CN111203253A - 一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法 - Google Patents

一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法 Download PDF

Info

Publication number
CN111203253A
CN111203253A CN202010022269.5A CN202010022269A CN111203253A CN 111203253 A CN111203253 A CN 111203253A CN 202010022269 A CN202010022269 A CN 202010022269A CN 111203253 A CN111203253 A CN 111203253A
Authority
CN
China
Prior art keywords
nitrogen
doped carbon
heterostructure
coated spherical
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010022269.5A
Other languages
English (en)
Inventor
韩锡光
袁玉胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202010022269.5A priority Critical patent/CN111203253A/zh
Publication of CN111203253A publication Critical patent/CN111203253A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法,通过分步法,首先通过水热法合成镍钛与异烟酸配位形成前驱物,原位高温煅烧制备NiO多孔球状材料,经氢气气氛还原得到多孔Ni单质多孔微球,最后原位溶液置换得到氮掺杂碳包覆的球状Ni/Pd异质结构复合材料。本发明的方法简单易行,通过水热合成法、高温煅烧、原位置换反应得到一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料;所制备的氮掺杂碳包覆的球状Ni/Pd异质结构材料属于一种具有氮掺杂碳包覆3D构型金属纳米颗粒的催化剂,相对于单纯的金属纳米颗粒催化剂有着更好的活性,稳定性和回收率,可作为新的催化材料,具有较好的应用前景。

Description

一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成 方法
技术领域
本发明涉及纳米材料的合成,具体涉及一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法。
背景技术
金属纳米颗粒的催化剂由于具有高比例的表面活性原子,在多相催化中表现出很高的活性,成为目前研究的关键。对于如何提高金属纳米颗粒基催化剂的活性,目前研究可通过构建双金属复合物来提高单金属纳米颗粒催化活性的能力,该双金属复合物可通过电子结构调整在两种组合物之间提供协同效应.特别是当过渡金属(如Fe,Co和Ni)与贵金属纳米颗粒结合使用,可以降低成本并增强催化活性,使其成为更具吸引力的催化剂,同时氮掺杂碳的存在可以对反应基体的吸附,可进一步促进了催化过程,提高催化活性。
此外,具有特定形貌的纳米材料也可以提高其表面活性位点的裸露比例,例如构建由金属纳米粒子组装并具有特定形貌的三维(3D)介孔结构,此结构既可将大部分表面原子裸露在材料外部,其反应分子可以充分于表面进行接触,同时避免金属纳米粒子的聚集。此外,所构建的3D结构具有较大的尺寸分布,可以轻松地从非均相催化的反应溶液中分离出来。最重要的是,通过构建由金属纳米颗粒组装而成的3D介孔结构作为催化剂,可以很好地平衡活性,稳定性和回收率之间的关系。
因此设计一种具有氮掺杂碳包覆的3D结构金属纳米颗粒的催化剂是一项有意义的工作,但仍然是存在巨大的挑战。
发明内容
本发明的目的是提供一种简单易行的氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法,通过分步法,首先通过水热法合成镍钛与异烟酸配位形成前驱物,原位高温煅烧制备NiO多孔球状材料,经氢气气氛还原得到多孔Ni单质多孔微球,最后原位溶液置换得到氮掺杂碳包覆的球状Ni/Pd异质结构复合材料。
具体而言,本发明提供了一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法,包括以下步骤:
S1:将六水合硝酸镍和异烟酸溶解在N,N-二甲基甲酰胺、无水乙醇和去离子水的混合溶液中,再将混合溶液转移至反应釜中,加热一段时间,离心收集产物,清洗,烘干得Ni与异烟酸配位前驱物;
S2:将步骤S1中值得的前驱物在保护气氛中高温煅烧,合成NiO微球;
S3:将步骤S2制备的NiO微球在H2/Ar气氛中高温煅烧,合成Ni单质微球;
S4:将获得的Ni单质微球颗粒和四氯钯酸钠(II)溶解在去离子水中得分散体,然后将分散体超声处理一段时间后置于烤箱中加热一段时间,离心收集产物,洗涤,干燥,得氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料。
进一步的,所述步骤S1中,N,N-二甲基甲酰胺、无水乙醇和去离子水的体积比为9:5:1。
进一步的,所述步骤S1中,所述反应釜为聚四氟乙烯高压反应釜,加热温度为150℃,加热时间为6h。
进一步的,所述步骤S2中,所述保护气氛为氩气氛围,煅烧温度为450℃,升温速率为2℃·min-1,煅烧时间为2h。
进一步的,所述步骤S3中,H2/Ar气氛中,H2:的浓度为10%,煅烧温度为400℃,升温速率为2℃·min-1
进一步的,所述步骤S4具体包括,将获得的Ni单质微球颗粒和四氯钯酸钠(II)溶解在去离子水中得分散体,然后将分散体超声处理一段时间后置于烤箱中于60℃下反应3小时,离心收集产物,去离子水和乙醇洗涤几次,在60℃下干燥过夜,得氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料。
本发明还提供了由上述合成方法制备的氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料。
与现有技术相比,本发明的有益技术效果:
本发明的方法简单易行,通过水热合成法、高温煅烧、原位置换反应得到一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料;所制备的氮掺杂碳包覆的球状Ni/Pd异质结构材料属于一种具有氮掺杂碳包覆3D构型金属纳米颗粒的催化剂,相对于单纯的金属纳米颗粒催化剂有着更好的活性,稳定性和回收率,可作为新的催化材料,具有较好的应用前景。
附图说明
图1是本发明实施例1所制备Ni与异烟酸配位前驱物的扫描电镜图(a)和Ni与异烟酸配位前驱物的X射线粉末衍射图(b);
图2是本发明实施例1所制备NiO微球的扫描电镜图(a)和NiO微球的X射线粉末衍射图(b);
图3是本发明实施例1所制备Ni单质的扫描电镜图(a)和Ni单质的X射线粉末衍射图(b);
图4是本发明实施例1所制备Ni/Pd异质结构的扫描电镜图(a)和Ni/Pd异质结构的X射线粉末衍射图(b);
图5本发明实施例1所制备的Ni/Pd异质结构的透射图(a-b);
图6本发明实施例1所制备的Ni/Pd异质结构的元素分布图。
具体实施方式:
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
第一步:合成镍与异烟酸配位前驱物。
取0.0290g六水合硝酸镍和0.0123g的异烟酸溶解在N,N-二甲基甲酰胺(9ml)、无水乙醇(5ml)、去离子水(1mL|)的混合溶液中,将上述混合溶液转移至聚四氟乙烯高压应釜中,加热至150℃,反应时间6h。反应结束后,通过离心收集产物,用无水乙醇清洗产物数次,置于干燥箱中烘干即可得到Ni与异烟酸配位前驱物(图1)。
第二步:合成NiO微球
取球状镍与异烟酸配合物在氩气氛围保护下将其进行高温煅烧,煅烧温度为450℃,2℃·min-1的加热速率下煅烧2h,合成NiO微球(图2)。
第三步:合成Ni单质微球
将第二步合成的NiO微球在2℃·min-1的H2/Ar(H2:10%)气氛中在400℃下煅烧,合成Ni单质微球(图4)。
第四步:合成Ni/Pd异质结构
将获得的Ni单质微球颗粒(0.0150g)和四氯钯酸钠(II)(0.0075g)溶解在去离子水(5ml)中。然后将分散体超声处理10分钟。在烤箱中于60℃下反应3小时后,通过离心收集产物,并用去离子水和乙醇洗涤几次,然后在60℃下干燥过夜,合成氮掺杂碳包覆的球状Ni/Pd异质结构材料(图4-图6)。

Claims (7)

1.一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法,其特征在于,包括以下步骤:
S1:将六水合硝酸镍和异烟酸溶解在N,N-二甲基甲酰胺、无水乙醇和去离子水的混合溶液中,再将混合溶液转移至反应釜中,加热一段时间,离心收集产物,清洗,烘干得Ni与异烟酸配位前驱物;
S2:将步骤S1中值得的前驱物在保护气氛中高温煅烧,合成NiO微球;
S3:将步骤S2制备的NiO微球在H2/Ar气氛中高温煅烧,合成Ni单质微球;
S4:将获得的Ni单质微球颗粒和四氯钯酸钠(II)溶解在去离子水中得分散体,然后将分散体超声处理一段时间后置于烤箱中加热一段时间,离心收集产物,洗涤,干燥,得氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料。
2.根据权利要求1所述的一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法,其特征在于,所述步骤S1中,N,N-二甲基甲酰胺、无水乙醇和去离子水的体积比为9:5:1。
3.根据权利要求1所述的一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法,其特征在于,所述步骤S1中,所述反应釜为聚四氟乙烯高压反应釜,加热温度为150℃,加热时间为6h。
4.根据权利要求1所述的一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法,其特征在于,所述步骤S2中,所述保护气氛为氩气氛围,煅烧温度为450℃,升温速率为2℃·min-1,煅烧时间为2h。
5.根据权利要求1所述的一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法,其特征在于,所述步骤S3中,H2/Ar气氛中,H2:的浓度为10%,煅烧温度为400℃,升温速率为2℃·min-1
6.根据权利要求1所述的一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法,其特征在于,所述步骤S4具体包括,将获得的Ni单质微球颗粒和四氯钯酸钠(II)溶解在去离子水中得分散体,然后将分散体超声处理一段时间后置于烤箱中于60℃下反应3小时,离心收集产物,去离子水和乙醇洗涤几次,在60℃下干燥过夜,得氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料。
7.由上述任一权利要求所述合成方法制备的氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料。
CN202010022269.5A 2020-01-09 2020-01-09 一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法 Pending CN111203253A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010022269.5A CN111203253A (zh) 2020-01-09 2020-01-09 一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010022269.5A CN111203253A (zh) 2020-01-09 2020-01-09 一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法

Publications (1)

Publication Number Publication Date
CN111203253A true CN111203253A (zh) 2020-05-29

Family

ID=70783355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010022269.5A Pending CN111203253A (zh) 2020-01-09 2020-01-09 一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法

Country Status (1)

Country Link
CN (1) CN111203253A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680371A (zh) * 2021-09-10 2021-11-23 润泰化学(泰兴)有限公司 一种用于邻苯二甲酸二甲酯合成1,2-环己烷二甲酸二甲酯双金属催化剂应用及制备方法
CN114849711A (zh) * 2022-04-27 2022-08-05 苏州大学 一种金属纳米催化剂、其制备方法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999815A (zh) * 2019-04-15 2019-07-12 江苏师范大学 一种多孔片组装的三维NiO多孔球及其合成方法
CN109999883A (zh) * 2019-04-26 2019-07-12 陕西科技大学 一种氮掺杂碳负载单原子催化剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999815A (zh) * 2019-04-15 2019-07-12 江苏师范大学 一种多孔片组装的三维NiO多孔球及其合成方法
CN109999883A (zh) * 2019-04-26 2019-07-12 陕西科技大学 一种氮掺杂碳负载单原子催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
XUELIANG CUI等: "Highly efficient and recyclable Ni MOF-derived N-doped magneticmesoporous carbon-supported palladium catalysts for thehydrodechlorination of chlorophenols", 《JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL》 *
XUELIANG CUI等: "Pd-doped Ni nanoparticle-modified N-doped carbon nanocatalyst with high Pd atom utilization for the transfer hydrogenation of nitroarenes", 《GREEN CHEM.》 *
XUPING SUN: "Ni foam-supported NiCoP nanosheets as bifunctional electrocatalysts for efficient overall water splitting", 《CHINESE JOURNAL OF CATALYSIS》 *
王嘉 等: "氮掺杂碳包覆金属催化剂的制备及其在多相催化反应中的应用", 《中国科学:化学》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680371A (zh) * 2021-09-10 2021-11-23 润泰化学(泰兴)有限公司 一种用于邻苯二甲酸二甲酯合成1,2-环己烷二甲酸二甲酯双金属催化剂应用及制备方法
CN114849711A (zh) * 2022-04-27 2022-08-05 苏州大学 一种金属纳米催化剂、其制备方法及应用
CN114849711B (zh) * 2022-04-27 2023-08-11 苏州大学 一种金属纳米催化剂、其制备方法及应用

Similar Documents

Publication Publication Date Title
Ma et al. Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review
Wang et al. Recent developments in the use of single-atom catalysts for water splitting
Li et al. Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (M= Co, Ni) nanoflowers
CN109908904A (zh) 一种过渡金属单原子催化剂及其制备方法和应用
Dou et al. Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@ NPC as high-efficiency catalyst for NaBH4 hydrolysis
Du et al. Co-based MOF derived metal catalysts: from nano-level to atom-level
Li et al. Hollow Fe/Ni–CoTe@ NCFs nanoarchitecture derived from MOF@ MOF as high-efficiency electrocatalysts for boosting oxygen evolution reaction
CN112786906B (zh) 一种多孔Fe-Co-N掺杂多孔碳催化剂及其制备方法和应用
Zhang et al. Spontaneous synthesis of silver nanoparticles on cobalt-molybdenum layer double hydroxide nanocages for improved oxygen evolution reaction
Lin et al. Hydrogen generation from sodium borohydride hydrolysis promoted by MOF-derived carbon supported cobalt catalysts
CN107224981B (zh) 一种氨硼烷水解释氢的PdNi合金纳米催化剂及其制备方法
He et al. In-situ nanoarchitectonics of noble-metal-free g-C3N4@ C-Ni/Ni2P cocatalyst with core-shell structure for efficient photocatalytic H2 evolution
Deng et al. One-dimensional nitrogen-doped carbon frameworks embedded with zinc-cobalt nanoparticles for efficient overall water splitting
Wang et al. Iron regulates the interfacial charge distribution of transition metal phosphides for enhanced oxygen evolution reaction
Xiaopeng et al. CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage
CN111203253A (zh) 一种氮掺杂碳包覆的球状Ni/Pd异质结构纳米材料的合成方法
Hou et al. Nitrogen-rich biomass derived three-dimensional porous structure captures FeNi metal nanospheres: an effective electrocatalyst for oxygen evolution reaction
CN110090639A (zh) 一步制备高分散型多孔碳载催化剂的方法
Zou et al. Maximizing Fe-N exposure by tuning surface composition via twice acid treatment based on an ultrathin hollow nanocarbon structure for highly efficient oxygen reduction reaction
Jiang et al. 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction
Wang et al. One-pot synthesis of PdPtAg porous nanospheres with enhanced electrocatalytic activity toward polyalcohol electrooxidation
CN111514890A (zh) 一种合成具有方形形貌N掺杂C包覆Au/TiO2光催化剂的方法
CN109772455B (zh) 一种包裹细小高分散钯纳米粒子的多孔聚胺复合材料的制备和应用
Zhou et al. PtCo incorporated porous carbon nanofiber as a promising oxygen reduction electrocatalyst
Ding et al. Ni-B-Co nanoparticles based on ZIF-67 as efficient electrocatalyst for oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200529

RJ01 Rejection of invention patent application after publication