CN111208438A - 基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法 - Google Patents

基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法 Download PDF

Info

Publication number
CN111208438A
CN111208438A CN202010147425.0A CN202010147425A CN111208438A CN 111208438 A CN111208438 A CN 111208438A CN 202010147425 A CN202010147425 A CN 202010147425A CN 111208438 A CN111208438 A CN 111208438A
Authority
CN
China
Prior art keywords
soc
rbfnn
ukf
neural network
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010147425.0A
Other languages
English (en)
Other versions
CN111208438B (zh
Inventor
孙雯
孙立
苏志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010147425.0A priority Critical patent/CN111208438B/zh
Publication of CN111208438A publication Critical patent/CN111208438A/zh
Application granted granted Critical
Publication of CN111208438B publication Critical patent/CN111208438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,包括如下步骤:S1:进行锂电子电池充放电实验并采集样本数据,包含训练数据和测试数据;S2:确定神经网络的输入和输出变量,建立SOC的RBFNN模型;S3:基于训练数据集对建立的RBFNN进行参数学习,获取准确的RBFNN模型;S4:利用测试数据对建立的RBFNN进行独立精度检验;S5:将SOC设置为内部状态,设计RBFNN‑UKF,实现在初始SOC不确定的情况下对SOC的实时估计;S6:将传感器偏差设置为扩张状态,在原有RBFNN‑UKF基础上设计扩张RBFNN‑UKF,实现SOC与未知传感器偏差的协同估计。本发明能够实现SOC和传感器偏差的协同估计,具有收敛速度快、精度高、误差小的优点。

Description

基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与 传感器偏差协同估计的方法
技术领域
本发明涉及电动汽车电池领域,尤其是一种基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法。
背景技术
汽车行业的快速发展间接导致了能源的大量消耗、环境的日益恶化。因此,以蓄电池为动力的电动汽车凭借低能耗、零排放、性价比高等优势在新能源汽车行业获得广泛关注。锂电子电池由于能量密度高、自放电低、充电快、寿命长等优点,在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用,因此也成为新能源电动汽车的优选。
电池管理系统是电动汽车发展的关键技术之一。它可以有效评估电池的荷电状态、健康状态和温度等。其中,电池的荷电状态,是电池剩余电量的一个重要指标。它定义为使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值,常用百分数表示。其取值范围为0-1,当荷电状态为0时表示电池放电完全,当荷电状态为1时表示电池完全充满。在电池的使用过程中,需将其荷电状态保持在合适的范围内,以提高电池的安全性能、延长电池的充放电循环寿命。同时可以防止电池因过充或过放而导致锂电子电池老化、性能降低。
但是在电池充放电过程中,由于电池内部复杂的电化学反应特性及外部环境因素的影响,锂电子电池是一个高度非线性系统。锂电子电池的SOC无法直接通过仪表直接测量,只能通过电池的终端电压、电流等外部特性参数,选取准确有效的模型进行估算,这为准确估算SOC带来了很大的困难。
目前研究SOC的方法主要有安时积分法、开路电压法、神经网络法、卡尔曼滤波算法等。现有方法不足之处如下:一、安时积分法需要知道SOC初始值,同时作为开环算法,由于不确定的干扰比如温度、电流测量偏差,SOC计算过程中会出现误差累计效应;二、开环电压法只有在电池处于开路、长期静置条件下方可估算SOC,不可在线估计,而且这个静置过程一般需要几个到十几个小时;三、神经网络法需要大量实验数据来对网络进行训练;四、传统的卡尔曼滤波算法只适合应用于线性系统,因此对于高度非线性系统的锂电子电池不适用。
发明内容
本发明所要解决的技术问题在于,提供一种基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,能够实现SOC和传感器偏差的协同估计,具有收敛速度快、精度高、误差小的优点。
为解决上述技术问题,本发明提供一种基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,包括如下步骤:
S1:进行锂电子电池充放电实验并采集样本数据,包含训练数据和测试数据;
S2:确定神经网络的输入和输出变量,建立SOC的RBFNN模型;
S3:基于训练数据集对建立的RBFNN进行参数学习,获取准确的RBFNN模型;
S4:利用测试数据对建立的RBFNN进行独立精度检验;
S5:将SOC设置为内部状态,设计RBFNN-UKF,实现在初始SOC不确定的情况下对SOC的实时估计;
S6:将传感器偏差设置为扩张状态,在原有RBFNN-UKF基础上设计扩张RBFNN-UKF,实现SOC与未知传感器偏差的协同估计。
优选的,步骤S1中,采集的样本数据包括锂电子电池的电流、终端电压和SOC数据。实验用不同大小的电流对锂电子电池进行充放电,保证样本数据的覆盖性,测量数据的采样时间设置为1秒。为了获得SOC初始值,一开始将锂电子电池充电到满负荷状态,根据安时积分法计算出每时刻的SOC值。
优选的,步骤S2中,确定神经网络的输入和输出变量,建立SOC的RBFNN模型具体为:根据锂电子电池充放电实验采集的数据,将k-1时刻的电压数据、k时刻的SOC数据、k时刻的电流数据作为神经网络的输入,k时刻的电压数据作为神经网络的输出,从而建立RBF神经网络。
优选的,RBF神经网络具有三层结构——输入层、隐含层、输出层;其中,隐含层每个神经元的激活函数为径向基函数(一般为高斯函数),即:
Figure BDA0002401256110000021
其中,
Figure BDA0002401256110000022
为隐含层激活函数,X=[x1,x2,...,xn]T为网络的输入,ci=[ci1,ci2,...,cin]T为隐含层第i个神经元的中心向量,σ为隐含层第i个神经元的基宽,
Figure BDA0002401256110000023
为欧式范数,RBF神经网络输入层至隐含层间的权值为1,隐含层至输出层的权值向量及阈值由网络训练过程决定,网络输出表达为:
Figure BDA0002401256110000031
其中,F为RBFNN输入到输出的非线性函数,w0为阈值,wi=[w1,w2,...,wn]T为隐含层至输出层的权值向量,M为隐含层神经元数目。
优选的,步骤S3中,基于训练数据集对建立的RBFNN进行参数学习,获取准确的RBFNN模型具体包括如下步骤:
S31:利用已知的电流、电压和SOC训练数据对建立的RBFNN进行参数学习;
S32:根据训练好的RBFNN,确定最优参数,获取准确的RBFNN模型。
优选的,步骤S4中,利用测试数据对建立的RBFNN进行独立精度检验具体为:利用测试数据对建立的RBFNN进行独立精度检验。将电压估计值与真实电压值比较,验证所建立网络模型的准确度。
优选的,步骤S5中,将SOC设置为内部状态,设计RBFNN-UKF,实现在初始SOC不确定的情况下对SOC的实时估计具体包括如下步骤:
S51:根据式(4)设计RBFNN-UKF:
基于训练好的RBFNN模型设计UKF滤波器,将k-1时刻的电压、k时刻的SOC分别作为第一、第二状态变量、k时刻电流作为输入变量,k时刻电压作为观测输出。则系统的状态变量与观测变量定义为:
Figure BDA0002401256110000032
其中,v(k-1)、v(k)、z(k)和z(k+1)分别为k-1时刻的电压、k时刻的电压、k时刻的SOC、k+1时刻的SOC,每个时刻的SOC值通过安时积分法获得;
根据式(3)设计UKF滤波器,其状态空间模型表达为:
Figure BDA0002401256110000041
其中,uk为UKF的输入变量,即k时刻的电流,F是由训练好的RBFNN确定的网络输入到输出的非线性函数,Cn为锂电子电池的额定容量,Δt为采样时间,w(k)和ν(k)分别为过程噪声和测量噪声;
S52:将SOC设置为内部状态进行观测,通过对SOC进行反馈补偿实现在初始SOC不确定的情况下对SOC的实时估计。
优选的,步骤S51中,每个时刻的SOC值通过安时积分法获得具体为:
Figure BDA0002401256110000042
其中,z(t)和z(t0)分别为t时刻SOC和SOC初始值,Cn为锂电子电池的额定容量,ηi为库伦效率,设置为1,i(τ)为锂电子电池电流,锂电子电池充电时为负、放电时为正;
UKF中建立的模型需将式(5)离散化,由于采样时间Δt很小,可以代替式(5)中的积分,则式(5)重新表达为:
Figure BDA0002401256110000043
其中,z(k)和z(k+1)分别为k时刻、k+1时刻的SOC,i(k)为k时刻的电流,Cn为锂电子电池的额定容量,Δt为采样时间。
优选的,步骤S6中,将传感器偏差设置为扩张状态,在原有RBFNN-UKF基础上设计扩张RBFNN-UKF,实现SOC与未知传感器偏差的协同估计具体包括如下步骤:
S61:根据式(8)设计扩张RBFNN-UKF:
将电流传感器偏差设置为扩张状态,扩张进入式(3),通过在采集的电流测量值上加上一个常数,这个常数即为电流传感器偏差,则系统的状态变量与观测变量重新定义为:
Figure BDA0002401256110000051
其中,v(k-1)、v(k)、z(k)和z(k+1)分别为k-1时刻的电压、k时刻的电压、k时刻的SOC、k+1时刻的SOC,b(k)为电流传感器偏差值,由于此偏差值设置为常数,b(k+1)=b(k);
根据式(7)设计扩张UKF滤波器,实现SOC与未知传感器偏差的协同估计,其状态空间模型重新表达为:
Figure BDA0002401256110000052
其中,F是由训练好的RBFNN确定的网络输入到输出的非线性函数,Cn为锂电子电池的额定容量,Δt为采样时间,uk为输入变量,即k时刻的电流,w(k)和ν(k)分别为过程噪声和测量噪声;
S62:将电流传感器偏差设置为扩张状态进行观测,通过对传感器偏差进行反馈补偿实现SOC与未知传感器偏差的协同估计。
本发明的有益效果为:本发明将SOC设置为内部状态,将未知传感器偏差设置为扩张状态,实现SOC和传感器偏差的协同估计,具有收敛速度快、精度高、误差小的优点。
附图说明
图1为本发明具体实施方式中RBF神经网络的结构示意图。
图2为本发明具体实施方式中RBF神经网络测试效果示意图。
图3为本发明具体实施方式中基于RBF神经网络与UKF的SOC估计流程示意图。
图4(a)为本发明具体实施方式中SOC初始值为68.1%,RBFNN-UKF对SOC的估计值与真实值的拟合效果示意图。
图4(b)为本发明具体实施方式中SOC初始值为100%,RBFNN-UKF对SOC的估计值与真实值的拟合效果示意图。
图5为本发明电流传感器存在偏差下,RBFNN-UKF、扩张RBFNN-UKF对SOC的估计值与真实值的对比效果示意图。
图6为本发明电流传感器存在偏差下,扩张RBFNN-UKF对电流传感器偏差的估计值与真实值的拟合效果示意图。
具体实施方式
一种基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,包括如下步骤:
S1:进行锂电子电池充放电实验并采集样本数据,包含训练数据和测试数据;
S2:确定神经网络的输入和输出变量,建立SOC的RBFNN模型;
S3:基于训练数据集对建立的RBFNN进行参数学习,获取准确的RBFNN模型;
S4:利用测试数据对建立的RBFNN进行独立精度检验;
S5:将SOC设置为内部状态,设计RBFNN-UKF,实现在初始SOC不确定的情况下对SOC的实时估计;
S6:将传感器偏差设置为扩张状态,在原有RBFNN-UKF基础上设计扩张RBFNN-UKF,实现SOC与未知传感器偏差的协同估计。
进一步作为优选的实施方式,所述步骤S1,具体为:
实验用不同大小的电流对锂电子电池进行充放电,保证样本数据的覆盖性,样本数据包括电池的电流、终端电压和SOC数据。测量数据的采样时间设置为1秒。为了获得SOC初始值,一开始将锂电子电池充电到满负荷状态,根据安时积分法计算出每时刻的SOC值。
进一步作为优选的实施方式,所述步骤S2,具体为:
根据锂电子电池充放电实验采集的数据,将k-1时刻的电压数据、k时刻的SOC数据、k时刻的电流数据作为神经网络的输入,k时刻的电压数据作为神经网络的输出,从而建立RBF神经网络。
图1为RBF神经网络结构图。所述的RBF神经网络具有三层结构——输入层、隐含层、输出层。其中,隐含层每个神经元的激活函数为径向基函数(一般为高斯函数),即:
Figure BDA0002401256110000071
其中,
Figure BDA0002401256110000074
为隐含层激活函数,X=[x1,x2,...,xn]T为网络的输入,ci=[ci1,ci2,...,cin]T为隐含层第i个神经元的中心向量,σ为隐含层第i个神经元的基宽,
Figure BDA0002401256110000075
为欧式范数。RBF神经网络输入层至隐含层间的权值为1,隐含层至输出层的权值向量及阈值由网络训练过程决定。网络输出表达为:
Figure BDA0002401256110000072
其中,F为RBFNN输入到输出的非线性函数,w0为阈值,wi=[w1,w2,...,wn]T为隐含层至输出层的权值向量,M为隐含层神经元数目。
进一步作为优选的实施方式,所述步骤S3,具体包括:
S31:利用已知的电流、电压和SOC训练数据对建立的RBFNN进行参数学习;
S32:根据训练好的RBFNN,确定了最优的隐含层神经元数为73个、基宽为0.8326,获取准确的RBFNN模型。
进一步作为优选的实施方式,所述步骤S4,具体为:
利用测试数据对建立的RBFNN进行独立精度检验。图2将电压估计值与真实电压值比较,而网络输出电压与真实值误差很小,验证了所建立的网络模型的准确度。
进一步作为优选的实施方式,所述步骤S5,具体包括:
S51:根据式(4)设计RBFNN-UKF:
基于训练好的RBFNN模型设计UKF,将k-1时刻的电压、k时刻的SOC分别作为第一、第二状态变量、k时刻电流作为输入变量,k时刻电压作为观测输出。则系统的状态变量与观测变量定义为:
Figure BDA0002401256110000073
其中,v(k-1)、v(k)、z(k)和z(k+1)分别为k-1时刻的电压、k时刻的电压、k时刻的SOC、k+1时刻的SOC。每个时刻的SOC值通过安时积分法获得。
根据式(3)设计UKF滤波器,其状态空间模型表达为:
Figure BDA0002401256110000081
其中,uk为UKF的输入变量,即k时刻的电流。F是由训练好的RBFNN确定的网络输入到输出的非线性函数,Cn为锂电子电池的额定容量,Δt为采样时间。w(k)和ν(k)分别为过程噪声和测量噪声。
S52:将SOC设置为内部状态进行观测,通过对SOC进行反馈补偿实现在初始SOC不确定的情况下对SOC的实时估计。
所述的安时积分法获得SOC的计算方法为:
Figure BDA0002401256110000082
其中,z(t)和z(t0)分别为t时刻SOC和SOC初始值,Cn为锂电子电池的额定容量,ηi为库伦效率,设置为1。i(τ)为锂电子电池电流,锂电子电池充电时为负、放电时为正。
UKF中建立的模型需将式(5)离散化,由于采样时间Δt很小,可以代替式(5)中的积分,则式(5)重新表达为:
Figure BDA0002401256110000083
其中,z(k)和z(k+1)分别为k时刻、k+1时刻的SOC,i(k)为k时刻的电流,Cn为锂电子电池的额定容量,Δt为采样时间。
图3为基于RBF神经网络与UKF的估计SOC流程图。利用UKF滤波器估算锂电子电池SOC时,先对状态变量初始化后,算法在每一个采样周期内对电池的SOC进行预测和更新。同时,根据误差协方差的大小,卡尔曼增益会不断调节,反馈回来修正估算误差。随着时间累积,算法循环次数增加,SOC估计值不断向真实值靠近。
图4(a)、(b)分别为SOC初始值为68.1%、100%时,RBFNN-UKF对SOC的估计值与真实值的拟合效果图。从图中可以看出,在初始SOC未知的情况下,RBFNN-UKF估计的SOC在50秒内很快收敛到真实值,证明了设计的RBFNN-UKF对不同初始情况具有很好的鲁棒性。
进一步作为优选的实施方式,所述步骤S6,具体包括:
S61:根据式(8)设计扩张RBFNN-UKF:
将电流传感器偏差设置为扩张状态,扩张进入式(3)。通过在采集的电流测量值上加上一个常数,这个常数即为电流传感器偏差,设置为100mA。则系统的状态变量与观测变量重新定义为:
Figure BDA0002401256110000091
其中,v(k-1)、v(k)、z(k)和z(k+1)分别为k-1时刻的电压、k时刻的电压、k时刻的SOC、k+1时刻的SOC。b(k)为电流传感器偏差值,由于此偏差值设置为常数,b(k+1)=b(k)。
根据式(7)设计扩张UKF滤波器,实现SOC与未知传感器偏差的协同估计。其状态空间模型重新表达为:
Figure BDA0002401256110000092
其中,F是由训练好的RBFNN确定的网络输入到输出的非线性函数,Cn为锂电子电池的额定容量,Δt为采样时间,uk为输入变量,即k时刻的电流。w(k)和ν(k)分别为过程噪声和测量噪声。
S62:将电流传感器偏差设置为扩张状态进行观测,通过对传感器偏差进行反馈补偿实现SOC与未知传感器偏差的协同估计。
在电流传感器存在偏差情况下,RBFNN-UKF估计的SOC必然存在较大误差,可以通过将传感器偏差设置为扩张状态,设计扩张RBFNN-UKF解决这一难题。图5为电流传感器存在偏差下,RBFNN-UKF、扩张RBFNN-UKF对SOC的估计值与真实值的对比效果图。从图中可以看出,RBFNN-UKF的SOC估计值有着很大的误差,而扩张RBFNN-UKF能很好地跟踪SOC真实值,并且能同时快速估计出未知的传感器偏差,这一结论可以从图6看出。从而证明了所设计的扩张RBFNN-UKF在未知传感器偏差存在情况下,实现了SOC与传感器偏差的协同估计。

Claims (9)

1.基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,其特征在于,包括如下步骤:
S1:进行锂电子电池充放电实验并采集样本数据,包含训练数据和测试数据;
S2:确定神经网络的输入和输出变量,建立SOC的RBFNN模型;
S3:基于训练数据集对建立的RBFNN进行参数学习,获取准确的RBFNN模型;
S4:利用测试数据对建立的RBFNN进行独立精度检验;
S5:将SOC设置为内部状态,设计RBFNN-UKF,实现在初始SOC不确定的情况下对SOC的实时估计;
S6:将传感器偏差设置为扩张状态,在原有RBFNN-UKF基础上设计扩张RBFNN-UKF,实现SOC与未知传感器偏差的协同估计。
2.如权利要求1所述的基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,其特征在于,步骤S1中,采集的样本数据包括锂电子电池的电流、终端电压和SOC数据。
3.如权利要求1所述的基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,其特征在于,步骤S2中,确定神经网络的输入和输出变量,建立SOC的RBFNN模型具体为:根据锂电子电池充放电实验采集的数据,将k-1时刻的电压数据、k时刻的SOC数据、k时刻的电流数据作为神经网络的输入,k时刻的电压数据作为神经网络的输出,从而建立RBF神经网络。
4.如权利要求3所述的基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,其特征在于,RBF神经网络具有三层结构——输入层、隐含层、输出层;其中,隐含层每个神经元的激活函数为径向基函数,即:
Figure FDA0002401256100000011
其中,
Figure FDA0002401256100000012
为隐含层激活函数,X=[x1,x2,...,xn]T为网络的输入,ci=[ci1,ci2,...,cin]T为隐含层第i个神经元的中心向量,σ为隐含层第i个神经元的基宽,
Figure FDA0002401256100000013
为欧式范数,RBF神经网络输入层至隐含层间的权值为1,隐含层至输出层的权值向量及阈值由网络训练过程决定,网络输出表达为:
Figure FDA0002401256100000021
其中,F为RBFNN输入到输出的非线性函数,w0为阈值,wi=[w1,w2,...,wn]T为隐含层至输出层的权值向量,M为隐含层神经元数目。
5.如权利要求1所述的基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,其特征在于,步骤S3中,基于训练数据集对建立的RBFNN进行参数学习,获取准确的RBFNN模型具体包括如下步骤:
S31:利用已知的电流、电压和SOC训练数据对建立的RBFNN进行参数学习;
S32:根据训练好的RBFNN,确定最优参数,获取准确的RBFNN模型。
6.如权利要求1所述的基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,其特征在于,步骤S4中,利用测试数据对建立的RBFNN进行独立精度检验具体为:利用测试数据对建立的RBFNN进行独立精度检验,将电压估计值与真实电压值比较,验证所建立网络模型的准确度。
7.如权利要求1所述的基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,其特征在于,步骤S5中,将SOC设置为内部状态,设计RBFNN-UKF,实现在初始SOC不确定的情况下对SOC的实时估计具体包括如下步骤:
S51:根据式(4)设计RBFNN-UKF:
基于训练好的RBFNN模型设计UKF滤波器,将k-1时刻的电压、k时刻的SOC分别作为第一、第二状态变量、k时刻电流作为输入变量,k时刻电压作为观测输出,则系统的状态变量与观测变量定义为:
Figure FDA0002401256100000022
其中,v(k-1)、v(k)、z(k)和z(k+1)分别为k-1时刻的电压、k时刻的电压、k时刻的SOC、k+1时刻的SOC,每个时刻的SOC值通过安时积分法获得;
根据式(3)设计UKF滤波器,其状态空间模型表达为:
Figure FDA0002401256100000031
其中,uk为UKF的输入变量,即k时刻的电流,F是由训练好的RBFNN确定的网络输入到输出的非线性函数,Cn为锂电子电池的额定容量,Δt为采样时间,w(k)和ν(k)分别为过程噪声和测量噪声;
S52:将SOC设置为内部状态进行观测,通过对SOC进行反馈补偿实现在初始SOC不确定的情况下对SOC的实时估计。
8.如权利要求7所述的基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,其特征在于,步骤S51中,每个时刻的SOC值通过安时积分法获得具体为:
Figure FDA0002401256100000032
其中,z(t)和z(t0)分别为t时刻SOC和SOC初始值,Cn为锂电子电池的额定容量,ηi为库伦效率,设置为1,i(τ)为锂电子电池电流,锂电子电池充电时为负、放电时为正;
UKF中建立的模型需将式(5)离散化,由于采样时间Δt很小,代替式(5)中的积分,则式(5)重新表达为:
Figure FDA0002401256100000033
其中,z(k)和z(k+1)分别为k时刻、k+1时刻的SOC,i(k)为k时刻的电流,Cn为锂电子电池的额定容量,Δt为采样时间。
9.如权利要求1所述的基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,其特征在于,步骤S6中,将传感器偏差设置为扩张状态,在原有RBFNN-UKF基础上设计扩张RBFNN-UKF,实现SOC与未知传感器偏差的协同估计具体包括如下步骤:
S61:根据式(8)设计扩张RBFNN-UKF:
将电流传感器偏差设置为扩张状态,扩张进入式(3),通过在采集的电流测量值上加上一个常数,这个常数即为电流传感器偏差,则系统的状态变量与观测变量重新定义为:
Figure FDA0002401256100000041
其中,v(k-1)、v(k)、z(k)和z(k+1)分别为k-1时刻的电压、k时刻的电压、k时刻的SOC、k+1时刻的SOC,b(k)为电流传感器偏差值,由于此偏差值设置为常数,b(k+1)=b(k);
根据式(7)设计扩张UKF滤波器,实现SOC与未知传感器偏差的协同估计,其状态空间模型重新表达为:
Figure FDA0002401256100000042
其中,F是由训练好的RBFNN确定的网络输入到输出的非线性函数,Cn为锂电子电池的额定容量,Δt为采样时间,uk为输入变量,即k时刻的电流,w(k)和ν(k)分别为过程噪声和测量噪声;
S62:将电流传感器偏差设置为扩张状态进行观测,通过对传感器偏差进行反馈补偿实现SOC与未知传感器偏差的协同估计。
CN202010147425.0A 2020-03-05 2020-03-05 基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法 Active CN111208438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010147425.0A CN111208438B (zh) 2020-03-05 2020-03-05 基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010147425.0A CN111208438B (zh) 2020-03-05 2020-03-05 基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法

Publications (2)

Publication Number Publication Date
CN111208438A true CN111208438A (zh) 2020-05-29
CN111208438B CN111208438B (zh) 2022-03-08

Family

ID=70784365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010147425.0A Active CN111208438B (zh) 2020-03-05 2020-03-05 基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法

Country Status (1)

Country Link
CN (1) CN111208438B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671381A (zh) * 2021-08-30 2021-11-19 武汉理工大学 一种基于时间卷积网络的锂离子动力电池估算方法
CN114280491A (zh) * 2021-12-23 2022-04-05 中山大学 一种基于主动学习的退役电池剩余容量估计方法
WO2022077180A1 (zh) * 2020-10-12 2022-04-21 西门子(中国)有限公司 确定无味卡尔曼滤波器的模型参数的方法、装置和系统
CN115629314A (zh) * 2022-10-14 2023-01-20 山东师范大学 基于改进Jaya的电池参数与状态联合估计方法及系统
CN116359742A (zh) * 2023-03-28 2023-06-30 国网江苏省电力有限公司连云港供电分公司 基于深度学习组合扩展卡尔曼滤波的储能电池荷电状态在线估计方法及系统
CN117151201A (zh) * 2023-08-24 2023-12-01 广芯微电子(广州)股份有限公司 一种用于神经网络训练的电池组样本组织方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057468A1 (en) * 2004-11-29 2006-06-01 Lg Chem, Ltd. Method and system for battery state and parameter estimation
CN101351720A (zh) * 2006-01-12 2009-01-21 古河电气工业株式会社 电池放电能力判定方法、电池放电能力判定装置和电源系统
JP2014182072A (ja) * 2013-03-21 2014-09-29 Primearth Ev Energy Co Ltd 二次電池の状態推定装置及び二次電池の状態推定方法
CN104535934A (zh) * 2014-12-31 2015-04-22 桂林电子科技大学 在线前馈补偿的动力电池电荷状态估计方法与系统
FR3019308A1 (fr) * 2014-03-26 2015-10-02 Renault Sas Procede d'estimation d'une erreur de mesure de l'intensite du courant traversant une batterie d'accumulateurs
US20160109527A1 (en) * 2014-10-15 2016-04-21 Volkswagen Aktiengesellschaft Method and apparatus for determining a change in resistance of an energy storage device and vehicle
CN105637376A (zh) * 2013-06-18 2016-06-01 威拓股份有限公司 监测存储在电池内的电荷
CN105974327A (zh) * 2016-06-12 2016-09-28 广州市香港科大霍英东研究院 一种基于神经网络和ukf的锂电池组soc预测方法
CN109061506A (zh) * 2018-08-29 2018-12-21 河海大学常州校区 基于神经网络优化ekf的锂离子动力电池soc估计方法
CN109991549A (zh) * 2019-04-24 2019-07-09 东南大学 锂离子电池荷电状态及内阻的联合预测方法
CN110376886A (zh) * 2019-07-09 2019-10-25 东南大学 一种基于扩张状态卡尔曼滤波器的模型预测控制算法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057468A1 (en) * 2004-11-29 2006-06-01 Lg Chem, Ltd. Method and system for battery state and parameter estimation
CN101351720A (zh) * 2006-01-12 2009-01-21 古河电气工业株式会社 电池放电能力判定方法、电池放电能力判定装置和电源系统
JP2014182072A (ja) * 2013-03-21 2014-09-29 Primearth Ev Energy Co Ltd 二次電池の状態推定装置及び二次電池の状態推定方法
CN105637376A (zh) * 2013-06-18 2016-06-01 威拓股份有限公司 监测存储在电池内的电荷
FR3019308A1 (fr) * 2014-03-26 2015-10-02 Renault Sas Procede d'estimation d'une erreur de mesure de l'intensite du courant traversant une batterie d'accumulateurs
US20160109527A1 (en) * 2014-10-15 2016-04-21 Volkswagen Aktiengesellschaft Method and apparatus for determining a change in resistance of an energy storage device and vehicle
CN104535934A (zh) * 2014-12-31 2015-04-22 桂林电子科技大学 在线前馈补偿的动力电池电荷状态估计方法与系统
CN105974327A (zh) * 2016-06-12 2016-09-28 广州市香港科大霍英东研究院 一种基于神经网络和ukf的锂电池组soc预测方法
CN109061506A (zh) * 2018-08-29 2018-12-21 河海大学常州校区 基于神经网络优化ekf的锂离子动力电池soc估计方法
CN109991549A (zh) * 2019-04-24 2019-07-09 东南大学 锂离子电池荷电状态及内阻的联合预测方法
CN110376886A (zh) * 2019-07-09 2019-10-25 东南大学 一种基于扩张状态卡尔曼滤波器的模型预测控制算法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOHAMMAD CHARKHGARD,MOHAMMAD FARROKHI: "《State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF》", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 *
SHI ZHAO ET AL: "《Observability Analysis and State Estimation of Lithium-Ion Batteries in the Presence of Sensor Biases》", 《IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022077180A1 (zh) * 2020-10-12 2022-04-21 西门子(中国)有限公司 确定无味卡尔曼滤波器的模型参数的方法、装置和系统
CN113671381A (zh) * 2021-08-30 2021-11-19 武汉理工大学 一种基于时间卷积网络的锂离子动力电池估算方法
CN114280491A (zh) * 2021-12-23 2022-04-05 中山大学 一种基于主动学习的退役电池剩余容量估计方法
CN114280491B (zh) * 2021-12-23 2024-01-05 中山大学 一种基于主动学习的退役电池剩余容量估计方法
CN115629314A (zh) * 2022-10-14 2023-01-20 山东师范大学 基于改进Jaya的电池参数与状态联合估计方法及系统
CN115629314B (zh) * 2022-10-14 2024-05-10 山东师范大学 基于改进Jaya的电池参数与状态联合估计方法及系统
CN116359742A (zh) * 2023-03-28 2023-06-30 国网江苏省电力有限公司连云港供电分公司 基于深度学习组合扩展卡尔曼滤波的储能电池荷电状态在线估计方法及系统
CN117151201A (zh) * 2023-08-24 2023-12-01 广芯微电子(广州)股份有限公司 一种用于神经网络训练的电池组样本组织方法及装置
CN117151201B (zh) * 2023-08-24 2024-03-15 广芯微电子(广州)股份有限公司 一种用于神经网络训练的电池组样本组织方法及装置

Also Published As

Publication number Publication date
CN111208438B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN111208438B (zh) 基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法
Eddahech et al. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks
CN112615075B (zh) 电池快速充电方法及计算机设备
Wang et al. Online state of charge estimation for the aerial lithium-ion battery packs based on the improved extended Kalman filter method
Zhang et al. A multi time-scale framework for state-of-charge and capacity estimation of lithium-ion battery under optimal operating temperature range
CN108872869B (zh) 一种基于bp神经网络的锂离子电池劣化分类方法
CN109358293B (zh) 基于ipf的锂离子电池soc估计方法
CN111856282B (zh) 基于改进遗传无迹卡尔曼滤波的车载锂电池状态估计方法
Li et al. A novel state estimation approach based on adaptive unscented Kalman filter for electric vehicles
CN113238157B (zh) 一种通过对电动汽车退役电池进行ai检测来筛选的方法
CN109752660B (zh) 一种无电流传感器的电池荷电状态估计方法
Qiu et al. Battery hysteresis modeling for state of charge estimation based on Extended Kalman Filter
Tan et al. Joint estimation of ternary lithium-ion battery state of charge and state of power based on dual polarization model
CN115494400B (zh) 一种基于集成学习的锂电池析锂状态在线监控方法
CN112946481A (zh) 基于联合h∞滤波的滑模观测器锂离子电池soc估计方法及电池管理系统
Li et al. State-of-charge estimation for lithium-ion battery using a combined method
Trinandana et al. Real time state of charge estimation for lead acid battery using artificial neural network
Amir et al. A novel SOC estimation method for lithium ion battery based on improved adaptive PI observer
CN114720881A (zh) 一种基于改进初值带遗忘因子递推最小二乘法的锂电池参数辨识方法
Jiani et al. Li-ion battery SOC estimation using EKF based on a model proposed by extreme learning machine
Zahid et al. Sequential Monte Carlo based technique for SOC estimation of LiFePO4 battery pack for electric vehicles
Liu et al. RBF network-aided adaptive unscented kalman filter for lithium-ion battery SOC estimation in electric vehicles
Liu et al. An Accurate State of Health Estimation for Retired Lithium-ion Batteries Based on Electrochemical Impedance Spectroscopy
Han et al. State of Charge estimation of Li-ion battery in EVs based on second-order sliding mode observer
CN115113053A (zh) 一种基于高自适应性滤波算法的锂电池soc估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Sun Li

Inventor after: Sun Wen

Inventor after: Su Zhigang

Inventor before: Sun Wen

Inventor before: Sun Li

Inventor before: Su Zhigang