓷膜燃料电池的制备方法,其特征在于:阴极致密层、阳极致密层与电解质多孔层的流延浆料中粉体:鱼油:PVB胶:有机溶剂质量比为30:0.4:24:20,有机溶剂为乙醇,正丁醇,甲苯中的一种或两种,两种体积比为1:1。
6.如权利要求4所述的复合型结构的质子陶瓷膜燃料电池的制备方法,其特征在于:阴极多孔层、阳极多孔层的丝网印刷浆料中粉体:有机溶剂质量比为10:3,有机溶剂为含质量分数为3%~9%的乙基纤维素的松油醇。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811431673.7A CN111224139B (zh) | 2018-11-27 | 2018-11-27 | 一种复合型结构的质子陶瓷膜燃料电池及制备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811431673.7A CN111224139B (zh) | 2018-11-27 | 2018-11-27 | 一种复合型结构的质子陶瓷膜燃料电池及制备 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111224139A CN111224139A (zh) | 2020-06-02 |
CN111224139B true CN111224139B (zh) | 2021-07-20 |
Family
ID=70805735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811431673.7A Active CN111224139B (zh) | 2018-11-27 | 2018-11-27 | 一种复合型结构的质子陶瓷膜燃料电池及制备 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111224139B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115483421B (zh) * | 2021-05-31 | 2024-05-17 | 湖北赛傲氢能科技有限公司 | 一种多元电解质及其制备方法和应用 |
CN116474792A (zh) * | 2023-04-20 | 2023-07-25 | 南京工业大学 | 一种氨制氢催化材料、制备方法及应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1750307A (zh) * | 2004-09-16 | 2006-03-22 | 中国科学院大连化学物理研究所 | 固体氧化物燃料电池的阳极负载双层电解质膜及制备方法 |
CN101694882A (zh) * | 2009-10-20 | 2010-04-14 | 中国科学技术大学 | 管状陶瓷膜燃料电池的陶瓷膜结构及其制备方法 |
CN106848358A (zh) * | 2017-04-18 | 2017-06-13 | 中国科学技术大学 | 一种掺杂氧化铈基固体氧化物燃料电池及其制备方法 |
US9692075B1 (en) * | 2016-01-26 | 2017-06-27 | Uchicago Argonne, Llc | Multi-layered proton-conducting electrolyte |
CN107959036A (zh) * | 2016-10-14 | 2018-04-24 | 中国科学院宁波材料技术与工程研究所 | 一种平板型结构的固体氧化物燃料电池的制备方法 |
CN108123153A (zh) * | 2016-11-25 | 2018-06-05 | 中国科学院大连化学物理研究所 | 一种质子型固体氧化物燃料电池及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006079889A (ja) * | 2004-09-08 | 2006-03-23 | Toyota Motor Corp | 電解質−電極接合体の製造方法および燃料電池 |
US7767358B2 (en) * | 2005-05-31 | 2010-08-03 | Nextech Materials, Ltd. | Supported ceramic membranes and electrochemical cells and cell stacks including the same |
US8669015B2 (en) * | 2009-04-02 | 2014-03-11 | Samsung Electronics Co., Ltd. | Solid-state fuel cell including anode and cathode chemical electrolyte protection layers and a hydrogen ion conductive solid oxide dense film |
CN105308784A (zh) * | 2013-06-29 | 2016-02-03 | 圣戈本陶瓷及塑料股份有限公司 | 具有致密阻挡层的固体氧化物燃料电池 |
TWI558568B (zh) * | 2015-11-03 | 2016-11-21 | 行政院原子能委員會核能研究所 | 透氣金屬基板、金屬支撐固態氧化物燃料電池及其製作方法 |
-
2018
- 2018-11-27 CN CN201811431673.7A patent/CN111224139B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1750307A (zh) * | 2004-09-16 | 2006-03-22 | 中国科学院大连化学物理研究所 | 固体氧化物燃料电池的阳极负载双层电解质膜及制备方法 |
CN101694882A (zh) * | 2009-10-20 | 2010-04-14 | 中国科学技术大学 | 管状陶瓷膜燃料电池的陶瓷膜结构及其制备方法 |
US9692075B1 (en) * | 2016-01-26 | 2017-06-27 | Uchicago Argonne, Llc | Multi-layered proton-conducting electrolyte |
CN107959036A (zh) * | 2016-10-14 | 2018-04-24 | 中国科学院宁波材料技术与工程研究所 | 一种平板型结构的固体氧化物燃料电池的制备方法 |
CN108123153A (zh) * | 2016-11-25 | 2018-06-05 | 中国科学院大连化学物理研究所 | 一种质子型固体氧化物燃料电池及其制备方法 |
CN106848358A (zh) * | 2017-04-18 | 2017-06-13 | 中国科学技术大学 | 一种掺杂氧化铈基固体氧化物燃料电池及其制备方法 |
Non-Patent Citations (1)
Title |
---|
In situ screen-printed BaZr0.1Ce0.7Y0.2O3−δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo2O5+x cathode;Bin Lin 等;《Journal of Power Sources》;20081017;第186卷;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111224139A (zh) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109921079B (zh) | 一种复合型固体氧化物燃料电池及其制备方法 | |
CA2844311C (en) | Composite anode for a solid oxide fuel cell with improved mechanical integrity and increased efficiency | |
CN112382774B (zh) | 一种电解质支撑型电解池阻挡层的制备方法 | |
CN103872366A (zh) | 一种金属支撑固体氧化物燃料电池及其制备方法 | |
CN105839138A (zh) | 一种固体氧化物电解池高温熔融碳酸盐空气电极的制备方法 | |
CN111384421A (zh) | 一种五层结构单电池及其制备方法和制得的产品 | |
CN111224139B (zh) | 一种复合型结构的质子陶瓷膜燃料电池及制备 | |
CN107195938A (zh) | 一种简单的固体氧化物燃料电池制备方法 | |
CN103219525A (zh) | 低温固体氧化物燃料电池及其制备方法 | |
CN114890787A (zh) | 氧电极支撑型固体氧化物电解池及其制备方法 | |
CN101304093B (zh) | 一种低温固体氧化物燃料电池三合一组件mea及其制备 | |
CN114016063B (zh) | 一种固体氧化物电解池及其制备方法 | |
Devi et al. | Solid oxide fuel cell materials: a review | |
CN103985888A (zh) | 陶瓷膜燃料电池用连接材料薄膜和电解质薄膜的制备方法 | |
CN116137334A (zh) | 一种固体氧化物电池隔离层及单电池和制备方法 | |
CN104577142A (zh) | 一种固体氧化物燃料电池梯度结构阴极膜的制备方法 | |
CN101908637B (zh) | 具有双气路通道的无密封固体氧化物燃料电池组 | |
KR102154634B1 (ko) | 지지체식 전기화학셀의 제조방법 및 이에 의해 제조된 전기화학셀 | |
JP5198908B2 (ja) | 高性能固体酸化物形燃料電池膜電極接合体(sofc−mea)に積層する完全緻密な電解質層の製造方法。 | |
CN113764710B (zh) | 一种cgo/dwsb双电解质层的固体氧化物电解池 | |
US20140227624A1 (en) | Electrolyte formation for a solid oxide fuel cell device | |
US8617762B2 (en) | Method of processing a ceramic electrolyte, and related articles | |
CN113782799A (zh) | 一种cgo/esb双电解质层的固体氧化物电解池 | |
CN109309239A (zh) | 一种平板固体氧化物燃料对称电池及其制备方法 | |
CN112663079A (zh) | 一种管状固体氧化物电解池及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |