CN111206236B - 一种Mg掺杂GaN纳米线结构的制备方法 - Google Patents

一种Mg掺杂GaN纳米线结构的制备方法 Download PDF

Info

Publication number
CN111206236B
CN111206236B CN202010024893.9A CN202010024893A CN111206236B CN 111206236 B CN111206236 B CN 111206236B CN 202010024893 A CN202010024893 A CN 202010024893A CN 111206236 B CN111206236 B CN 111206236B
Authority
CN
China
Prior art keywords
nanowire
gan nanowire
gan
powder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010024893.9A
Other languages
English (en)
Other versions
CN111206236A (zh
Inventor
王如志
杨孟骐
梁琦
严辉
张铭
王波
王长昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202010024893.9A priority Critical patent/CN111206236B/zh
Publication of CN111206236A publication Critical patent/CN111206236A/zh
Application granted granted Critical
Publication of CN111206236B publication Critical patent/CN111206236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种Mg掺杂GaN纳米线结构的制备方法。本发明提出采用元素掺杂的方法实现了GaN纳米线制备及其结构与形貌的调控。本发明采用MPCVD系统,以N2为N源,Ga2O3作为Ga源,MgO作为掺杂源,选择合适的还原剂防止氧化,选择合适工艺参数,通过调控Mg:Ga原子比例,可实现所制备的GaN纳米线截面在三方、四方及六方形结构进行调控。通过Mg掺杂调控实现了在常规GaN纳米线制备方法难以获得的四方形GaN纳米线,所制备的纳米线具有良好的结晶质量,在新型的GaN纳米线光电器件上具有良好的应用前景。

Description

一种Mg掺杂GaN纳米线结构的制备方法
技术领域
本发明涉及一种Mg掺杂GaN纳米线结构的制备方法,属于纳米材料的制备领域。
背景技术
氮化镓(GaN)是研制微电子器件、光电子器件的典型第三代半导体材料。它具有宽禁带,高的热导率,高化学稳定性等优异的物理和化学性质,其研究与应用是目前全球半导体研究的前沿和热点。GaN为六方纤锌矿结构,目前已经制备出截面形貌为三角形或六边形结构的GaN纳米线,而其他形貌纳米线比较难进行调控。目前对于GaN纳米线形貌调控的手段多为调节衬底种类、催化剂种类等,而缺少通过掺杂实现对GaN纳米线形貌进行调控的相关研究。
Mg掺杂的GaN材料主要使用分子束外延(MBE)和金属有机化学气相沉积(MOCVD)方法制备,但这两种方法大多使用有毒的NH3作为N源,金属有机气体作为Ga源和Mg源,对环境危害大,制备成本昂贵,所制备出的纳米线形貌多为六边形,缺少对其形貌调控研究;采用简单CVD设备制备Mg掺杂GaN纳米线,纳米线形貌均一性差,并且较难控制纳米线生长方向,不易制备高质量Mg掺杂GaN纳米线。
因此,探索一种绿色高效、形貌可控、重复性好的Mg掺杂GaN纳米线制备工艺变得尤为重要。
发明内容
本发明是的目的是提供一种Mg掺杂GaN纳米线结构的制备方法,其特征在于,包括以下步骤:
(1)、按照MgO、Ga2O3及活性碳粉末摩尔份数比:MgO 0.2-2份、Ga2O31份、活性碳粉末12份混合形成均匀粉体;
(2)将以上粉体放入球磨机进行球磨,球磨机转速200-500rpm,球磨时间1小时以上,最终产物即为制备GaN纳米线前驱粉体;
(3)将以上粉体放置于MPCVD系统的坩埚中,将预先制备表面溅射10-25nm的Au催化剂的Si衬底置于坩埚正上方,并扣上石英罩,通入10-40sccm流速的N2,保持腔体压力为10Torr,微波功率300W,在850-1100℃条件下生长20-60min,衬底表面的黄色物质即为所获得的GaN纳米线产物。
进一步,通过改变前驱粉体中MgO和Ga2O3摩尔比,即可实现Mg掺杂的同时改变所制备的GaN纳米线截面形貌,MgO:Ga2O3为0.2:1-0.5:1时纳米线截面形貌为三方形(MgO:Ga2O3为0.5:1的临界点附近,纳米线截面形貌为三方形向四方形过渡),MgO:Ga2O3为0.5:1-1.5:1时纳米线截面形貌为四方形(MgO:Ga2O3为1.5:1的临界点附近,纳米线截面形貌为四方形向六方形过渡),MgO:Ga2O3为1.5:1-2:1时纳米线截面形貌为六方形。
进一步,坩埚材质为石墨;坩埚内径宽于衬底20mm以上,加入前驱粉体后,粉体距离衬底5mm-20mm。
本发明有以下优点和效益:
(1)本发明采用MPCVD设备制备GaN纳米线其并采用Mg掺杂调控结构形貌,相较未掺杂GaN纳米线,Mg掺杂纳米线直径由80nm增长至300nm以上,纳米线截面在三方、四方及六方形之间进行调控。
(2)进一步,本发明采用N2取代有毒的NH3作为反应的氮源,采用MgO和Ga2O3作为Mg源和Ga源,摒弃了有机金属气源对于环境的危害。
(3)进一步,本发明采用微波增强等离子体设备将N2作为唯一气体源,而不会因为有H离子的引入而降低了Mg掺杂GaN纳米线的性能。
(4)进一步,本发明制备Mg掺杂GaN纳米线,通过调控MgO的摩尔比例,可以对纳米线表面形貌进行改变,Mg元素的引入使纳米线表面出现层状锯齿形结构,有利于提升场发射,电催化等性能。
(5)进一步,本发明采用石墨作为坩埚材料,提高升温速率的同时也提高了对于前驱粉体的还原效率。
附图说明
图1、实施例1制备GaN纳米线的SEM图谱。
图2、实施例2制备Mg掺杂GaN纳米线的SEM图谱。
图3、实施例3制备Mg掺杂GaN纳米线的SEM图谱。
图4、实施例4制备Mg掺杂GaN纳米线的SEM图谱。
图5、实施例1和实施例3制备GaN纳米线的XRD图谱。
图6、实施例3制备Mg掺杂GaN纳米线的EDS图谱。
图7、实施例3制备Mg掺杂GaN纳米线的HRTEM图谱和SAED图谱。
具体实施方式:
下面通过实施例对本发明进行进一步说明,本发明绝非局限于所述实施例。
实施例1
MgO、Ga2O3和活性碳粉末摩尔比例0.2:1:12的粉末混合均匀并放入球磨机进行300rpm球磨2小时,称取0.25g放入石墨舟中,将预先制备表面溅射10nm的Au催化剂的Si衬底放置在石墨舟顶部正上方,距离下方粉末约为5mm。然后把石墨舟转移到MPCVD的加热台的中心,将一枚上方开口石英罩扣置在石墨舟上方;通入13sccm流速的N2,保持腔体压力为10Torr,衬底加热温度为875℃,微波功率300W,在等离子条件进行GaN线生长,反应时间30min得到纳米线。
所制备GaN扫描电镜图谱如图1所示,纳米线直径约为60-100nm,长度20-30μm,形貌为细长的三角锥状纳米线,纳米线表面光滑,没有出现弯曲扭折。图5为GaN纳米线的XRD图谱,可以观察到纳米线结晶性较为良好,在32.3°,34.5°和36.8°的GaN特征峰比较明显。
实施例2
MgO、Ga2O3和活性碳粉末摩尔比例0.5:1:12的粉末加混合均匀并放入球磨机进行300rpm球磨2小时,称取0.25g放入石墨舟中,将预先制备表面溅射10nm的Au催化剂的Si衬底放置在石墨舟顶部正上方,距离下方粉末约为5mm。然后把石墨舟转移到MPCVD的加热台的中心,将一枚上方开口石英罩扣置在石墨舟上方;通入13sccm流速的N2,保持腔体压力为10Torr,衬底加热温度为875℃,微波功率300W,在等离子条件进行GaN线生长,反应时间30min得到纳米线。
所制备GaN扫描电镜图谱如图2所示,纳米线直径约为300-350nm,长度20-30μm,纳米线形貌延孪晶界分为两侧,一侧为三棱柱状结构,另一侧为三角形阶梯状生长结构,纳米线表面有层错状边缘,但其顶端为三角形金字塔结构,纳米线截面形貌由三角形向四边形转变。
实施例3
MgO、Ga2O3和活性碳粉末摩尔比例1:1:12的粉末混合均匀并放入球磨机进行300rpm球磨2小时,称取0.25g放入石墨舟中,将预先制备表面溅射10nm的Au催化剂的Si衬底放置在石墨舟顶部正上方,距离下方粉末约为5mm。然后把石墨舟转移到MPCVD的加热台的中心,将一枚上方开口石英罩扣置在石墨舟上方;通入13sccm流速的N2,保持腔体压力为10Torr,衬底加热温度为875℃,微波功率300W,在等离子条件进行GaN线生长,反应时间30min得到纳米线。
所制备GaN扫描电镜图谱如图3所示,纳米线直径约为350-400nm,长度20-30μm,纳米线形貌为四边形堆叠结构,纳米线表面层错状边缘比较均一,其顶端为四边形金字塔结构,纳米线保持笔直生长。图5为Mg掺杂GaN纳米线的XRD图谱,可以观察到纳米线结晶性较为良好,在32.3°,34.5°和36.8°的GaN特征峰比较明显,但其峰值强度略低于实施例1样品。图6为纳米线EDS图谱,Mg原子与Ga原子比约为5.91:94.09,表明有Mg元素掺杂进入GaN纳米线中。图7为纳米线TEM图谱,与生长方向垂直方向晶面间距为0.258nm,近似于GaN的(002)方向晶面间距,通过SAED图可知,其衍射光斑夹角61.4°,生长方向为<0-110>方向,而衍射光斑排列清晰均匀表面纳米线有较好的结晶性。
实施例4
MgO、Ga2O3和活性碳粉末摩尔比例2:1:12的粉末混合均匀并放入球磨机进行300rpm球磨2小时,称取0.25g放入石墨舟中,将预先制备表面溅射10nm的Au催化剂的Si衬底放置在石墨舟顶部正上方,距离下方粉末约为5mm。然后把石墨舟转移到MPCVD的加热台的中心,将一枚上方开口石英罩扣置在石墨舟上方;通入40sccm流速的N2,保持腔体压力为10Torr,衬底加热温度为900℃,微波功率300W,在等离子条件进行GaN线生长,反应时间50min得到纳米线。
所制备GaN扫描电镜图谱如图4所示,纳米线直径约为1300-1400nm,长度30-40μm,纳米线截面形貌为六方结构,纳米线表面层错状边缘不均一。

Claims (2)

1.一种Mg 掺杂GaN 纳米线结构的制备方法,其特征在于,包括以下步骤:
(1)、按照MgO、Ga2O3及活性碳粉末摩尔份数比:MgO 1 份、Ga2O3 1份、活性碳粉末12 份混合形成均匀粉体;
(2)将以上粉体放入球磨机进行球磨,球磨机转速200-500rpm,球磨时间1 小时以上,最终产物即为制备GaN 纳米线前驱粉体;
(3)将GaN 纳米线前驱粉体放置于MPCVD 系统的坩埚中,将预先制备表面溅射厚度为10-25nm 的Au 催化剂的Si 衬底置于坩埚正上方,并扣上石英罩,通入10-40sccm 流速的N2,保持腔体压力为10Torr,微波功率300W,在850-1100℃条件下生长20-60min,衬底表面的黄色物质即为纳米线截面形貌为四方形的GaN纳米线产物,纳米线直径为350-400nm,长度20-30μm。
2.根据权利要求1 所述的制备方法,其特征在于:步骤(3)中,坩埚材质为石墨;坩埚内径宽于衬底20mm 以上,加入GaN 纳米线前驱粉体后,GaN纳米线前驱粉体距离衬底5mm-20mm。
CN202010024893.9A 2020-01-10 2020-01-10 一种Mg掺杂GaN纳米线结构的制备方法 Active CN111206236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010024893.9A CN111206236B (zh) 2020-01-10 2020-01-10 一种Mg掺杂GaN纳米线结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010024893.9A CN111206236B (zh) 2020-01-10 2020-01-10 一种Mg掺杂GaN纳米线结构的制备方法

Publications (2)

Publication Number Publication Date
CN111206236A CN111206236A (zh) 2020-05-29
CN111206236B true CN111206236B (zh) 2022-03-15

Family

ID=70786059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010024893.9A Active CN111206236B (zh) 2020-01-10 2020-01-10 一种Mg掺杂GaN纳米线结构的制备方法

Country Status (1)

Country Link
CN (1) CN111206236B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113903932B (zh) * 2021-08-27 2024-02-06 北京工业大学 一种三维碳结构负载铂催化剂及其制备方法
CN113764688B (zh) * 2021-08-27 2024-02-06 北京工业大学 一种三维碳结构负载GaN催化剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699863A (zh) * 2017-09-19 2018-02-16 北京工业大学 一种MPCVD制备GaN纳米线的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699863A (zh) * 2017-09-19 2018-02-16 北京工业大学 一种MPCVD制备GaN纳米线的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Gallium nitride nanowires doped with magnesium;Dongdong Zhang,et al.;《Materials Letters》;20090122;第63卷;第978-981页 *
Mg掺杂GaN纳米线的结构及其特性;薛成山 等;《物理化学学报》;20090131;第25卷(第1期);第113页 *
共溅法Mg掺杂氮化镓纳米结构的制备与研究;张冬冬;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20091115(第11期);第49页 *

Also Published As

Publication number Publication date
CN111206236A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
Yu et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition
Choi et al. Growth and modulation of silicon carbide nanowires
CN111206236B (zh) 一种Mg掺杂GaN纳米线结构的制备方法
Hong et al. Shape‐Controlled Nanoarchitectures Using Nanowalls
CN109336069B (zh) 一种二碲化钼纳米线材料的制备及二碲化钼纳米线材料
CN109056057B (zh) 一种大尺寸单晶氧化镓纳米片的制备方法
CN104952989B (zh) 外延结构
Zheng et al. All-inorganic dual-phase halide perovskite nanorings
Hong et al. Position‐Controlled Selective Growth of ZnO Nanorods on Si Substrates Using Facet‐Controlled GaN Micropatterns
CN1248957C (zh) 氮化铝一维纳米结构阵列的制备方法
Cimalla et al. Growth of AlN nanowires by metal organic chemical vapour deposition
WO2006049449A1 (en) Silicon nitride layer for light emitting device, light emitting device using the same, and method of forming silicon nitride layer for light emitting device
CN107829077A (zh) 一种利用ZnO外延生长制备SnO2(ZnO:Sn)m超晶格纳米线的方法
Chong et al. Radial growth of slanting-columnar nanocrystalline Si on Si nanowires
CN111470485B (zh) 一种磷化金纳米片及其可控制备方法与应用
Park et al. Vertically Well‐Aligned ZnO Nanowires on c‐Al2O3 and GaN Substrates by Au Catalyst
CN114197054B (zh) 一种高阶超晶格的合成及其应用
CN112661123B (zh) 一种双层带状氮化硼分级结构的制备方法及产品
Chen et al. Morphology-controlled synthesis and structural characterization of ternary Al x Ga 1− x N nanostructures by chemical vapor deposition
Shin et al. A homojunction of single-crystalline β-Ga2O3 nanowires and nanocrystals
CN107500277B (zh) 石墨烯边界调控方法
Li et al. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays
Deepak et al. Single crystal GaN nanowires
Li et al. Regular arrays of GaN nanorods
US9994971B2 (en) Method for fabricating carbon-based composite material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant