CN111211162A - 一种双层沟道结构的突触晶体管 - Google Patents

一种双层沟道结构的突触晶体管 Download PDF

Info

Publication number
CN111211162A
CN111211162A CN202010040658.0A CN202010040658A CN111211162A CN 111211162 A CN111211162 A CN 111211162A CN 202010040658 A CN202010040658 A CN 202010040658A CN 111211162 A CN111211162 A CN 111211162A
Authority
CN
China
Prior art keywords
channel layer
resistivity
layer
low
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010040658.0A
Other languages
English (en)
Inventor
霍文星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010040658.0A priority Critical patent/CN111211162A/zh
Publication of CN111211162A publication Critical patent/CN111211162A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种双层沟道结构的突触晶体管,包括衬底,所述衬底上设置有通过栅绝缘层与源电极、漏电极相隔开的栅电极,所述源电极和漏电极在同层间隔设置;所述栅绝缘层与源电极、漏电极之间设置有低电阻率沟道层和高电阻率沟道层;所述低电阻率沟道层位于栅绝缘层与高电阻率沟道层之间,所述低电阻率沟道层的厚度为3nm‑10nm;所述高电阻率沟道层位于低电阻率沟道层与源电极、漏电极之间,所述高电阻率沟道层的厚度为40nm‑100nm。本发明旨在提供一种通过在晶体管内设置高低电阻的双层沟道结构,使晶体管的转移特性曲线中制造出存储窗口,实现仿生突触信号。

Description

一种双层沟道结构的突触晶体管
技术领域
本发明涉及半导体器件领域,尤其涉及一种双层沟道结构的突触晶体管。
背景技术
神经形态芯片通过模拟生物大脑的结构和功能实现信息的分布式存储和并行处理,相比于传统的冯·诺依曼系统,具有低功耗、高适应性、自主学习等能力,在模式识别、复杂感知等领域展现了独有的优势和巨大的应用潜力。突触是组成生物神经系统的基本单元,能够模拟生物突触行为的神经形态器件引起了广泛的关注。两端器件如忆阻器等难以实现数据传输和自主学习等复杂仿生功能,因而基于铁电栅和电解质栅的三端突触晶体管受到越来越多的关注和研究。
铁电栅突触晶体管是在传统场效应晶体管中引入具有自发极化的铁电绝缘层,通过栅压改变铁电材料的极化态就可以准确调制沟道的载流子浓度,具有低功耗、高工作速度的优点。然而PbZrTiO3、铪基氧化物等铁电材料需要高温晶化,不适用于柔性电子集成,有机铁电材料P(VDF-TrFE)与氧化物的界面性能差。电解质栅突触晶体管的栅介电层是富含可移动离子的电解质,这些离子在外电场作用下发生迁移,在半导体沟道与电解质或电解质与栅电极的界面处形成紧密的双电层。它可同时实现短程和长程突触塑性,工作电压低,功耗小,并且兼容柔性电子工艺,但是柔性电解质栅突触晶体管的长期稳定性存在许多问题,并且液态的电解质在集成和封装上存在难度。
发明内容
本发明的目的在于克服上述现有技术中的不足,旨在提供一种通过在晶体管内设置高低电阻的双层沟道结构,使晶体管的转移特性曲线中制造出存储窗口,实现仿生突触信号。
为达到上述目的,本发明的技术方案是这样实现的:
一种双层沟道结构的突触晶体管,包括衬底,所述衬底上设置有通过栅绝缘层与源电极、漏电极相隔开的栅电极,所述源电极和漏电极在同层间隔设置;所述栅绝缘层与源电极、漏电极之间设置有低电阻率沟道层和高电阻率沟道层;所述低电阻率沟道层位于栅绝缘层与高电阻率沟道层之间,所述低电阻率沟道层的厚度为3nm-10nm;所述高电阻率沟道层位于低电阻率沟道层与源电极、漏电极之间,所述高电阻率沟道层的厚度为40nm-100nm。
进一步的,所述低电阻率沟道层的载流子浓度为1×1018cm-3至1×1020cm-3,载流子迁移率为1cm2/V·s至100cm2/V·s,电阻率为1×10-4Ω·cm至10Ω·cm。
进一步的,所述低电阻率沟道层由氧化锌、掺铝氧化锌、铟镓锌氧、掺镓氧化锌、铟锡氧、铟锌氧、锌锡氧、氧化亚铜、氧化锡中的其中一种构成。
进一步的,所述高电阻率沟道层的载流子浓度为1×1012cm-3至1×1017cm-3,载流子迁移率为1cm2/V·s至100cm2/V·s,电阻率为100Ω·cm至105Ω·cm。
进一步的,所述高电阻率沟道层由氧化锌、铟镓锌氧、铟锌氧、镁锌氧、锌锡氧、氧化亚铜、氧化锡中的其中一种构成。
进一步的,所述衬底由聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二酯、聚酰亚胺、石英、蓝宝石、砷化镓、聚甲基丙烯酸甲酯、聚二甲基硅氧烷、聚氯乙烯、聚苯乙烯或聚碳酸酯中的其中一种构成。
进一步的,所述源电极、漏电极和栅电极均由铟锡氧、Cr、Au、Al、Mo、Ni、Ti、Ag、Cu、碳纳米管、石墨烯中的其中一种构成。
进一步的,所述栅绝缘层由Al2O3、SiO2、Y2O3、HfO2、ZrO2、Ta2O5、Si3N4、AlN或聚乙烯吡咯烷酮中的其中一种构成。
相对于现有技术,本发明具有以下有益效果:
本发明通过在晶体管内设置高低电阻的双层沟道结构,并使高电阻率沟道层的厚度高于现有晶体管中沟道层的厚度,使氧离子能在双层沟道之间进行迁移和扩散,从而获得存储窗口,实现仿生突触信号。而且本发明提供的突触晶体管可兼容柔性工艺,易于封装集成。
附图说明
图1为本发明的结构示意图;
图2为本发明实施例1的转移特性曲线图;
图3为本发明实施例2的结构示意图;
图4为本发明实施例2的转移特性曲线图;
图5为本发明实施例3的转移特性曲线图;
图6为本发明兴奋性突触后的电流曲线;
附图标记说明:
1-衬底,2-栅电极,3-栅绝缘层,4-低电阻率沟道层,5-高电阻率沟道层,6-源电极,7-漏电极,8-钝化层。
具体实施方式
下面将参考附图并结合实施例来详细说明本发明。
实施例1
如图1所示,一种双层沟道结构的突触晶体管,包括衬底1,所述衬底1上设置有通过栅绝缘层3与源电极6、漏电极7相隔开的栅电极2,所述源电极6和漏电极7在同层间隔设置;所述栅绝缘层3与源电极6、漏电极7之间设置有低电阻率沟道层4和高电阻率沟道层5;所述低电阻率沟道层4位于栅绝缘层3与高电阻率沟道层5之间,所述低电阻率沟道层4的厚度为3nm-10nm,所述低电阻率沟道层4的载流子浓度为1×1018cm-3至1×1020cm-3,载流子迁移率为1cm2/V·s至100cm2/V·s,电阻率为1×10-4Ω·cm至10Ω·cm,所述低电阻率沟道层4由氧化锌、掺铝氧化锌、铟镓锌氧、掺镓氧化锌、铟锡氧、铟锌氧、锌锡氧、氧化亚铜、氧化锡中的其中一种构成;所述高电阻率沟道层5位于低电阻率沟道层4与源电极6、漏电极7之间,所述高电阻率沟道层5的厚度为40nm-100nm,所述高电阻率沟道层5的载流子浓度为1×1012cm-3至1×1017cm-3,载流子迁移率为1cm2/V·s至100cm2/V·s,电阻率为100Ω·cm至105Ω·cm,所述高电阻率沟道层5由氧化锌、铟镓锌氧、铟锌氧、镁锌氧、锌锡氧、氧化亚铜、氧化锡中的其中一种构成;所述衬底1由聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二酯、聚酰亚胺、石英、蓝宝石、砷化镓、聚甲基丙烯酸甲酯、聚二甲基硅氧烷、聚氯乙烯、聚苯乙烯或聚碳酸酯中的其中一种构成;所述源电极6、漏电极7和栅电极2均由铟锡氧、Cr、Au、Al、Mo、Ni、Ti、Ag、Cu、碳纳米管、石墨烯中的其中一种构成;所述栅绝缘层3由Al2O3、SiO2、Y2O3、HfO2、ZrO2、Ta2O5、Si3N4、AlN或聚乙烯吡咯烷酮中的其中一种构成。
当栅电极2设置在衬底1上时,晶体管从下到上依次包括PEN衬底1、Cr栅电极2、Al2O3栅绝缘层3、铟镓锌氧(IGZO)低电阻率沟道层4、IGZO高电阻率沟道层5、铟锡氧(ITO)源电极6和ITO漏电极7、SiO2钝化层8。本实施例中薄膜晶体管的制备方法如下:在PEN衬底1上采用磁控溅射技术制备30nm厚的Cr栅电极2;采用原子层沉积(ALD)制备30nm厚的Al2O3栅绝缘层3;采用磁控溅射技术连续制备10nm厚的IGZO低电阻率沟道层4,40nm厚的IGZO高电阻率沟道层5,然后经过光刻和盐酸刻蚀,对沟道层进行图形化处理;采用磁控溅射技术制备100nm厚的ITO源电极6和漏电极7;采用等离子体增强化学气相沉积技术(PECVD)制备100nm厚的SiO2钝化层8,利用钝化层8覆盖高电阻率沟道层5。如图2所示,通过对上述晶体管通电后测得的转移特性曲线可看出,栅极电压从-10V增长到10V,再从10V降低到-10的过程中,栅极电压值为-2~0V时,逆时针的回滞产生了宽度为2V的存储窗口。
实施例2
如图3所示,当源电极6和漏电极7设置在衬底1上时,晶体管的纵向结构自下到上依次包括PI衬底1、Mo源电极6和漏电极7、ZnO高电阻率沟道层5、掺铝氧化锌(AZO)低电阻率沟道层4、ZrO2栅绝缘层3、Au栅电极2。本实施例中薄膜晶体管的制备方法如下:在PI衬底1上采用磁控溅射技术制备70nm的Mo源电极6和漏电极7;采用ALD方法连续制备100nm厚的ZnO高电阻率沟道层5,载流子浓度1×1016cm-3,载流子迁移率5cm2/V·s,电阻率1.25×103Ω·cm,5nm厚的AZO低电阻率沟道层4,载流子浓度1×1019cm-3,载流子迁移率40cm2/V·s,电阻率1.56×10-2Ω·cm;采用电子束蒸发法制备50nm厚的ZrO2栅绝缘层3;采用磁控溅射技术制备45nm厚的Au栅电极2。如图4所示,通过对上述晶体管通电后测得的转移特性曲线可看出,栅极电压从-10V增长到20V,再从20V降低到-10的过程中,栅极电压值为-8~2V时,逆时针的回滞产生了宽度为10V的存储窗口。
实施例3
晶体管的纵向结构与实施例1中相同,本实施例中薄膜晶体管的制备方法如下:在PET衬底1上采用磁控溅射技术制备40nm厚的Al栅电极2;采用PECVD制备70nm厚的Si3N4栅绝缘层3;采用磁控溅射技术连续制备3nm厚的ITO低电阻率沟道层4,载流子浓度1×1020cm-3,载流子迁移率100cm2/V·s,电阻率6.25×10-4Ω·cm,和70nm厚的锌锡氧(ZTO)高电阻率沟道层5,载流子浓度1×1017cm-3,载流子迁移率2cm2/V·s,电阻率3.13×103Ω·cm,然后经过光刻和盐酸刻蚀,对沟道层进行图形化处理;采用磁控溅射技术制备60nm厚的Ag源电极6和Ag漏电极7;采用ALD制备50nm厚的Al2O3钝化层8。如图5所示,通过对上述晶体管通电后测得的转移特性曲线可看出,栅极电压从-20V增长到10V,再从10V降低到-20的过程中,栅极电压值为-15~-10V时,逆时针的回滞产生了宽度为5V的存储窗口。
如图6所示的电流曲线可看出,对以上实施例中晶体管通电,当施加宽度10ms,幅度10V的脉冲栅压后实现了仿生兴奋性突触后电流。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种双层沟道结构的突触晶体管,包括衬底,其特征在于:所述衬底上设置有通过栅绝缘层与源电极、漏电极相隔开的栅电极,所述源电极和漏电极在同层间隔设置;所述栅绝缘层与源电极、漏电极之间设置有低电阻率沟道层和高电阻率沟道层;所述低电阻率沟道层位于栅绝缘层与高电阻率沟道层之间,所述低电阻率沟道层的厚度为3nm-10nm;所述高电阻率沟道层位于低电阻率沟道层与源电极、漏电极之间,所述高电阻率沟道层的厚度为40nm-100nm。
2.根据权利要求1所述的一种双层沟道结构的突触晶体管,其特征在于:所述低电阻率沟道层的载流子浓度为1×1018cm-3至1×1020cm-3,载流子迁移率为1cm2/V·s至100cm2/V·s,电阻率为1×10-4Ω·cm至10Ω·cm。
3.根据权利要求2所述的一种双层沟道结构的突触晶体管,其特征在于:所述低电阻率沟道层由氧化锌、掺铝氧化锌、铟镓锌氧、掺镓氧化锌、铟锡氧、铟锌氧、锌锡氧、氧化亚铜、氧化锡中的其中一种构成。
4.根据权利要求1所述的一种双层沟道结构的突触晶体管,其特征在于:所述高电阻率沟道层的载流子浓度为1×1012cm-3至1×1017cm-3,载流子迁移率为1cm2/V·s至100cm2/V·s,电阻率为100Ω·cm至105Ω·cm。
5.根据权利要求4所述的一种双层沟道结构的突触晶体管,其特征在于:所述高电阻率沟道层由氧化锌、铟镓锌氧、铟锌氧、镁锌氧、锌锡氧、氧化亚铜、氧化锡中的其中一种构成。
6.根据权利要求1所述的一种双层沟道结构的突触晶体管,其特征在于:所述衬底由聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二酯、聚酰亚胺、石英、蓝宝石、砷化镓、聚甲基丙烯酸甲酯、聚二甲基硅氧烷、聚氯乙烯、聚苯乙烯或聚碳酸酯中的其中一种构成。
7.根据权利要求1所述的一种双层沟道结构的突触晶体管,其特征在于:所述源电极、漏电极和栅电极均由氧化铟锡、Cr、Au、Al、Mo、Ni、Ti、Ag、Cu、碳纳米管、石墨烯中的其中一种构成。
8.根据权利要求1所述的一种双层沟道结构的突触晶体管,其特征在于:所述栅绝缘层由Al2O3、SiO2、Y2O3、HfO2、ZrO2、Ta2O5、Si3N4、AlN或聚乙烯吡咯烷酮中的其中一种构成。
CN202010040658.0A 2020-01-14 2020-01-14 一种双层沟道结构的突触晶体管 Pending CN111211162A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010040658.0A CN111211162A (zh) 2020-01-14 2020-01-14 一种双层沟道结构的突触晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010040658.0A CN111211162A (zh) 2020-01-14 2020-01-14 一种双层沟道结构的突触晶体管

Publications (1)

Publication Number Publication Date
CN111211162A true CN111211162A (zh) 2020-05-29

Family

ID=70786116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010040658.0A Pending CN111211162A (zh) 2020-01-14 2020-01-14 一种双层沟道结构的突触晶体管

Country Status (1)

Country Link
CN (1) CN111211162A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304046A (zh) * 2007-02-09 2008-11-12 三星电子株式会社 薄膜晶体管及其制造方法
CN102280480A (zh) * 2011-07-14 2011-12-14 合肥工业大学 双栅沟道导电类型可调单壁碳纳米管场效应晶体管及制备工艺
CN103346089A (zh) * 2013-06-13 2013-10-09 北京大学深圳研究生院 一种自对准双层沟道金属氧化物薄膜晶体管及其制作方法
CN106298947A (zh) * 2016-10-12 2017-01-04 中国科学院微电子研究所 一种双栅InGaAs PMOS场效应晶体管
CN109935637A (zh) * 2019-03-19 2019-06-25 中国科学院物理研究所 一种高压薄膜晶体管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304046A (zh) * 2007-02-09 2008-11-12 三星电子株式会社 薄膜晶体管及其制造方法
CN102280480A (zh) * 2011-07-14 2011-12-14 合肥工业大学 双栅沟道导电类型可调单壁碳纳米管场效应晶体管及制备工艺
CN103346089A (zh) * 2013-06-13 2013-10-09 北京大学深圳研究生院 一种自对准双层沟道金属氧化物薄膜晶体管及其制作方法
CN106298947A (zh) * 2016-10-12 2017-01-04 中国科学院微电子研究所 一种双栅InGaAs PMOS场效应晶体管
CN109935637A (zh) * 2019-03-19 2019-06-25 中国科学院物理研究所 一种高压薄膜晶体管

Similar Documents

Publication Publication Date Title
Halter et al. Back-end, CMOS-compatible ferroelectric field-effect transistor for synaptic weights
Zhu et al. Indium–gallium–zinc–oxide thin-film transistors: Materials, devices, and applications
Yu et al. Evolution of bio‐inspired artificial synapses: materials, structures, and mechanisms
CN108807546A (zh) 氧化物薄膜晶体管及其制造方法
US8426841B2 (en) Transparent memory for transparent electronic device
US9887352B2 (en) Sensing device and method of production thereof
Hu et al. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method
US9978940B2 (en) Memristor and method of production thereof
He et al. Oxide-based thin film transistors for flexible electronics
Zhou et al. Solution-processed chitosan-gated IZO-based transistors for mimicking synaptic plasticity
Nag et al. Single‐source dual‐layer amorphous IGZO thin‐film transistors for display and circuit applications
Jang et al. Digital and analog switching characteristics of InGaZnO memristor depending on top electrode material for neuromorphic system
Kuo et al. CMOS-compatible fabrication of low-power ferroelectric tunnel junction for neural network applications
Shen et al. Artificial synaptic performance with learning behavior for memristor fabricated with stacked solution-processed switching layers
CN103346089A (zh) 一种自对准双层沟道金属氧化物薄膜晶体管及其制作方法
Shi et al. Solid-state electrolyte gated synaptic transistor based on SrFeO2. 5 film channel
Chang et al. Low-Temperature Solution-Processed n-Channel SnO2 Thin-Film Transistors and High-Gain Zero-V GS-Load Inverter
Xue et al. Native drift and Mott nanochannel in layered V2O5 film for synaptic and nociceptive simulation
Dai et al. Flexible and transparent artificial synapse devices based on thin-film transistors with nanometer thickness
Chen et al. PZT-Enabled MoS2 Floating Gate Transistors: Overcoming Boltzmann Tyranny and Achieving Ultralow Energy Consumption for High-Accuracy Neuromorphic Computing
Lu et al. Amorphous oxide semiconductors: From fundamental properties to practical applications
Dragoman et al. Ferroelectrics at the nanoscale: materials and devices–a critical review
Tong et al. Recent progress of layered memristors based on two-dimensional MoS2
CN111211162A (zh) 一种双层沟道结构的突触晶体管
Zhang et al. Van der Waals materials-based floating gate memory for neuromorphic computing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200529

RJ01 Rejection of invention patent application after publication