CN111193536A - 一种多无人机基站轨迹优化和功率分配方法 - Google Patents

一种多无人机基站轨迹优化和功率分配方法 Download PDF

Info

Publication number
CN111193536A
CN111193536A CN201911264054.8A CN201911264054A CN111193536A CN 111193536 A CN111193536 A CN 111193536A CN 201911264054 A CN201911264054 A CN 201911264054A CN 111193536 A CN111193536 A CN 111193536A
Authority
CN
China
Prior art keywords
unmanned aerial
aerial vehicle
base station
cost function
vehicle base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911264054.8A
Other languages
English (en)
Other versions
CN111193536B (zh
Inventor
李立欣
孙妍
李旭
王大伟
许文俊
周竞赛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201911264054.8A priority Critical patent/CN111193536B/zh
Publication of CN111193536A publication Critical patent/CN111193536A/zh
Application granted granted Critical
Publication of CN111193536B publication Critical patent/CN111193536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种多无人机基站轨迹优化和功率分配方法,多无人机基站为处在同一频段服务地面用户的多个无人机基站,各个无人机基站的存储能量和服务半径均不同;轨迹优化和功率分配的方法为:建立基于干扰相互作用的平均场型博弈模型,在满足用户通信质量的条件下基于所有无人机基站的位置状态以及储存能量状态的平均来描述与其他成员相互作用,构建状态演进的动态方程以及成本函数,使用平均场值学习算法不断迭代更新得到轨迹以及下行发射功率的最优规划。解决了现有多性能无人机移动基站构成的通信网络下干扰严重、能耗大的问题。

Description

一种多无人机基站轨迹优化和功率分配方法
【技术领域】
本发明属于无线通信技术领域,具体涉及一种多无人机基站轨迹优化和功率 分配方法。
【背景技术】
近年来,随着无人机大规模生产及应用,无人机用于无线通信领域迅速成为 研究热点。与此同时,第五代通信无线网络的研究与发展加快了无线通信网络的 多样化进程。作为第五代无线通信的重要组成部分,无人机有望在多样化无线通 信网络中发挥关键作用。国际电信联盟提出,无人机辅助5G无线通信可以应用 于增强型移动宽带、超可靠低延迟通信以及大规模机器通信的典型场景中。在紧 急通信场景或者热点区域空对地通信中,根据地面用户通信需求合理部署无人机 移动基站,既可以减小地面固定基站的通信压力,也可以尽可能满足地面用户的 通信需求。相较于车载通信,无人机移动基站基于视距通信链路,对地通信信道 条件好,覆盖面广;相较于传统地面基站,通信设备更新换代快且成本低。基于 上述优势,无人机作为空中移动基站所构成的空对地通信网络有望成为满足未来更加动态和多样化通信需求的一项重要无线通信技术。
然而,无人机作为移动基站仍然存在一些研究挑战。无人机移动基站的通信 能耗、飞行能耗、部署位置以及用户体验质量是无人机集群通信网络的关键要素。 首先,最大的限制是是无人机的存储电量有限,在无人机辅助无线通信的过程中, 不仅飞行需要能量,通信过程也需要消耗能量。搭载5G通信设备到无人机上也 会产生额外的载荷能耗。再者,由于无人机拥有独特的信道特性,视距通信链路 的优势使得用户之间的干扰相对于传统通信系统增大。此外,由于无人机的高度 机动性,通信链路之间的干扰是时间和空间相关的函数,这为无人机移动基站的 通信资源分配以及干扰管理带来了新的挑战。在多无人机基站通信网络中,每个 无人机移动基站位置变化将影响通信网络拓扑结构产生变化,进而影响通信链路 间的干扰发生改变,如何在保证用户正常通信的条件下对多个无人机移动基站的 发射功率和轨迹进行合理规划是一个具有挑战性的问题。每个无人机移动基站的 控制策略(发射功率以及飞行控制)会影响其他被服务用户的通信质量,任何一 方的自私行为都会影响其他通信链路的成本,联合优化多个无人机移动基站的轨 迹以及发射功率以最小化无人机移动基站的通信成本以及飞行成本将具有重要 现实意义。
【发明内容】
本发明的目的是提供一种多无人机基站轨迹优化和功率分配方法,以解决现 有多性能无人机移动基站构成的通信网络下干扰严重、能耗大的问题。
本发明采用以下技术方案:一种多无人机基站轨迹优化和功率分配方法,多 无人机基站为处在同一频段服务地面用户的多个无人机基站,各个无人机基站的 存储能量和服务半径均不同;
轨迹优化和功率分配的方法为:建立基于干扰相互作用的平均场型博弈模 型,在满足用户通信质量的条件下基于所有无人机基站的位置状态以及储存能量 状态的平均来描述与其他成员相互作用,构建状态演进的动态方程以及成本函 数,使用平均场值学习算法不断迭代更新得到轨迹以及下行发射功率的最优规 划。
进一步的,具体按照以下步骤实施:
步骤一、构建系统模型:输入无人机移动基站个数M,用户个数N以及所 有坐标位置D={l1,l2,l3,...,lN},li=(li,1,li,2),大量用户随机分布在指定服务区域内, 每个无人机移动基站采用时分复用方式服务指定区域内地面用户;
步骤二、初始部署方案:通过使用k-means算法,根据用户分布密度将用户 分为M簇,根据无人机基站的存储能量和服务半径合理将无人机基站部署于簇中 心,得到每个无人机基站的初始位置信息(xi,1(t),xi,2(t),xi,3(t)),i∈{1,...,M}和每个簇 内的用户个数Ni,i∈{1,...,M};
步骤三、建立无人机对地服务状态动态方程:用位置以及剩余能量信息
Figure BDA0002312367990000032
表示无人机移动基站i的状态,无人机移动基站的动态状态方程描述了 无人机基站在时刻t的位置以及下行发射功率变化趋势;
步骤四、建立无人机移动基站的成本函数:对于每个参与博弈过程的无人机 基站而言,分别根据用户信干噪比要求以及无人机在飞行过程产生的能耗构造出 无人机移动基站的通信成本函数以及飞行成本函数,将均场项引入无人机的长期 平均总成本函数中,制定出每个无人机移动基站的长期平均总成本函数;
步骤五、通过平均场值学习算法对长期平均总成本函数不断迭代更新得到轨 迹以及下行发射功率的最优规划。
进一步的,步骤二中k-means算法对用户分簇的具体方法是:
首先从输入的所有用户坐标集合D中随机选取M个用户坐标作为初始均值 向量{μ12,...,μM};
计算每个用户应该属于的簇类:
Figure BDA0002312367990000031
计算更新每个均值向量:
Figure BDA0002312367990000041
重复计算公式(1)和公式(2),最终输出地面用户簇划分C={C1,C2,...,CM}, 根据无人机基站的存储能量和服务半径合理将无人机基站部署于簇中心,得到无 人机移动基站的初始部署位置。
进一步的,步骤三中建立状态动态方程的具体过程如下:
无人机基站i的位置信息以及剩余能量信息
Figure BDA0002312367990000042
表示其在时刻t的状 态,其中{xi,1(t),xi,2(t),xi,3(t)}表示无人机基站i的位置状态,xi,4(t)表示无人机基站 i的剩余能量状态;
Figure BDA0002312367990000043
表示无人机基站i的飞行控制策略以及功率控制策 略;每个无人机基站的控制策略表示位置状态以及功率状态的转变;引入状态均 场项
Figure BDA0002312367990000044
和策略均场项
Figure BDA0002312367990000045
来表征交互作用,则对于无人机基站 i而言,状态动态方程可以表示为:
Figure BDA0002312367990000046
其中,r0表示环境对状态的影响因子,
Figure BDA0002312367990000047
中的{ri,1(t),ri,2(t),ri,3(t)}表示无 人机基站在各个方向的飞行速度,ri,4(t)=-1表示剩余能量和下行发射功率之间的 关系,可以表示为dxi,4(t)=xi,4(t)-ui,4(t)+wi,4(t)。wi(t)为一个随机布朗过程表示 状态动态方程的随机性。
进一步的,步骤四中构建成本函数的具体过程如下:
设计无人机的成本函数包含对地通信成本以及飞行成本;
首先,设计无人机基站的飞行成本定义为距离的函数,则可得无人机的飞行 成本函数如公式(4)所示:
c1,i=E0i||qi(t)||2 (4),
其中,
Figure BDA0002312367990000051
为无人机每单位平方距离的推进功率,P0i为叶尖功率,vi为无人机i的飞行速度,Utip为叶尖速度;另外,飞行距离表示为:
qi(t)=(xi,1(t+1)-xi,1(t))2+(xi,2(t+1)-xi,2(t))2+(xi,3(t+1)-xi,3(t))2
在任意时刻t,无人机基站i在用户k处的信干噪比为:
Figure BDA0002312367990000052
其中,Pik(t)表示无人机基站i的发射功率,Γk表示用户k的信干噪比要求,
Figure BDA0002312367990000053
表示无人机j到用户k的距离, gjk表示无人机j对用户k的信道增益,N0代表噪声,α表示信道衰落因子,无 人机基站i的通信成本函数为:
Figure BDA0002312367990000054
结合公式(4)和公式(6),并将均场项引入成本函数,则无人机基站i的 运行成本函数为:
Figure BDA0002312367990000055
终端成本函数φi(x,T)取决于无人机基站的最终的状态,表示为:
Figure BDA0002312367990000056
无人机移动基站i在时间(0,T)内的长期平均总成本函数为:
Figure BDA0002312367990000057
本发明的有益效果是:
1、本发明考虑了多个性能存在差异的无人机基站构成的无线通信网络,针 对无人机移动基站的轨迹设计和资源管理问题,提出了使用多成员平均场型博弈 框架来建模这一复杂网络下的最优控制问题。
2、本发明提出的平均场型博弈框架中,设计了状态动态方程和长期平均总 成本函数。综合考虑实际工程应用中无人机基站在性能上不能保证完全一致性, 将差异参数(服务半径、存储能量等)引入状态方程和平均总成本函数设计中, 具有很强的适用性。
3、本发明提出使用两步法实现联合优化无人机基站的轨迹及发射功率问 题。首先通过k-means算法得到每个无人机基站的初始部署以及服务用户个数。 再通过平均场型博弈建模优化问题,结合平均场型博弈模型与强化学习 MFQ-learning算法,通过不断迭代更新得到每个无人机基站的最优飞行轨迹和下 行发射功率。
【附图说明】
图1为本发明多性能无人机基站空对地通信系统场景图;
图2为本发明基于k-means算法得到的无人机基站初始部署及用户服务请 求分布图;
图3为本发明基于MFQ-learning算法得到的多无人机基站的最优路径方 案;
图4为本发明基于MFQ-learning算法得到的多无人机基站的最优功率分配 方案;
图5为本发明在所求得的最优轨迹及功率控制方案下用户接收端的信干燥比sui时间的分布图。
【具体实施方式】
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供了一种基于干扰的多无人机基站轨迹优化和功率分配方法,对于 多无人机基站通信系统,采用频谱共享方式对地用户进行服务。在给定服务区域 内,根据用户密度使用k-means算法对无人机基站进行初始部署。在此基础上, 基于通信链路之间的严重干扰,考虑通信过程和飞行中产生能耗,建立平均场型 博弈模型,设计网络中个无人机基站的状态动态方程和长期平均总成本函数,将 问题建模为各无人机移动基站在保证各自服务用户通信质量的前提下,使长期平 均总成本最小化的最优控制问题,并利用MFQ-learning算法更新迭代得到每个无 人机基站的最优轨迹和下行发射功率。
本发明研究的系统模型如图1所示,在给定的服务区域内随机分布大量的用 户,多个性能存在差异的无人机基站为地面用户提供空对地的通信服务。定义无 人机移动基站个数为M,系统中有N用户个数按照坐标
D={l1,l2,l3,...,lN},li=(li,1,li,2)随机分布。由于频谱资源有限,该M个无人机基站共享频谱资源,每个无人机移动基站采用时分复用方式服务地面用户。为了 方便起见,本发明使用k-means算法来对用户进行聚类分簇。首先根据集群中心 位置部署无人机基站。在此基础上,收集请求服务的用户坐标构成任务空间 V={vi(li,1,li,2i)|(li,1,li,2)∈D,i∈(1,2,...M)},τi为保证用户成功解码信息的信干噪 比。分簇的具体方法是:
首先从输入的所有用户坐标集合D中随机选取M个用户坐标作为初始均值 向量{μ12,...,μM};
计算每个用户应该属于的簇类:
Figure BDA0002312367990000081
计算更新每个均值向量:
Figure BDA0002312367990000082
重复计算公式(1)和公式(2),最终输出地面用户簇划分C={C1,C2,...,CM}, 根据无人机基站的存储能量和服务半径合理将无人机基站部署于簇中心,得到无 人机移动基站的初始部署位置。
无人机基站的状态
Figure BDA0002312367990000083
表示剩余能量和位置信息。同时,
Figure BDA0002312367990000084
表示无人机基站的飞行控制策略以及功率控制策略。由于频谱资源有限,多无人机 共享同一频谱资源,在对地通信过程中将会产生严重干扰。以无人机基站i服务 用户k为例,该通信链路受到其他无人机基站同频信号的干扰,为了满足用户的 通信需求,无人机基站i需要调整位置靠近用户或者提高发射功率,当无人机基 站i位置或者功率发生改变将导致网络拓扑结构变化,使得其他无人机基站所服 务的用户受到的干扰发生变化。因此,需要联合化优化多个无人机基站轨迹以及 功率以提高系统性能。
在该场景中,多个无人机基站服务用户的通信链路可以视为参与博弈的成 员,每个无人机基站的状态由位置信息以及剩余能量确定。无人机基站i的位置 信息以及剩余能量信息
Figure BDA0002312367990000085
表示其在时刻t的状态,其中{xi,1(t),xi,2(t),xi,3(t)} 表示无人机基站i的位置状态,xi,4(t)表示无人机基站i的剩余能量状态。考虑到 无人机移动基站的状态受当前状态以及各个无人机移动基站的策略影响,引入状 态均场项
Figure BDA0002312367990000091
和控制策略均场项
Figure BDA0002312367990000092
表征该影响,那么无人机基 站i的动态状态方程可以表示为:
Figure BDA0002312367990000093
其中r0表示环境对状态的影响因子,
Figure BDA0002312367990000094
中的{ri1(t),ri,2(t),ri,3(t)}表示无人 机基站在各个方向的飞行速度,ri,4(t)=-1表示剩余能量和下行发射功率之间的关系,可以表示为dxi,4(t)=xi,4(t)-ui,4(t)+wi,4(t)。wi(t)为一个随机布朗过程表示状 态动态方程的随机性。
构建无人机的长期平均总成本函数包含对地通信成本以及飞行成本。在时刻 t,无人机i的飞行成本函数为:
c1,i=E0i||qi(t)||2, (4),
其中
Figure BDA0002312367990000095
为无人机每单位平方距离的推进功率,P0i为叶尖功率,vi为无人机i的飞行速度,Utip为叶尖速度。另外,飞行距离表示为
qi(t)=(xi,1(t+1)-xi,1(t))2+(xi,2(t+1)-xi,2(t))2+(xi,3(t+1)-xi,3(t))2
此外,以无人机基站i为例,根据在用户k处的信干燥比要求
Figure BDA0002312367990000096
构造的通信成本函数为:
Figure BDA0002312367990000097
其中,Pik(t)表示无人机基站i的发射功率,Γk表示用户k的信干燥比要求,
Figure BDA0002312367990000098
表示无人机j到用户k的距离, gjk表示无人机j对用户k的信道增益,N0代表噪声,α表示信道衰落因子。只 有当用户接收端信干燥比达到Γk要求时才能保证通信成功。
那么无人机基站i的运行成本函数为:
Figure BDA0002312367990000101
终端运行成本函数取决于无人机基站的最终的状态以及状态均场项,可以 表示为:
Figure BDA0002312367990000102
因此,无人机移动基站i在时间(0,T)内的长期平均总成本为:
Figure BDA0002312367990000103
由上述描述可知,联合优化无人机基站的轨迹和发射功率问题被制定为基 于干扰下,同时考虑通信成本和飞行成本的的最小化长期平均成本函数问题。
本发明解决上述最小化长期平均成本函数问题所采用的技术方案如下所 述:
由式(3)和式(9)可以看出,该博弈问题是一个典型的马尔可夫决策过程, 为解决多无人机基站优化轨迹和下行功率控制问题提供了通用框架,通过将均场 理论引入强化学习算法,使用MFQ-learning算法迭代更新得到最优控制策略, MFQ-learning算法即为平均场值学习算法。
MFQ-learning算法具体步骤:
步骤1:输入依据k-means算法得到的无人机基站的初始部署坐标以及服务 的用户个数Ni,动作集合u=a=(ax,ay,ah,ap),本发明假设垂直方向ah=0, ax={-1,0,1}表示X轴向动作,ay={-1,0,1}表示Y轴向动作,ap={-1,0,1}表示发 射功率的变化。初始化每个无人机基站的Qi_table和Ri
步骤2:初始化每个无人机基站的下行发射功率为
Figure BDA0002312367990000111
i∈{1,2,...,M};
步骤3:依据贪婪策略选择使Qi最大的动作集合a={a1,a2,...,aM},即长期平 均总成本函数最小;
步骤4:对于每个无人机基站,计算状态均值项
Figure RE-GDA0002451364860000112
和策略均值项
Figure RE-GDA0002451364860000113
步骤5:每个无人机移动基站采取动作a={a1,a2,...,aM},依据动态状态方程 得到下一时刻状态s′={s1,s2,...,sM}以及奖励函数Ri(si,ai)=Ji(si,ai,m1,m2);
步骤6:依据下式更新每个无人机基站的Qi_table:
Figure BDA0002312367990000114
步骤7:重复步骤3、步骤4、步骤5和步骤6;
步骤8:遍历结束后输出每个无人机基站的轨迹控制策略以及功率控制策 略。
实施例
以下实例中所提供的图示以及模型中的具体参数值的设定主要是为了说明 本发明的构想以及仿真验证,在具体的应用环境中,可视实际场景和需求进行适 当调整。
本发明考虑一个多无人机空对地通信系统,在给定的1000×1000m2方形服务 区域内,M=5个性能不同的无人机基站服务随机分布的N=100个用户。每个无 人机基站发射信号载频为2GHz,无人机的飞行推进功率取值从10w/m到30w/m。 为了简化问题,本发明假设所有无人机的飞行高度保持不变h=500m。在其他情 况下,这些表征无人机移动基站性能的参数可以改变。
本发明首先基于k-means算法对用户进行分簇得到如图2的用户分簇图。在 此基础上,依据簇内用户数量以及无人机移动基站在高度为h=500m时的服务半 径大小,合理部署多个无人机移动基站于各个簇中心。同一飞行高度下服务半径 大,储存能量多的无人机移动基站部署在用户数量多的,密集度小的簇中心。
在合理部署无人机移动基站后,在同一时隙内,本发明随机选取簇内请求服 务的用户由图2中圆圈标记出来,根据簇内用户的服务请求得到任务空间 V={vi(li,1,li,2i)|(li,1,li,2)∈D,i∈(1,2,...M)}。接下来,根据总通信任务空间V,对 多个无人机移动基站的飞行轨迹以及发射功率进行联合优化。
为了展示MFQ-learning算法在时间t∈[0,T]内的策略演进,本发明给出了如 图3的轨迹规划图以及图4的发射功率图。在这里,本发明设置T=10steps,靠 近原点的无人机移动基站标号为1,左边为无人机2,区域左上方为无人机3,中 间为无人机4,区域右上方为无人机5。图3展示了基于MFQ-learning算法的多 无人机移动基站的路径规划图。在该时间间隔内,可以观察到无人机1移动的步 数最多为五步,且最终到达请求服务的用户小区域内,本发明近似达到指定服务 位置。无人机5移动步数最小,只移动三步便到达了簇内指定用户服务位置。与 此同时,无人机2和无人机3在时间间隔内只移动了四步,且均未到达簇内指定 用户位置,但是都在靠近用户的方向移动。图3充分展示了该平均场型博弈问题 中存在均衡解,所有的无人机移动基站在做决策时,彼此之间进行信息交互,最 终得到稳定均衡解。所有无人机移动基站在时间间隔内均找到最佳位置进行对地 通信服务。
图4展示了在基于图3路径规划的同时,无人机移动基站发射功率的大小变 化。在初始时刻,设置每个无人机移动基站依据自身能量以及簇内用户数量进行 发射功率,即
Figure BDA0002312367990000131
在图4中,无人机移动基站1初始发射功率最小,在前 两步发射功率保持不变,第三部调大发射功率最终保持稳定。这是由于无人机1 在路径规划时逐渐靠近用户,为了降低长期平均总成本,在开始时保持发射功率 不变。但是在第三步以后,由于无人机移动基站2和3提高发射功率使得无人机 移动基站1的干扰变大,不能保证用户1的正常通信导致更高的通信成本。因此 无人机移动基站1需要提高发射功率来降低通信成本。其他无人机移动基站发射 功率也遵循在保证用户正常通信的条件下尽可能降低长期平均总成本这一原则。
为了表征在这个规划过程中用户的通信质量,本发明对用户的SINR进行分 析。正如图5所示,所有的用户SINR在最终都超过了阈值并且保持稳定。用户 5和用户4由开始的SINR超出阈值很多一直下降至阈值附近并且高出阈值。这 是由于高SINR虽然能够保证用户的正常通信但是也会造成通信能量的浪费,即 通信成本变高。因此降低SINR至阈值在可以保证正常通信的同时避免通信资源 浪费从而降低通信成本。图5中所有用户SINR趋势证明了本发明所设计的长期 平均总成本函数的合理性以及MFQ-learning算法结果的准确性。
本发明考虑了多个性能存在差异的无人机基站构成的无线通信网络,针对无 人机移动基站的轨迹设计和资源管理问题,提出了使用多成员平均场型博弈框架 来建模这一复杂网络下的最优控制问题。本发明提出的平均场型博弈框架中,设 计了状态动态方程和长期平均总成本函数。综合考虑实际工程应用中无人机基站 在性能上不能保证完全一致性,将差异参数(服务半径、存储能量等)引入状态 方程和长期平均总成本函数设计中,具有很强的适用性。本发明提出使用两步法 实现联合优化无人机基站的轨迹及发射功率问题。首先通过k-means算法得到每 个无人机基站的初始部署以及服务用户个数。再通过平均场型博弈建模优化问 题,结合平均场型博弈模型与强化学习MFQ-learning算法,通过不断迭代更新得 到每个无人机基站的最优飞行轨迹和下行发射功率。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡 是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发 明权利要求书的保护范围之内。

Claims (5)

1.一种多无人机基站轨迹优化和功率分配方法,其特征在于,
所述多无人机基站为处在同一频段服务地面用户的多个无人机基站,各个无人机基站的存储能量和服务半径均不同;
所述轨迹优化和功率分配的方法为:建立基于干扰相互作用的平均场型博弈模型,在满足用户通信质量的条件下基于所有无人机基站的位置状态以及储存能量状态的平均来描述与其他成员相互作用,构建状态演进的动态方程以及成本函数,使用平均场值学习算法不断迭代更新得到轨迹以及下行发射功率的最优规划。
2.根据权利要求1所述的一种多无人机基站轨迹优化和功率分配方法,其特征在于,具体按照以下步骤实施:
步骤一、构建系统模型:输入无人机移动基站个数M,用户个数N以及所有坐标位置D={l1,l2,l3,...,lN},li=(li,1,li,2),大量用户随机分布在指定服务区域内,每个无人机移动基站采用时分复用方式服务指定区域内地面用户;
步骤二、初始部署方案:通过使用k-means算法,根据用户分布密度将用户分为M簇,根据无人机基站的存储能量和服务半径合理将无人机基站部署于簇中心,得到每个无人机基站的初始位置信息(xi,1(t),xi,2(t),xi,3(t)),i∈{1,...,M}和每个簇内的用户个数Ni,i∈{1,...,M};
步骤三、建立无人机对地服务状态动态方程:用位置以及剩余能量信息
Figure FDA0002312367980000011
表示无人机移动基站i的状态,无人机移动基站的动态状态方程描述了无人机基站在时刻t的位置以及下行发射功率变化趋势;
步骤四、建立无人机移动基站的成本函数:对于每个参与博弈过程的无人机基站而言,分别根据用户信干噪比要求以及无人机在飞行过程产生的能耗构造出无人机移动基站的通信成本函数以及飞行成本函数,将均场项引入无人机的长期平均总成本函数中,制定出每个无人机移动基站的长期平均总成本函数;
步骤五、通过平均场值学习算法对长期平均总成本函数不断迭代更新得到轨迹以及下行发射功率的最优规划。
3.根据权利要求书2所述的一种多无人机基站轨迹优化和功率分配方法,其特征在于,所述步骤二中k-means算法对用户分簇的具体方法是:
首先从输入的所有用户坐标集合D中随机选取M个用户坐标作为初始均值向量{μ12,...,μM};
计算每个用户应该属于的簇类:
Figure FDA0002312367980000021
计算更新每个均值向量:
Figure FDA0002312367980000022
重复计算公式(1)和公式(2),最终输出地面用户簇划分C={C1,C2,...,CM},根据无人机基站的存储能量和服务半径合理将无人机基站部署于簇中心,得到无人机移动基站的初始部署位置。
4.根据权利要求书2所述的一种多无人机基站轨迹优化和功率分配方法,其特征在于,所述步骤三中建立状态动态方程的具体过程如下:
无人机基站i的位置信息以及剩余能量信息
Figure FDA0002312367980000023
表示其在时刻t的状态,其中{xi,1(t),xi,2(t),xi,3(t)}表示无人机基站i的位置状态,xi,4(t)表示无人机基站i的剩余能量状态;
Figure FDA0002312367980000024
表示无人机基站i的飞行控制策略以及功率控制策略;每个无人机基站的控制策略表示位置状态以及功率状态的转变;引入状态均场项
Figure FDA0002312367980000031
和策略均场项
Figure FDA0002312367980000032
来表征交互作用,则对于无人机基站i而言,状态动态方程可以表示为:
Figure FDA0002312367980000033
其中,r0表示环境对状态的影响因子,
Figure FDA0002312367980000034
中的{ri1(t),ri,2(t),ri,3(t)}表示无人机基站在各个方向的飞行速度,ri,4(t)=-1表示剩余能量和下行发射功率之间的关系,可以表示为dxi,4(t)=xi,4(t)-ui,4(t)+wi,4(t)。wi(t)为一个随机布朗过程表示状态动态方程的随机性。
5.根据权利要求书2所述的一种多无人机基站轨迹优化和功率分配方法,其特征在于,所述步骤四中构建成本函数的具体过程如下:
设计无人机的成本函数包含对地通信成本以及飞行成本;
首先,设计无人机基站的飞行成本定义为距离的函数,则可得无人机的飞行成本函数如公式(4)所示:
c1,i=E0i||qi(t)||2 (4),
其中,
Figure FDA0002312367980000035
为无人机每单位平方距离的推进功率,P0i为叶尖功率,vi为无人机i的飞行速度,Utip为叶尖速度;另外,飞行距离表示为:
qi(t)=(xi,1(t+1)-xi,1(t))2+(xi,2(t+1)-xi,2(t))2+(xi,3(t+1)-xi,3(t))2
在任意时刻t,无人机基站i在用户k处的信干噪比为:
Figure FDA0002312367980000036
其中,Pik(t)表示无人机基站i的发射功率,Γk表示用户k的信干噪比要求,
Figure FDA0002312367980000041
表示无人机j到用户k的距离,gjk表示无人机j对用户k的信道增益,N0代表噪声,α表示信道衰落因子,无人机基站i的通信成本函数为:
Figure FDA0002312367980000042
结合公式(4)和公式(6),并将均场项引入成本函数,则无人机基站i的运行成本函数为:
Figure FDA0002312367980000043
终端成本函数φi(x,T)取决于无人机基站的最终的状态,表示为:
Figure FDA0002312367980000044
无人机移动基站i在时间(0,T)内的长期平均总成本函数为:
Figure FDA0002312367980000045
CN201911264054.8A 2019-12-11 2019-12-11 一种多无人机基站轨迹优化和功率分配方法 Active CN111193536B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911264054.8A CN111193536B (zh) 2019-12-11 2019-12-11 一种多无人机基站轨迹优化和功率分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911264054.8A CN111193536B (zh) 2019-12-11 2019-12-11 一种多无人机基站轨迹优化和功率分配方法

Publications (2)

Publication Number Publication Date
CN111193536A true CN111193536A (zh) 2020-05-22
CN111193536B CN111193536B (zh) 2021-06-04

Family

ID=70707776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911264054.8A Active CN111193536B (zh) 2019-12-11 2019-12-11 一种多无人机基站轨迹优化和功率分配方法

Country Status (1)

Country Link
CN (1) CN111193536B (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836271A (zh) * 2020-07-28 2020-10-27 河海大学 一种多无人机通信基站的3d位置部署方法
CN111918337A (zh) * 2020-06-30 2020-11-10 西安理工大学 一种业务负载均衡的无人机基站最优部署方法
CN112068590A (zh) * 2020-08-21 2020-12-11 广东工业大学 无人机基站飞行规划方法、系统、储存介质及无人机基站
CN112105032A (zh) * 2020-07-06 2020-12-18 天津大学 一种基于缓存的无人机协同认知无线网络传输方法
CN112261615A (zh) * 2020-10-23 2021-01-22 沈阳航空航天大学 基于平均场无人机辅助多频段密集网络能效降解方法
CN112437502A (zh) * 2020-11-11 2021-03-02 北京航空航天大学 基于多任务无人机集群信息交互的分层分簇网络拓扑结构生成方法
CN112543050A (zh) * 2020-11-26 2021-03-23 北京邮电大学 一种面向吞吐量提升的无人机协作和轨迹优化方法
CN112672371A (zh) * 2020-12-23 2021-04-16 中国人民解放军陆军工程大学 一种异构需求下的空地协同分层部署模型及其接入方法
CN112731967A (zh) * 2020-12-24 2021-04-30 中科院计算技术研究所大数据研究院 一种基于聚类和遗传算法的多无人机协同任务规划方法
CN112788726A (zh) * 2021-01-19 2021-05-11 西安交通大学 一种无人机辅助基站通信的网络场景模型下的功率控制方法
CN113194488A (zh) * 2021-03-31 2021-07-30 西安交通大学 一种无人机轨迹和智能反射面相移联合优化方法及系统
CN113242556A (zh) * 2021-06-04 2021-08-10 重庆邮电大学 一种基于差异化服务的无人机资源动态部署方法
CN113364495A (zh) * 2021-05-25 2021-09-07 西安交通大学 一种多无人机轨迹和智能反射面相移联合优化方法及系统
CN113419561A (zh) * 2021-07-12 2021-09-21 西安电子科技大学 一种分布式空中基站高动态部署方法
CN113543068A (zh) * 2021-06-07 2021-10-22 北京邮电大学 一种基于层次化分簇的林区无人机网络部署方法与系统
CN113873434A (zh) * 2021-08-27 2021-12-31 北京邮电大学 面向通信网络热点区域容量增强的多空中基站部署方法
CN114222251A (zh) * 2021-11-30 2022-03-22 中山大学·深圳 一种多无人机的自适应网络成型和轨迹优化方法
CN114401037A (zh) * 2022-03-24 2022-04-26 武汉大学 基于联盟形成博弈的无人机通信网络流量卸载方法及系统
CN114710786A (zh) * 2022-04-20 2022-07-05 北京航空航天大学 一种基于用户轨迹预测的无人机基站动态部署方法
CN115175203A (zh) * 2022-06-28 2022-10-11 南京邮电大学 一种热点区域按需覆盖的车载基站智能轨迹规划方法
CN115691225A (zh) * 2022-08-23 2023-02-03 北京航空航天大学 一种基于正交时频空调制的无人机路径规划方法
CN116233869A (zh) * 2023-05-10 2023-06-06 湖北工业大学 计算激励、任务分配及无人机位置联合优化方法及系统
CN116723470A (zh) * 2023-08-10 2023-09-08 中国电信股份有限公司 空中基站的移动轨迹预测模型的确定方法、装置和设备
WO2024009368A1 (ja) * 2022-07-04 2024-01-11 日本電信電話株式会社 無線通信システム、制御装置、移動先位置決定方法、及びプログラム
WO2024009369A1 (ja) * 2022-07-04 2024-01-11 日本電信電話株式会社 無線通信システム、制御装置、移動先位置決定方法、及びプログラム
WO2024009370A1 (ja) * 2022-07-04 2024-01-11 日本電信電話株式会社 無線通信システム、制御装置、移動先位置決定方法、及びプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070049267A1 (en) * 2005-08-15 2007-03-01 Incode Telecom Group, Inc. Embedded wireless location validation benchmarking systems and methods
CN104394535A (zh) * 2014-12-05 2015-03-04 重庆大学 面向协作通信的基站规划方法
CN108924791A (zh) * 2018-07-13 2018-11-30 广东工业大学 一种无线通信方法、装置、设备及可读存储介质
CN109600828A (zh) * 2018-11-19 2019-04-09 赣南师范大学 无人机基站下行链路的自适应传输功率分配方法
CN110290537A (zh) * 2019-06-23 2019-09-27 西北工业大学 一种基于平均场型博弈的多类型无人机移动基站部署方法
CN110380773A (zh) * 2019-06-13 2019-10-25 广东工业大学 一种无人机多跳中继通信系统的轨迹优化与资源分配方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070049267A1 (en) * 2005-08-15 2007-03-01 Incode Telecom Group, Inc. Embedded wireless location validation benchmarking systems and methods
CN104394535A (zh) * 2014-12-05 2015-03-04 重庆大学 面向协作通信的基站规划方法
CN108924791A (zh) * 2018-07-13 2018-11-30 广东工业大学 一种无线通信方法、装置、设备及可读存储介质
CN109600828A (zh) * 2018-11-19 2019-04-09 赣南师范大学 无人机基站下行链路的自适应传输功率分配方法
CN110380773A (zh) * 2019-06-13 2019-10-25 广东工业大学 一种无人机多跳中继通信系统的轨迹优化与资源分配方法
CN110290537A (zh) * 2019-06-23 2019-09-27 西北工业大学 一种基于平均场型博弈的多类型无人机移动基站部署方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YAN SUN 等: "Inhomogeneous Multi-UAV Aerial Base Stations", 《 2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC)》 *
陈琪锋: "飞行器分布式协同进化多学科设计优化方法研究", 《中国博士学位论文全文数据库》 *
黄赞杰: "无线网络环境下的资源分配问题算法研究", 《中国博士学位论文全文数据库》 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918337A (zh) * 2020-06-30 2020-11-10 西安理工大学 一种业务负载均衡的无人机基站最优部署方法
CN112105032A (zh) * 2020-07-06 2020-12-18 天津大学 一种基于缓存的无人机协同认知无线网络传输方法
CN112105032B (zh) * 2020-07-06 2021-10-26 天津大学 一种基于缓存的无人机协同认知无线网络传输方法
CN111836271B (zh) * 2020-07-28 2021-08-20 河海大学 一种多无人机通信基站的3d位置部署方法
CN111836271A (zh) * 2020-07-28 2020-10-27 河海大学 一种多无人机通信基站的3d位置部署方法
CN112068590A (zh) * 2020-08-21 2020-12-11 广东工业大学 无人机基站飞行规划方法、系统、储存介质及无人机基站
CN112261615B (zh) * 2020-10-23 2023-09-29 沈阳航空航天大学 基于平均场无人机辅助多频段密集网络能效降解方法
CN112261615A (zh) * 2020-10-23 2021-01-22 沈阳航空航天大学 基于平均场无人机辅助多频段密集网络能效降解方法
CN112437502B (zh) * 2020-11-11 2021-09-17 北京航空航天大学 基于多任务无人机集群信息交互的分层分簇网络拓扑结构生成方法
CN112437502A (zh) * 2020-11-11 2021-03-02 北京航空航天大学 基于多任务无人机集群信息交互的分层分簇网络拓扑结构生成方法
CN112543050A (zh) * 2020-11-26 2021-03-23 北京邮电大学 一种面向吞吐量提升的无人机协作和轨迹优化方法
CN112543050B (zh) * 2020-11-26 2021-09-21 北京邮电大学 一种面向吞吐量提升的无人机协作和轨迹优化方法
CN112672371A (zh) * 2020-12-23 2021-04-16 中国人民解放军陆军工程大学 一种异构需求下的空地协同分层部署模型及其接入方法
CN112672371B (zh) * 2020-12-23 2023-03-24 中国人民解放军陆军工程大学 一种异构需求下的空地协同分层部署模型及其接入方法
CN112731967B (zh) * 2020-12-24 2021-11-19 中科院计算技术研究所大数据研究院 一种基于聚类和遗传算法的多无人机协同任务规划方法
CN112731967A (zh) * 2020-12-24 2021-04-30 中科院计算技术研究所大数据研究院 一种基于聚类和遗传算法的多无人机协同任务规划方法
CN112788726B (zh) * 2021-01-19 2022-04-22 西安交通大学 一种无人机辅助基站通信的网络场景模型下的功率控制方法
CN112788726A (zh) * 2021-01-19 2021-05-11 西安交通大学 一种无人机辅助基站通信的网络场景模型下的功率控制方法
CN113194488A (zh) * 2021-03-31 2021-07-30 西安交通大学 一种无人机轨迹和智能反射面相移联合优化方法及系统
CN113364495A (zh) * 2021-05-25 2021-09-07 西安交通大学 一种多无人机轨迹和智能反射面相移联合优化方法及系统
CN113364495B (zh) * 2021-05-25 2022-08-05 西安交通大学 一种多无人机轨迹和智能反射面相移联合优化方法及系统
CN113242556A (zh) * 2021-06-04 2021-08-10 重庆邮电大学 一种基于差异化服务的无人机资源动态部署方法
CN113543068A (zh) * 2021-06-07 2021-10-22 北京邮电大学 一种基于层次化分簇的林区无人机网络部署方法与系统
CN113543068B (zh) * 2021-06-07 2024-02-02 北京邮电大学 一种基于层次化分簇的林区无人机网络部署方法与系统
CN113419561A (zh) * 2021-07-12 2021-09-21 西安电子科技大学 一种分布式空中基站高动态部署方法
CN113873434A (zh) * 2021-08-27 2021-12-31 北京邮电大学 面向通信网络热点区域容量增强的多空中基站部署方法
CN114222251A (zh) * 2021-11-30 2022-03-22 中山大学·深圳 一种多无人机的自适应网络成型和轨迹优化方法
CN114401037A (zh) * 2022-03-24 2022-04-26 武汉大学 基于联盟形成博弈的无人机通信网络流量卸载方法及系统
CN114710786A (zh) * 2022-04-20 2022-07-05 北京航空航天大学 一种基于用户轨迹预测的无人机基站动态部署方法
CN114710786B (zh) * 2022-04-20 2023-05-30 北京航空航天大学 一种基于用户轨迹预测的无人机基站动态部署方法
CN115175203B (zh) * 2022-06-28 2023-06-02 南京邮电大学 一种热点区域按需覆盖的车载基站智能轨迹规划方法
CN115175203A (zh) * 2022-06-28 2022-10-11 南京邮电大学 一种热点区域按需覆盖的车载基站智能轨迹规划方法
WO2024009370A1 (ja) * 2022-07-04 2024-01-11 日本電信電話株式会社 無線通信システム、制御装置、移動先位置決定方法、及びプログラム
WO2024009368A1 (ja) * 2022-07-04 2024-01-11 日本電信電話株式会社 無線通信システム、制御装置、移動先位置決定方法、及びプログラム
WO2024009369A1 (ja) * 2022-07-04 2024-01-11 日本電信電話株式会社 無線通信システム、制御装置、移動先位置決定方法、及びプログラム
CN115691225A (zh) * 2022-08-23 2023-02-03 北京航空航天大学 一种基于正交时频空调制的无人机路径规划方法
CN115691225B (zh) * 2022-08-23 2023-10-20 北京航空航天大学 一种基于正交时频空调制的无人机路径规划方法
CN116233869A (zh) * 2023-05-10 2023-06-06 湖北工业大学 计算激励、任务分配及无人机位置联合优化方法及系统
CN116723470A (zh) * 2023-08-10 2023-09-08 中国电信股份有限公司 空中基站的移动轨迹预测模型的确定方法、装置和设备
CN116723470B (zh) * 2023-08-10 2023-11-07 中国电信股份有限公司 空中基站的移动轨迹预测模型的确定方法、装置和设备

Also Published As

Publication number Publication date
CN111193536B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
CN111193536B (zh) 一种多无人机基站轨迹优化和功率分配方法
CN107819840B (zh) 超密集网络架构中分布式移动边缘计算卸载方法
CN112737837B (zh) 一种高动态网络拓扑下无人机群带宽资源分配方法
Sun et al. A distributed approach to improving spectral efficiency in uplink device-to-device-enabled cloud radio access networks
Dai et al. The multi-objective deployment optimization of UAV-mounted cache-enabled base stations
Wu et al. 3D aerial base station position planning based on deep Q-network for capacity enhancement
CN109309525B (zh) 一种基于无人机飞行轨迹的分布式传输模式选择方法
CN113359480B (zh) 基于mappo算法多无人机与用户协同通信优化方法
CN113660681B (zh) 一种应用于无人机集群辅助传输的多智能体资源优化方法
Jiang et al. Clustering and resource allocation strategy for D2D multicast networks with machine learning approaches
CN107613556A (zh) 一种基于功率控制的全双工d2d干扰管理方法
Qi et al. Advanced user association in non-orthogonal multiple access-based fog radio access networks
CN115499921A (zh) 面向复杂无人机网络的三维轨迹设计及资源调度优化方法
CN114980126A (zh) 基于深度确定性策略梯度算法的无人机中继通信系统的实现方法
CN113556750B (zh) 基于联盟形成博弈的无人设备内容协同实现方法
Wei et al. Resource allocation and power control policy for device-to-device communication using multi-agent reinforcement learning
CN107371169A (zh) 异构全双工d2d蜂窝网络中基于演化博弈的模式选择和频谱分配机制
CN110753365B (zh) 异构蜂窝网络干扰协调方法
CN115225142B (zh) 多无人机通信中用户匹配与频谱资源联合优化方法及系统
Li et al. Joint power control and scheduling for high-dynamic multi-hop UAV communication: A robust mean field game
Wu et al. Joint optimization of UAVs 3-D placement and power allocation in emergency communications
Kim et al. Energy-Efficient CoMP Joint Transmission in Hybrid-Powered mmWave Networks
Zhou et al. Intelligent Spectrum Allocation for mmWave Integrated Backhaul and Access Network
CN114585004B (zh) 一种基于Actor-Critic算法的多智能体异构网络资源优化方法
Tian et al. Energy-Efficient Multimedia Services with UAV-BS Intelligent Trajectory Planning for Emergency Communications in 6G Networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant