CN111184573A - 一种射频消融法抑制肿瘤细胞生长的方法 - Google Patents
一种射频消融法抑制肿瘤细胞生长的方法 Download PDFInfo
- Publication number
- CN111184573A CN111184573A CN201911171333.XA CN201911171333A CN111184573A CN 111184573 A CN111184573 A CN 111184573A CN 201911171333 A CN201911171333 A CN 201911171333A CN 111184573 A CN111184573 A CN 111184573A
- Authority
- CN
- China
- Prior art keywords
- ablation
- cationic polymer
- radio frequency
- electrode needle
- tissue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0693—Tumour cells; Cancer cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/041—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00529—Liver
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/70—Undefined extracts
- C12N2500/80—Undefined extracts from animals
- C12N2500/84—Undefined extracts from animals from mammals
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Veterinary Medicine (AREA)
- Plasma & Fusion (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Oncology (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cell Biology (AREA)
- General Engineering & Computer Science (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明涉及一种射频消融法扩大肿瘤消融范围的方法,该方法的具体步骤为:(1)将阳离子聚合物溶解后进行过滤灭菌和紫外光照射灭菌;(2)将电极针穿刺插入至目标组织位置;(3)将阳离子聚合物溶液注射在电极针附近;(4)进行射频消融,射频能量通过电极针传入目标组织,实现组织的加热;(5)消融结束,将电极针取出,保留阳离子聚合物溶液在目标组织内;(6)最后,通过组织代谢和循环系统将阳离子聚合物溶液排出体外。该方法的优点为:(1)阳离子聚合物能有效优化射频消融的组织环境,提升消融的范围;(2)阳离子聚合物对肿瘤的抑制作用,能够促进肿瘤的完全消融。
Description
技术领域
本发明涉及扩大肿瘤消融范围的方法,具体涉及配合阳离子聚合物进行射频消融的来扩大肿瘤消融的范围。
背景技术
射频消融是利用射频电流来使生物组织产生电阻热,进而消融病变组织的技术。自20世纪以来,射频消融作为一种微创肿瘤治疗技术,由于其具有创伤小、患者痛苦少、术后恢复时间短等优点已经被广泛的应用在临床肿瘤的治疗当中。整个射频消融系统主要是由一个射频电源、一个电极针和接地板组成。射频电源可以提供一个375-500kHz的交流电流,在电极针和接地板之间形成交变电场,进而在电场作用下电极针周围生物组织内的离子(钠离子、钾离子和氯离子等) 和电子随着电场的方向前后交替移动。由于,离子和电子不断地前后交替移动,相互之间不断地发生碰撞摩擦从而产生摩擦热使生物组织的温度升高,在宏观上则表现为电阻热加热生物组织。当组织被加热到42-46℃间并维持30-60min后就能够造成不可逆的细胞破坏。因此,将46℃认为是造成生物组织凝固损伤的临界温度,随着生物组织温度上升到50-55℃,维持4-6min后组织细胞就开始死亡。进一步的,当组织温度超过60℃时,细胞内蛋白质会发生变性从而导致细胞的立即死亡。但是,当组织温度达到100℃甚至更高时,生物组织因水的沸腾蒸发导致的脱水,致使生物组织发生碳化,碳化的组织作为不良导体阻碍了射频电流的传递[Goldberg,S.N.,Radiofrequency tumorablation: principles and techniques.Eur J Ultrasound,2001.13(2):p.129-47]。当碳化组织包围整个电极针时,则完全切断了电路中射频电流的传递,从而使射频消融终止,对于这种现象我们称为“Roll-off”。射频消融也因受roll-off 的影响,至今仍无法有效实现大肿瘤(直径大于3cm)的单次完全消融[Zhang, B.,et al.,Study of therelationship between the target tissue necrosis volume and the target tissuesize in liver tumours using two-compartment finite element RFA modelling.IntJ Hyperthermia,2014.30(8):p. 593-602]。因此,延迟或避免roll-off的发生,促使射频消融可单次消融更大的区域,这是增大射频消融预后患者存活率和无复发存活率的重要研究方向。
目前,针对roll-off的主要研究方向可以划分为三类:(1)射频能量控制方法的研究;(2)射频电极针的设计;(3)射频消融环境的优化。不同于研究方向(1)和(2)是针对射频消融设备本身的研究,研究方向(3)射频消融环境的优化是针对生物组织的物理特性,通过改变组织物理特性来促使组织自身能够承受更多的能量输入,从而延缓roll-off的发生以增强射频消融治疗的效果。对于射频消融治疗来说,生物组织物理特性中影响roll-off发生和消融效果的主要参数是生物组织的导电率,导电率的提升则能够有效的将射频能量向外传输,以降低电极针附近组织温度的提升速度,同时能够增大有效电阻热(指能促使组织升温的热量)的产生范围。因此,通过改善组织导电率来延缓roll-off的发生以增强消融效果是一种有效的手段。虽然如此,对于组织导电率,目前主要是以注射简单离子溶液(如,盐水、稀盐酸等)来提升生物组织的离子浓度,进而改变组织导电率,提升消融效果。但是,这些溶液在组织内的流动不可控,无法保证溶液能够均匀的扩散,难以形成理想和规整的消融区域,从而增加了肿瘤复发和并发症的风险,同时,目前所用溶液对于肿瘤本身也没有生长抑制的作用 [Jiang,X.-Y.,et al.,Increasing radiofrequency ablation volumeswith the use of internally cooled electrodes and injected hydrochloric acidin ex vivo bovine livers.Int J Hyperthermia,2018.35(1):p.37-43]。
发明内容
本发明的目的在于克服现有技术中存在的问题提供一种射频消融法扩大肿瘤消融范围的方法,在对原有射频消融过程没有不利影响的情况下,通过优化消融环境来增大消融的范围以及提升消融形状的球度。
为达到上述目的,本发明首次提出使用阳离子聚合物来配合射频消融治疗。该方法增强射频消融疗效的原理是:(1)阳离子聚合物溶液作为强电解质溶液,注射入目标生物组织后能够提升组织离子浓度进而增强生物组织导电性,延缓 roll-off的发生,从而增大射频能量的输入量;(2)阳离子聚合物作为聚合物材料能够设计其分子结构来实现肿瘤细胞生长抑制功能;(3)阳离子聚合物溶液由于是大分子结构相较于简单分子溶液,如盐水、稀盐酸等,有更大的动力粘度,能够避免溶液过快的流出目标组织或限制溶液在目标组织范围内,以得到更规整的消融形状。因此,该方法即能够促进射频消融的消融大小和消融形状的球度,也能够抑制肿瘤细胞的生长。
根据上述原理,本发明采用如下技术方案:
一种射频消融法扩大肿瘤消融范围的方法,其特征在于该方法的具体步骤为:
a.将阳离子聚合物溶解后进行过滤灭菌和紫外光照射灭菌;
b.将电极针穿刺插入至目标组织位置;
c.将步骤a所得阳离子聚合物溶液注射在电极针附近,所述的阳离子聚合物溶液的注射量应最少能够保证完全包裹电极针能量输出部位;
d.进行射频消融,射频能量通过电极针传入目标组织,实现组织的加热,直至疗程结束;
e.消融结束,将电极针取出。
上述的阳离子聚合物是能在溶液中电离出正离子和聚合物离子的聚合物,其动力粘度范围在10-3~1Pa·s。
上述的阳离子聚合物为壳寡糖、羧甲基壳聚糖、阳离子聚丙烯酰胺或N-烷基化聚乙烯亚胺。
上述的阳离子聚合物溶液的注射为注射器注入或电极针内部引流道注入。
上述的阳离子聚合物溶液的注射为注射器注入或电极针内部引流道注入。
本发明的一种射频消融法扩大肿瘤消融范围的方法,能够提升目标生物组织的物理特性,如导电性、导热性、导电性随温度增长速率、组织血液灌注率等,其中聚合物离子能够改善或抑制目标生物组织处的病变情况:通过阳离子聚合物来优化射频消融环境,从改变组织物理特性和抑制肿瘤生长两个方面同时增强射频消融的效果。
附图说明
图1是阳离子聚合物溶液的两种示例,(a)壳寡糖和(b)羧甲基壳聚糖。
图2为示例阳离子聚合物对肝癌细胞存活率影响结果。
图3为注射阳离子聚合物溶液后体内肝脏组织导电率的变化情况。
图4为同输入电流下,肝脏模型射频消融的实验结果。
图5为同输入电流下,肝脏模型射频消融的仿真结果。
图6为同输入电流下,射频消融计算机模型仿真中的温度分布图。
具体实施方式
下面结合附图,说明阳离子聚合物溶液对于射频消融肿瘤治疗的具体影响,并予以详细描述,使能更好地理解阳离子聚合物在射频消融中的特点和作用。
实施例一:参见图1和图2
HepG2肝癌细胞被培养在含有10%胎牛血清和1%青霉素/链霉素(PS)的细胞培养液(Dulbecco modified Eagle medium,DMEM)中,培养箱环境为CO2浓度5%和温度37℃。使用前,细胞通过0.25%trypsin-EDTA溶液进行收割,并通过细胞计数器(BioTech,Shanghai Ruiyu Biotech.Co., Ltd.,Shanghai,China)确保细胞悬浮液内细胞浓度为2×106cells/ml(总体存活率>97%)。另外,COS和CMC粉末分别加入至DMEM中,配置成含有不同浓度COS和CMC的DMEM溶液,称为COSDMEM1,10,25和CMCDMEM1,10,25(数字下标为所用的浓度,即1、10和25mg/mL)。此外,所有溶液都通过0.22μm滤芯和紫外光灭菌。将HepG2细胞分别移植到12孔板中分别用COSDMEM1,10,25和CMCDMEM1,10,25进行培养,每孔细胞量为5×105个。同时,选取一组DMEM培养液培养的细胞作为对照组。在培养1、6和24小时后,使用台盼蓝染剂进行细胞死活染色,最终,通过细胞计数器计数被染色的死细胞数和未被染色的活细胞数,计算得细胞的存活率。
图1展示了两种常见的阳离子聚合物(壳寡糖COS和羧甲基壳聚糖CMC)溶液,整个溶液是通过将阳离子聚合物粉末溶解在去离子水中形成的,称为COSDW和CMCDW,以下的实验和仿真过程都以这两种阳离子聚合物为代表。
图2表明了COS和CMC对于肝癌细胞HepG2的生长抑制作用。整个实验结果表示COSDMEM25在1小时后对HepG2就有显著性的生物抑制作用(p<0.001)。而对应浓度的CMCDMEM25对HepG2的生物抑制程度要低于COSDMEM25,其仅在24小时后,相对于对照组CMCDMEM25表现出显著性的抑制作用(p<0.001)。另外,对于更低浓度的COSDMEM和CMCDMEM,在24小时内相对于对照组并没有表现出显著性的细胞存活率的差异。因此,在特定浓度的COS和CMC溶液下,其对于肿瘤细胞有着显著的生长抑制作用。
实施例二:参见图3。
除了COS和CMC本身对于肿瘤细胞的抑制作用,COS和CMC还能改善生物组织的物理特性,即导电率,以促进射频电流的向外扩散,来扩大射频消融的治疗范围。本实验使用了肝脏模型进行了导电率测量,未注射溶液的肝脏模型初始导电率的测量实验为对照组,实验组为针管注射COSDW或CMCDW后肝脏导电率的测量。将COSDW或CMCDW通过注射器充分注射进模型,保证测量范围内COSDW或CMCDW浓度的一致,整个实验共采用了10、50、100mg/mL三个浓度的COSDW和CMCDW进行测量实验,导电率测量装置为实验室自制的四探针测量仪。然后,将四探针插入注射溶液后的肝脏模型中进行测量。
图3显示了整个测量实验的结果,表明随着COSDW和CMCDW的浓度的增高,体内肝脏导电率也随之升高。当所注射溶液的浓度大于50mg/mL时,肝脏导电率有显著性的提升,其中图3中*表示p<0.05,**表示p<0.001。
实施例三:参见图4、图5和图6
实验使用商用的双极镀金电极针(Genetrode,508,Harvard Apparatus,Holliston,MA,USA)对肝脏模型进行射频消融。将两根电极针相距5mm放置,平行插入模型,深度为5mm。再分别在双极电极针的两电极轴向中点处注射2mL (共4mL)阳离子聚合物溶液,本实验根据注射的溶液随机将其分为三组,即,对照组(无溶液注入)、COSDW100组和CMCDW100组,每组做4次实验。溶液注射后,将0.06A的交流电流通过双极电极针输入至肝脏模型中。当组织因高温碳化导致电流输入被阻断后,即roll-off,整个射频消融实验结束。
图4和图5分别展示了注射4mL的COSDW100或CMCDW100后,射频消融的实验和仿真结果,其具体的结果数据如表1所示。在实验和仿真结果中,相较于对照组, COSDW100和CMCDW100消融组的结果中都获得了显著增大的消融区域。详细的,与对照组相比,COSDW100和CMCDW100消融组在消融区域的长径上分别增长了24% (9.48±0.57vs.11.75±0.76mm,p=0.011)和23%(9.48±0.57vs. 11.68±0.76mm,p=0.013),在短径上分别增长了56%(6.38±0.53vs. 9.95±0.71mm,p<0.001)和52%(6.38±0.53vs.9.68±0.24mm,p<0.001)。在消融时间和消融区域的圆度上也可以得到相似的结果。由于COSDW100和CMCDW100溶液的注入,消融时间相较于对照组分别从77±17s增加到300±104s和275±73s。换句话说,roll-off发生的时间显著的被推迟了,这允许COSDW100和CMCDW100消融组中的射频消融过程中沉积更多的射频能量。值得注意的是,在这两种阳离子聚合物溶液的消融组当中,其消融区域的圆度相较于对照组也都有明显提升。我们认为造成这种情况的一个主要原因是注入的阳离子聚合物溶液局部的提升了电极针附近组织的导电率,其导电率的分布情况可通过仿真结果得知(如图6所示),这可以有效的减少射频能量过多的在电极针附近沉积,避免了局部的过多能量沉积所导致局部温度过高,进而延迟了roll-off的发生。如结果所示,由于COSDW100和CMCDW100溶液的注入,消融区域相较于对照组分别增大了 95%(47.6±6.3vs.92.6±11.5mm2,p<0.001)和87%(47.6±6.3vs. 88.8±9.6mm2,p<0.001)。
表1.肝脏模型射频消融结果
以上所述示例内容,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。
Claims (4)
1.一种射频消融法扩大肿瘤消融范围的方法,其特征在于该方法的具体步骤为:
a. 将阳离子聚合物溶解后进行过滤灭菌和紫外光照射灭菌;
b. 将电极针穿刺插入至目标组织位置;
c. 将步骤a所得阳离子聚合物溶液注射在电极针附近,所述的阳离子聚合物溶液的注射量应最少能够保证完全包裹电极针能量输出部位;
d. 进行射频消融,射频能量通过电极针传入目标组织,实现组织的加热,直至疗程结束;
e. 消融结束,将电极针取出。
2.根据权利要求1所述的方法,其特征在于所述的阳离子聚合物是能在溶液中电离出正离子和聚合物离子的聚合物,其动力粘度范围在10-3~1 Pa∙s。
3.根据权利要求2所述的方法,其特征在于所述的阳离子聚合物为壳寡糖、羧甲基壳聚糖、阳离子聚丙烯酰胺或N-烷基化聚乙烯亚胺。
4.根据权利要求1所述的方法,其特征在于所述的阳离子聚合物溶液的注射为注射器注入或电极针内部引流道注入。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911171333.XA CN111184573A (zh) | 2019-11-26 | 2019-11-26 | 一种射频消融法抑制肿瘤细胞生长的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911171333.XA CN111184573A (zh) | 2019-11-26 | 2019-11-26 | 一种射频消融法抑制肿瘤细胞生长的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111184573A true CN111184573A (zh) | 2020-05-22 |
Family
ID=70684366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911171333.XA Pending CN111184573A (zh) | 2019-11-26 | 2019-11-26 | 一种射频消融法抑制肿瘤细胞生长的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111184573A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113616315A (zh) * | 2021-07-28 | 2021-11-09 | 华东理工大学 | 一种可增加消融面积及消融方向可控的脉冲消融方法和液态电极 |
-
2019
- 2019-11-26 CN CN201911171333.XA patent/CN111184573A/zh active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113616315A (zh) * | 2021-07-28 | 2021-11-09 | 华东理工大学 | 一种可增加消融面积及消融方向可控的脉冲消融方法和液态电极 |
CN113616315B (zh) * | 2021-07-28 | 2023-03-10 | 华东理工大学 | 一种可增加消融面积及消融方向可控的脉冲消融方法和液态电极 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Internally cooled antenna for microwave ablation: results in ex vivo and in vivo porcine livers | |
CN109069624A (zh) | 癌症的免疫治疗 | |
CN102416023B (zh) | 美洲大蠊凝胶外用药组合物、其制备方法及其在制备治疗烫伤外用药方面的应用 | |
EP2628458B1 (en) | Combined thermal therapy and hydrogel with embedded stem cell treatment | |
CN103191427A (zh) | 富勒烯及其衍生物在射频或微波照射下作为制备治疗皮肤病或肿瘤药物中的应用 | |
CN112190537B (zh) | 一种扩大肿瘤消融范围的方法 | |
CN109453381A (zh) | 一种抑制皮肤恶性肿瘤细胞生长的低温等离子体激活液 | |
CN111184573A (zh) | 一种射频消融法抑制肿瘤细胞生长的方法 | |
Czymek et al. | Intrahepatic radiofrequency ablation versus electrochemical treatment in vivo | |
CN114848577B (zh) | 一种用于治疗皮下肿瘤的双层导电微针贴片及其制备方法和应用 | |
Shao et al. | Physical and chemical enhancement of and adaptive resistance to irreversible electroporation of pancreatic cancer | |
CN113846047A (zh) | 一种肾靶向载药外泌体及应用和治疗肾脏疾病药物 | |
Cheng et al. | 915 MHz microwave ablation with implanted internal cooled-shaft antenna: initial experimental study in in vivo porcine livers | |
von Euler et al. | Animal models for treatment of unresectable liver tumours: a histopathologic and ultra-structural study of cellular toxic changes after electrochemical treatment in rat and dog liver | |
O'Brien et al. | Advances in the electrochemical treatment of cancers and tumors: exploring the current trends, advancements, and mechanisms of electrolytic tumor ablation | |
Łapińska et al. | Electroporation and electrochemotherapy in gynecological and breast cancer treatment | |
Fang et al. | A novel method to increase tumor ablation zones with RFA by injecting the cationic polymer solution to tissues: in vivo and computational studies | |
WO2007113866A1 (en) | Device and method for the thermal ablation of tumors by means of high-frequency electromagnetic energy | |
Pimentel et al. | Angiogenic effects of cryosurgery with liquid nitrogen on the normal skin of rats, through morphometric study | |
Qu et al. | The hemostatic properties of transurethral plasmakinetic resection of the prostate: comparison with conventional resectoscope in an ex vivo study | |
CN116173072A (zh) | 一种新型抗关节软骨细胞衰老载外泌体ros响应性水凝胶 | |
Koreckij et al. | Low dose, alternating electric current inhibits growth of prostate cancer | |
Ghatee et al. | Cryogel‐Based Electronic–Tissue Interfaces with Soft, Highly Compressible, and Tunable Mechanics | |
Cen et al. | The electrode modality development in pulsed electric field treatment facilitates biocellular mechanism study and improves cancer ablation efficacy | |
CN102488553A (zh) | 球形射频消融电极及其技术方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200522 |