CN111180892B - 天线及移相器 - Google Patents

天线及移相器 Download PDF

Info

Publication number
CN111180892B
CN111180892B CN201811329790.2A CN201811329790A CN111180892B CN 111180892 B CN111180892 B CN 111180892B CN 201811329790 A CN201811329790 A CN 201811329790A CN 111180892 B CN111180892 B CN 111180892B
Authority
CN
China
Prior art keywords
circuit layer
branch
phase shifter
output branch
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811329790.2A
Other languages
English (en)
Other versions
CN111180892A (zh
Inventor
苏国生
吴庚飞
范颂东
段红彬
游建军
陈亚彬
郑桂鑫
法斌斌
陈礼涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Comba Telecom Technology Guangzhou Ltd
Original Assignee
Comba Telecom Technology Guangzhou Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comba Telecom Technology Guangzhou Ltd filed Critical Comba Telecom Technology Guangzhou Ltd
Priority to CN201811329790.2A priority Critical patent/CN111180892B/zh
Priority to PCT/CN2019/090786 priority patent/WO2020093696A1/zh
Priority to EP19883047.3A priority patent/EP3879628B1/en
Publication of CN111180892A publication Critical patent/CN111180892A/zh
Application granted granted Critical
Publication of CN111180892B publication Critical patent/CN111180892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种天线及移相器,包括第一电路层,第一电路层设有输入支路及第一输出支路,第一输出支路与输入支路之间绝缘设置;第二电路层,第二电路层能够相对于第一电路层移动;并且,当第二电路层相对于第一电路层移动至第一位置时,第一输出支路与输入支路断开;当第二电路层相对于第一电路层移动至第二位置时,第一输出支路与输入支路导通;及介质板,介质板能够相对于第一电路层移动,并能够带动第二电路层在第一位置和第二位置之间进行切换。该天线采用上述移相器不仅能够实现电下倾角的调整,还能够实现波束宽度的值的调节。

Description

天线及移相器
技术领域
本发明涉及通信技术领域,特别是涉及一种天线及移相器。
背景技术
随着移动通信的发展,运营商为了满足覆盖和容量需求,增加站点成为一种必然的选择。目前在基站大规模建设后,居民区、商业街等地带的深度覆盖及补盲工作成为各大运营商的工作重点。在这些地带增加传统宏站成本高、周期长,同时天线尺寸较大,选址困难,所以在传统技术中,通常采用的微站天线或低增益定向天线进行覆盖或补盲。
但在实际应用中,一些覆盖场景需要调节波束宽度的值,从而覆盖不同范围的区域时。而微站天线或其他低增益天线垂直面波束宽度的值是固定的,对应的覆盖区域也相对固定,因此无法满足实际应用要求。
发明内容
基于此,有必要提供一种天线及移相器,该移相器在实现天线下倾角的调节的同时,还能够改变电接入天线的辐射单元数量,进而实现天线波束宽度的变化;该天线采用上述移相器不仅能够实现电下倾角的调整,还能够实现波束宽度的值的调节,从而在实际应用中可以根据实际需要调整天线的波束宽度的值,以覆盖不同范围的区域。
其技术方案如下:
一方面,本申请提供一种移相器,包括:第一电路层,所述第一电路层包括输入支路和第一输出支路;
第二电路层,所述第二电路层能够相对于所述第一电路层移动;所述第二电路层设有电连接支路,并且,当所述第二电路层相对于所述第一电路层移动至第一位置时,所述电连接支路与所述输入支路处于绝缘断开状态,使所述第一输出支路与所述输入支路断开;当所述第二电路层相对于所述第一电路层移动至第二位置时,所述电连接支路与所述输入支路处于电连接状态,使所述第一输出支路与所述输入支路导通;及
介质板,所述介质板能够相对于所述第一电路层移动,并能够带动所述第二电路层在所述第一位置和所述第二位置之间进行切换。
上述移相器使用时,输入支路通过输入端口与天线信号的输入端电连接,第一输出支路的输出端口用于与对应的辐射单元电连接。当第二电路层处于第一位置时,该第一输出支路连接的辐射单元不工作;当第二电路层移动至第二位置时,该第一输出支路连接的辐射单元处于工作状态,此时天线具有一个波束宽度的值;且在移相器的输出端口连接有处于工作状态的辐射单元时,通过移相器的介质板的移动,可以改变介质板与第一电路层之间的交叠面积,从而进行天线下倾角的调节。该移相器通过设置第二电路层,并利用介质板相对于第一电路层的运动来带动所述第二电路层相对于所述第一电路层运动,可以在实现下倾角调节的同时,方便的控制第一输出支路与输入支路的导通/断开,从而改变与由该移相器接入的处于工作状态的的辐射单元数量,进而实现天线的波束宽度的调节。该移相器整体结构简单紧凑,可适应不同的覆盖场景需求,应用前景广阔。
下面进一步对技术方案进行说明:
在其中一个实施例中,所述第一输出支路与输入支路绝缘设置,所述第二电路层设于所述第一输出支路与所述输入支路之间,并通过与所述输入支路和所述第一输出支路的耦合/分离对应控制所述输入支路与所述第一输出支路的导通/断开。
在其中一个实施例中,所述第一电路层还包括第二输出支路,所述第二输出支路与所述输入支路电连接。
在其中一个实施例中,所述介质板相对于所述第一电路层移动包括正向运动和反向运动,所述第二电路层由所述第一位置到所述第二位置的切换通过所述介质板的反向运动实现,所述第二电路层由所述第二位置到所述第一位置的切换通过所述介质板的正向运动实现。
在其中一个实施例中,所述介质板设有用于驱动所述第二电路层从所述第二位置移动至所述第一位置的第一驱动部、以及用于驱动所述第二电路层从所述第一位置移动至所述第二位置的第二驱动部,所述第一驱动部与所述第二驱动部间隔设置。
在其中一个实施例中,所述第二电路层设置于基板上,所述第一驱动部和所述第二驱动部通过驱动所述基板来带动所述第二电路层在所述第一位置和所述第二位置之间切换,在所述基板上设有与所述介质板的运动方向呈夹角的第一斜端面、及与所述第一斜端面相对的第二斜端面,所述第一驱动部为设于所述介质板上并与所述第一斜端面相适配的第三斜端面,所述第二驱动部为设于所述介质板上并与所述第二斜端面相适配的第四斜端面。
在其中一个实施例中,所述介质板上设有可容置所述基板的凹槽,所述凹槽包括相对设置的第一内侧壁和第二内侧壁,所述第一内侧壁和所述第二内侧壁对应作为所述第三斜端面和所述第四斜端面。
在其中一个实施例中,所述凹槽大致呈“﹄”形,所述“﹄”形凹槽包括依次设置的第一至第三纵壁,所述第一纵壁和所述第二纵壁对应为所述第一内侧壁和所述第二内侧壁。
在其中一个实施例中,所述“﹄”形凹槽中由下至上依次设置的第一横壁、第二横壁和第三横壁,其中,所述第一横壁位于最下方,所述第二横壁位于所述第一横壁与所述第三横壁之间,且所述第一横壁和所述第二横壁之间的间距与所述基板的宽度相等。
在其中一个实施例中,所述第一电路层上还设有对所述第二电路层的移动起导向作用的导向结构。
在其中一个实施例中,所述导向结构包括设置于所述第一电路层上的导轨、以及设置于所述第二电路层上的导向件,所述导向件与所述导轨滑动配合。
在其中一个实施例中,所述第二电路层包括相对分布于所述第一电路层上下两侧的上电路层和下电路层,且所述上电路层和所述下电路层固定连接。
在其中一个实施例中,所述第一电路层有两个,所述介质板有两个,两个第一电路层相对设置并保持电连接,两个所述第一电路层均设于两个所述介质板之间,且两个所述介质板同步运动。
在其中一个实施例中,所述第一电路层还包括第三输出支路,所述第二电路层至少有两个,各所述第二电路层沿介质板运动方向间隔设置,且至少一个所述第二电路层与所述第三输出支路对应设置;
当所述第二电路层相对于所述第一电路层移动至第三位置时,所述第三输出支路与所述输入支路或相邻的所述第一输出支路断开;
当所述第二电路层相对于所述第一电路层移动至第四位置时,所述第三输出支路与所述输入支路或相邻的所述第一输出支路导通;
所述介质板能够带动与所述第三输出支路对应的所述第二电路层在所述第三位置和所述第四位置之间进行切换。
另一方面,本申请还提供了一种天线,包括上述的移相器,还包括馈电网络及与所述移相器的输出端口一一对应的辐射单元,所述馈电网络设有与所述输入支路通过输入端口电连接的输入端。
该天线使用时,输入支路通过输入端口与天线信号的输入端电连接,第二输出支路及第一输出支路的输出端口均用于与对应的辐射单元电连接。当第二电路层处于第一位置时,该第一输出支路连接的辐射单元不工作,此时天线可具有相对较宽的波束宽度;当第二电路层移动至第二位置时,该第一输出支路连接的辐射单元处于工作状态,此时天线具有相对较窄的波束宽度;且在移相器的输出端口连接有处于工作状态的辐射单元时,通过移相器的介质板的移动,可以改变介质板与第一电路层之间的交叠面积,从而进行天线下倾角的调节。因此,该天线在实际应用过程中,可利用移相器介质板相对于第一电路层的运动来带动所述第二电路层相对于所述第一电路层运动,在实现下倾角调节的同时,方便的控制第一输出支路与输入支路的导通/断开,从而改变与由该移相器接入的处于工作状态的的辐射单元数量,进而实现天线的波束宽度的调节。该天线整体结构简单紧凑,可适应不同的覆盖场景需求,应用前景广阔。
附图说明
图1为第一实施例中的移相器的分解结构示意图;
图2为图1所示移相器在第一种状态下的结构示意图;
图3为图1所示移相器在第二种状态下的结构示意图;
图4为图1所示移相器在第三种状态下的结构示意图;
图5为图1所示移相器中第二电路层的放大示意图;
图6为图1所示移相器中第二电路层使输入支路与第一输出支路导通的结构示意图;
图7为图1所示移相器中第二电路层使输入支路与第一输出支路断开的结构示意图;
图8为图1所示介质板的一结构示意图;
图9为图1所示介质板的另一结构示意图;
图10为第二实施例中的移相器的分解结构示意图;
图11为第三实施例中的移相器的第一电路层的结构示意图;
图12为第三实施例中的移相器在第一种状态下的结构示意图;
图13为图12所示移相器在第二种状态下的结构示意图;
图14为图12所示移相器在第三种状态下的结构示意图;
图15为图12所示移相器在第四种状态下的结构示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当元件与另一个元件相互垂直或近似垂直是指二者的理想状态是垂直,但是因制造及装配的影响,可以存在一定的垂直误差。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
此外,文中所述的“斜导槽”、“斜向轨迹”等中的“斜”是指相对于介质板的移动方向,呈斜向设置(相交状态)。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明中涉及的“第一”、“第二”、“第三”、“第四”及“第五”不代表具体的数量及顺序,仅仅是用于名称的区分。
如图1所示,本实施例提供一种移相器,包括:第一电路层100,第一电路层100具有至少两个输出端口(具体在本实施例中,为了便于说明,以五个输出端口,即P1~P5进行描述)及至少一个输入端口IN(为了简化第一电路层100,本实施例中仅设有一个输入端口IN),第一电路层100设有输入支路130和第一输出支路140,该输入支路130与输入端口110电连接;第二电路层200,结合图2至图7,该第二电路层200能够相对于第一电路层100移动;参照图4和图7,当第二电路层200相对于第一电路层100移动至第一位置时,第一输出支路140与输入支路130断开;参照图2、图3、图5和图6,当第二电路层200相对于第一电路层100移动至第二位置时,第一输出支路140与输入支路130导通;具体在本实施例中,第二电路层200可设有电连接支路210;当第二电路层200处于第一位置时,电连接支路210与输入支路130处于绝缘断开状态;当第二电路层200处于第二位置时,电连接支路210与输入支路130处于电连接状态;及介质板300,结合图2至图4,该介质板300能够相对于第一电路层100移动,并且,该介质板300能够带动第二电路层200在上述第一位置和第二位置之间进行切换,从而实现第一输出支路140与输入支路130之间的导通和断开的切换。
参照图1至图7,作为本发明的一个优选实施例,上述第一电路层100还包括第二输出支路150,第二输出支路150与输入支路130始终保持电连接。如此,可以使与移相器的第一电路层100中至少有一条支路始终处于导通状态,相应的,移相器的输出端口P1~P5连接的辐射单元中至少有一个可以始终处于工作状态。如此,以移相器的第一电路层100中具有两条输出支路时,可以避免需要通过第二电路层200分别控制两条输出支路与输入支路130的导通/断开,并且还必须保证在移相器工作过程中,至少有一个输出支路是与输入支路130导通的,因此可简化整个开/关控制的复杂度,从而有利于简化移相器的结构。
当然了,在其他实施例中,该移相器的第一电路层100也可具有多条第一输出支路140,而不设置第二输出支路150,对此不作限制。
参照图1至图4,具体在本实施例中,该移相器可包括四个第一输出支路140和一个第二输出支路150,其中四个第一输出支路140分别对应输出端口P1、P2、P4和P5,第二输出支路150对应输出端口P3,为了便于说明,下文均以该数量为例进行描述。
上述移相器在使用时,输入支路130通过输入端口110与天线信号的输入端电连接,第一输出支路140的输出端口(具体在本实施例中为输出端口P1、P2、P4和P5)和第二输出支路150的输出端口(具体在本实施例中为输出端口P3)分别用于与对应的辐射单元(未示出)电连接。当第二电路层200处于第一位置时,该第一输出支路140与输入支路130断开,则第一输出端口P1、P2、P4和P5连接的辐射单元不工作,有输出端口P3连接的辐射单元处于工作状态,此时天线可具有较宽的波束宽度;当第二电路层200移动至第二位置时,该第一输出支路140与输入支路130导通,则输出端口P1~P5连接的辐射单元均处于工作状态,此时天线具有较窄的波束宽度;且在移相器的输出端口连接有处于工作状态的至少两个辐射单元时,通过移相器的介质板300的移动,可以改变介质板300与第一电路层100之间的交叠面积,从而进行天线下倾角的调节。该移相器通过设置第二电路层200,并利用介质板300相对于第一电路层100的运动来带动第二电路层200相对于第一电路层100运动,可以在实现下倾角调节的同时,方便的控制第一输出支路140与输入支路130的导通/断开,从而改变与该移相器连接的处于工作状态的辐射单元的数量,进而实现天线的波束宽度的调节,其整体结构简单紧凑,可适应不同的覆盖场景需求,应用前景广阔。
参照图1和图7,在部分实施例中,上述第一输出支路140与输入支路130优选绝缘设置,第二电路层200设于第一输出支路140与输入支路130之间,并且该第二电路层200通过与输入支路130和第一输出支路140的耦合/分离来对应控制输入支路130和第一输出支路140之间的导通/端开。如此,第二电路层200可起到类似耦合开关的作用,更加方便由介质板300控制其开/关。
参照图2至图4,作为本发明的一个优选实施例,上述介质板300相对于第一电路层100的移动包括正向运动(如图中实心箭头所示方向)和反向运动(如图中空心箭头所示方向),上述第二电路层200由第一位置到第二位置的切换通过介质板300的反向运动实现,上述第二电路层200由第二位置到第一位置的切换通过介质板300的正向运动实现。即:这种单向控制的方式,可以进一步简化移相器的结构。
如图1至图5所示,该移相器还包括基板400,第二电路层200设置于基板400上。如此,便于第二电路层200的移动。该基板400的材质可为现有的任意一种或多种绝缘材料制成,如线路板基材或塑料。
同理,第一电路层100也可以设置于另一块基板上,然后通过基板固设于移相器腔体内,在此不作详述。
上述介质板300可与设有第一电路层100的基板滑动连接,以便于更加准确的控制介质板300与第一电路层100的相对位置。
如图1至图4所示,一实施例中,介质板300设有用于驱动第二电路层200从第一位置移动至第二位置的第一驱动部311、以及用于驱动第二电路层200从第二位置移动至第一位置的第二驱动部312,第一驱动部311与第二驱动部312间隔设置。第一驱动部311和第二驱动部312通过驱动基板400带动第二电路层200在上述第一位置和第二位置之间切换。当介质板300按照第一预设方向移动(即上文所述反向运动)过程中,即由图4所示状态切换至图3所示状态,通过第一驱动部311推动基板400从第一位置移动至第二位置;当介质板300按照第一预设方向的反方向移动(即上文所述正向运动)过程中,即由图3所示状态切换至图4所示状态,通过第二驱动部312推动基板400从第二位置移动至第一位置。
参照图2至图4,在本实施例中,较为优选的是,介质板300相对于第一电路层100的运动为直线运动,介质板300可沿预设的直线进行抽拉,如此可以改变各个输出端口120对应的介质板300面积大小,从而改变各输出端口120的相位差,实现对天线下倾角的调节。利用上述技术方案,当介质板300从图4所示状态反向运动至图3所示状态后,介质板300可按预设的直线继续反向移动从而形成图2所示状态,此时第二驱动部312不会与基板400发生配合,而第二电路层200仍处于第二位置,移相器的第一输出支路140和四条第二输出支路150均处于导通状态,输出端口P1~P5所连接的辐射单元均处于工作状态,介质板300从图3所示状态运动至图2所示状态以及再由图2所示状态运动运动至图3所示状态的过程中,移相器可以在五个辐射单元工作的状态下,通过介质板300的移动调节天线下倾角。当介质板300由图3所示状态继续运动至图4所示状态的过程中,第二驱动部312可推动基板400并相应的带动第二电路层200从第二位置移动至第一位置,此时通过断开输入支路与四个第一输出支路140从而使四个辐射单元不工作,只有端口P3连接的辐射单元工作,从而实现天线波束宽度大小的调整。
应当理解的是,上述第一位置和第二位置可根据实际需求进行设置。
在一实施例中,参照图1至图4,在基板400上设有与介质板300的运动方向呈夹角的第一斜端面410及与第一斜端面410相对的第二斜端面420,第一驱动部311为设于介质板300上并与第一斜端面410相适配的第三斜端面,第二驱动部312为设于介质板300上并与第二斜端面420相适配的第四斜端面。如此,利用上述各斜端面在运动可产生推动基板400朝介质板300运动方向的一侧移动的力,使基板400和对应的第二电路层200沿斜向轨迹在第一位置和第二位置之间进行切换;有利于避免干涉介质板300正常运动,并且易于实现,同时也不破坏移相器的外壳原有结构。
具体在本实施例中,上述第一斜端面410和第二斜端面420优选与介质板300的反向运动方向呈45°的夹角设置,或者说与介质板300的正向运动方向呈145°的夹角设置。为了便于说明,下文也以该角度设置形式进行说明,应当理解的是,在实际应用时,可以根据第二电路层200的实际切换方向对上述斜端面的设置角度进行相应的调整,在此不做限制。
基于上述实施例,更具体地,如图1至4所示,介质板300上设有可容置基板400的凹槽310。结合图8所示,该凹槽310包括相对设置的第一内侧壁11和第二内侧壁12,第三斜端面和第四斜端面分别由第一内侧壁11和第二内侧壁12提供。通过设置凹槽310,不仅可以方便的实现介质板300带动第二电路层200运动,还可以充分利用凹槽310的空间来布置设有第二电路层200的基板400,从而使移相器的结构更加紧凑,有利于移相器的小型化。如图1至图4,上述凹槽大致呈“﹄”形。参照图8所示,所述“﹄”形凹槽包括依次设置的第一纵壁、第二纵壁及第三纵壁13,其中,第二纵壁即为上述第一内侧壁11,第一纵壁即为上述第二内侧壁12,第一纵壁与第二纵壁之间的高度关系为H1>H2,且第一纵壁与第三纵壁之间的高度关系为H1>H3,第一至第三纵壁之间的高度关系为H1>H2≥H3,整体结构简单,制作方便。其中第三纵壁13的高度H3应≥设有第二电路层200的基板400的宽度。上述高度的第一纵壁和第二纵壁可确保基板400具有足够实现导通和断开切换的移动空间。上述“﹄”形凹槽310中由下至上依次设置的第一横壁14、第二横壁15及第三横壁16,即:该“﹄”形凹槽310由第一纵壁、第一横壁14、第二纵壁、第二横壁15、第三纵壁13和第三横壁16依次围设而成。其中,第一横壁14和第二横壁15之间的间距还进一步优选与基板400的宽度相适应,以使基板400位于第一横壁14和第二横壁15之间的凹槽310空间内时(此时第二电路层200位于第二位置,四个第一输出支路140与输入支路130之间处于导通状态,该第一输出支路140的输出端口P1、P2、P4和P5对应的辐射单元处于工作状态),介质板300在相对于第一电路层100移动时,第一横壁14和第二横壁15可对基板400起到纵向限位作用,使第一输出支路140与输入支路130在导通状态下具有较好的稳定性,以利于进一步的相位调节。
结合图8和图9,为了进一步说明,上述凹槽310也可以包括第一条形槽330及与第一条形槽330相通的第二条形槽340。第一条形槽330位于第二条形凹槽340的纵向一侧,且第一条形槽330的横向长度小于第二条形槽340的横向长度。第二内侧壁12由第一条形槽330和第二条形槽340相互拼接的侧壁构成,第二内侧壁12由第一条形槽330中与该第一内侧壁11相对的侧壁构成。由于第一内侧壁11作为第一驱动部311,第二内侧壁12作为第二驱动部312;故当第二电路层200位于第一条形槽330内时,该第二电路层200处于第一位置,当第二电路层200位于第二条形槽340内时,该第二电路层200处于第二位置。并且,当第二电路层200由第一条形槽330移动至第二条形槽340内后,在第二条形槽340限定的横向区间内,该介质板300由图3所示状态运动继续正向运动至图2所示状态以及由图2所示状态反向运动至图3所示状态(即:第二内侧壁12与基板400的第二斜端面420相抵)的较大区间内,第二电路层200可不相对于第一电路层100移动,从而可在第一输出支路140与输入支路130处于导通的状态下能进一步通过介质板300稳定的进行较大范围的相位调节。第一条形槽330的横向长度优选≥基板400的长度,第二条形槽330的横向长度优选为基板400长度的2倍以上。
当然了,在其他实施例中,上述介质板与第二电路层之间也通过其他导向部件进行配合,此时该第一驱动部及第二驱动部可为凸起。
此外,可以根据第二电路层200的移动轨迹设置形成的驱动力方向,也可以根据形成的驱动力方向设置第二电路层200的移动轨迹。
参照图1至图4,一实施例中,第一电路层100上还设有对第二电路层200的移动起导向作用的有导向结构(未示出)。第二电路层200通过导向结构能够在第一位置和第二位置之间进行移动。进而利用导向结构引导第二电路层200进行移动形成移动轨迹,如此便于得到推力方向,进而可以设置第一驱动部311及第二驱动部312的形状及位置关系。换句话说,该导向结构应与基板400的切换运动轨迹相适应,以更好的与介质板300上的第一驱动部311和第二驱动部312配合控制基板400的运动。该导向结构的具体方式可以通过任意一种满足使用要求的现有技术实现。如,一实施例中,导向结构包括设置于第一电路层100上的导轨160、以及设置于第二电路层200上(具体在本实施例中为设于基板400上)的导向件500,导向件500与导轨160滑动配合。进而通过设置导轨160来使第二电路层200沿预设的轨迹在第一电路层100上移动。该导轨160的结构可以有多种,如导槽、滑轨等,该导向件500的结构可根据导轨160的结构进行适应性调整。具体在本实施例中,优选设有两个平行设置导向结构,从而进一步提高基板400在进行切换运动时的稳定性。
如图1和图3所示,一实施例中,导轨160为斜导槽,导向件500与斜导槽滑动配合,使得第二电路层200能够在第一位置与第二位置之间沿斜向轨迹滑动。如此便于在不影响第一电路层100的性能情况下,实现第二电路层200与第一电路层100的导向配合,且第二电路层200的移动轨迹为斜向,且介质板300的移动方向相交,如此便于通过在介质板300上设置第一驱动部311及第二驱动部312形成斜向的推力。
在图1的基础上,结合图10,在部分实施例中,该移相器中的第一电路层100可以有两层,两层第一电路层100可通过金属过孔电连接,例如可以采用双层PCB板或者在非金属基板上通过电镀/镭雕等工艺形成,介质板300也可相应的由两个,该双层PCB板或非金属基板设于两个介质板300之间,即:两个介质板300与两个第一电路层100一一对应设置。且两个介质板的移动同步且同向。如此,可以使介质板300相对于第一电路层100移动一个单位距离时,介质板300与第一电路层100之间交叠面积的变化量较大,在要求移相器具有较大的移相量时有利于天线整机的布局。
在图1的基础上,结合图10,在部分实施例中,上述第二电路层200可以包括上电路层201和下电路层201,上电路层201和下电路层201相互固定连接并分布于第一电路层100的上下两侧。如此,在第二电路层200相对于第一电路层100活动连接的前提下,更加方便第二电路层200与第一电路层100之间的组装,并且有利于第二电路层200与第一电路层100之间贴近设置。较为简单的是,这上电路层201和下电路层201通过导向件500连接在一起。该导向件500可以为卡扣等结构。
参照图11至图15,与上述实施例不同的是,上述第二电路层200至少有两个,各第二电路层200沿介质板300运动方向间隔设置,上述第一电路层100还包括第三输出支路170,且第三输出支路170对应有第二电路层200;当第二电路层200相对于第一电路层100移动至第三位置时,第三输出支路170与输入支路130或相邻的第一输出支路140断开;当第二电路层200相对于第一电路层100移动至第四位置时,第三输出支路170与输入支路130或相邻的第一输出支路140导通;介质板300能够带动与第三输出支路170对应的第二电路层200在上述第三位置和第四位置之间进行切换。如此,以便于介质板300能够在其运动行程的不同区间内,分别带动各第二电路层200在其各自对应的第一位置和第二位置之间、第三位置和第四位置之间进行切换,从而分别控制相应的输入支路130与各第一输出支路140的通/断。在这种情况下,同样只需在介质板300上对应开设多个凹槽310即可相应的驱动各第二电路层200分别运动,从而进一步提升移相器的波束调节范围,以适应更多的覆盖场景。
具体在本实施例中,参照图11,为了便于描述,设第二电路层200有三个,第一输出支路140有2个并分别对应输出端口P2、P4,第二输出支路150有一个并始终与输入支路130电连接,第三输出支路170有2个并分别对应输出端口P1、P5。为了简化电路结构,第一电路层100中,输出端口P2、P4连接的第一输出支路140电连接后与输入支路130绝缘设置,输出端口P1、P5对应的第三输出支路170优选与其邻近的第一输出支路140绝缘设置,如此,控制第三输出支路170与相应的第一输出支路140的耦合/分离更加容易实现,为了方便说明,下文也以此第一电路层100进行描述。
定义三个第二电路层200沿介质板300正向运动的方向依次为200a、200b、200c,如图12所示,在该状态下,第二电路层200b对应的端口P2和P4连接的第一输出支路140与输入支路130处于导通状态,第二电路层200a和200b对应的端口P1和P5连接的第三输出支路170处于断开状态,此时,输出端口P2、P3、P4连接的辐射单元处于工作状态,即:此时,移相器连接3个辐射单元,天线的波束宽度值约为22°。如图13、图14所示,在该状态下,第二电路层200b对应的第一输出支路140和第二电路层200a、200c对应的第三输出支路170均处于导通状态,此时,输出端口P1~P5连接的辐射单元均处于工作状态,即移相器可连接5个辐射单元,天线的波束宽度值约为13°。此时,拉动介质板300可改变各端口的相位,使输出端口的相位成2φ,φ,0,-φ,-2φ的变化关系,从而调节天线的下倾角。如图15所示,在该状态下,输入端口IN与输出端口P3保持导通状态,第二电路层200b对应的第一输出支路140处于断开状态,相应的第三输出支路170也处于断开状态,进而输入端口与输出端口P1、P2、P3和P5均处于断开状态,即:此时,移相器只连接1个辐射单元,天线的波束宽度值约为65°。
总之,通过设计第一电路层200中各输出支路、第二电路层200及介质板300上的凹槽310,可控制移相器各端口的通/断,改变天线辐射单元工作的数量,进而改变天线的波束宽度。
需要说明的是,“第一位置”、“第二位置”、“第三位置”及“第四位置”的表述仅为了表示第二电路层200具有实现电路通/断切换的位置,该“第一位置”、“第二位置”、“第三位置”及“第四位置”可以根据实际情况进行设置。在设有多个第二电路层200时,各第二电路层200朝导通方向切换时的运动方向也可以不一致。上述第二电路层200的个数、介质板300上的凹槽310数等都可以根据实际需要进行设置,具体不做限制。同时,移相器的端口数并不限定为5个,可设置为≥2的任意端口数。
在其他实施例中,介质板300相对于第一电路层100的运动也可以为弧线运动,即:移相器为弧形移相器;本领域技术人员可以根据本发明上述实施例的思路进行类似的设置,为了节约篇幅,在此不作详述。
另一实施例中,本申请还提供了一种天线,包括上述移相器及与该移相器的输出支路一一对应连接的辐射单元。
上述天线,由于与上述移相器实施例基于同一构思,其带来的技术效果与本发明移相器实施例相同,具体内容可参见本发明移相器实施例中的叙述,此处不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

1.一种移相器,其特征在于,包括:
第一电路层,所述第一电路层包括输入支路和第一输出支路;
第二电路层,所述第二电路层能够相对于所述第一电路层移动;所述第二电路层设有电连接支路,并且,当所述第二电路层相对于所述第一电路层移动至第一位置时,所述电连接支路与所述输入支路处于绝缘断开状态,使所述第一输出支路与所述输入支路断开;当所述第二电路层相对于所述第一电路层移动至第二位置时,所述电连接支路与所述输入支路处于电连接状态,使所述第一输出支路与所述输入支路导通;及
介质板,所述介质板能够相对于所述第一电路层移动,并能够带动所述第二电路层在所述第一位置和所述第二位置之间进行切换。
2.根据权利要求1所述的移相器,其特征在于,所述第一输出支路与输入支路绝缘设置,所述第二电路层设于所述第一输出支路与所述输入支路之间,并通过与所述输入支路和所述第一输出支路的耦合/分离对应控制所述输入支路与所述第一输出支路的导通/断开。
3.根据权利要求1所述的移相器,其特征在于,所述第一电路层还包括第二输出支路,所述第二输出支路与所述输入支路电连接。
4.根据权利要求1所述的移相器,其特征在于,所述介质板相对于所述第一电路层移动包括正向运动和反向运动,所述第二电路层由所述第一位置到所述第二位置的切换通过所述介质板的反向运动实现,所述第二电路层由所述第二位置到所述第一位置的切换通过所述介质板的正向运动实现。
5.根据权利要求1所述的移相器,其特征在于,所述介质板设有用于驱动所述第二电路层从所述第二位置移动至所述第一位置的第一驱动部、以及用于驱动所述第二电路层从所述第一位置移动至所述第二位置的第二驱动部,所述第一驱动部与所述第二驱动部间隔设置。
6.根据权利要求5所述的移相器,其特征在于,所述第二电路层设置于基板上,所述第一驱动部和所述第二驱动部通过驱动所述基板来带动所述第二电路层在所述第一位置和所述第二位置之间切换,在所述基板上设有与所述介质板的运动方向呈夹角的第一斜端面、及与所述第一斜端面相对的第二斜端面,所述第一驱动部为设于所述介质板上并与所述第一斜端面相适配的第三斜端面,所述第二驱动部为设于所述介质板上并与所述第二斜端面相适配的第四斜端面。
7.根据权利要求6所述的移相器,其特征在于,所述介质板上设有可容置所述基板的凹槽,所述凹槽包括相对设置的第一内侧壁和第二内侧壁,所述第一内侧壁和所述第二内侧壁对应作为所述第三斜端面和所述第四斜端面。
8.根据权利要求7所述的移相器,其特征在于,所述凹槽大致呈“﹄”形,所述“﹄”形凹槽包括依次设置的第一纵壁、第二纵壁及第三纵壁,所述第一纵壁和所述第二纵壁对应为所述第一内侧壁和所述第二内侧壁。
9.根据权利要求8所述的移相器,其特征在于,所述“﹄”形凹槽中由下至上依次设置的第一横壁、第二横壁和第三横壁,其中,所述第一横壁位于最下方,所述第二横壁位于所述第一横壁与所述第三横壁之间,且所述第一横壁和所述第二横壁之间的间距与所述基板的宽度相等。
10.根据权利要求1所述的移相器,其特征在于,所述第一电路层上还设有对所述第二电路层的移动起导向作用的导向结构。
11.根据权利要求10所述的移相器,其特征在于,所述导向结构包括设置于所述第一电路层上的导轨、以及设置于所述第二电路层上的导向件,所述导向件与所述导轨滑动配合。
12.根据权利要求1所述的移相器,其特征在于,所述第二电路层包括相对分布于所述第一电路层上下两侧的上电路层和下电路层,且所述上电路层和所述下电路层固定连接。
13.根据权利要求1所述的移相器,其特征在于,所述第一电路层有两个,所述介质板有两个,两个第一电路层相对设置并保持电性连接,两个所述第一电路层均设于两个所述介质板之间,且两个所述介质板同步运动。
14.根据权利要求1至13中任意一项所述的移相器,其特征在于,所述第一电路层还包括第三输出支路,所述第二电路层至少有两个,各所述第二电路层沿介质板运动方向间隔设置,且至少一个所述第二电路层与所述第三输出支路对应设置;
当所述第二电路层相对于所述第一电路层移动至第三位置时,所述第三输出支路与所述输入支路或相邻的所述第一输出支路断开;
当所述第二电路层相对于所述第一电路层移动至第四位置时,所述第三输出支路与所述输入支路或相邻的所述第一输出支路导通;
所述介质板能够带动与所述第三输出支路对应的所述第二电路层在所述第三位置和所述第四位置之间进行切换。
15.一种天线,其特征在于,包括如权利要求1至14任一项所述的移相器及与所述移相器的输出支路一一对应连接的辐射单元。
CN201811329790.2A 2018-11-09 2018-11-09 天线及移相器 Active CN111180892B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811329790.2A CN111180892B (zh) 2018-11-09 2018-11-09 天线及移相器
PCT/CN2019/090786 WO2020093696A1 (zh) 2018-11-09 2019-06-11 天线及移相器
EP19883047.3A EP3879628B1 (en) 2018-11-09 2019-06-11 Antenna and phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811329790.2A CN111180892B (zh) 2018-11-09 2018-11-09 天线及移相器

Publications (2)

Publication Number Publication Date
CN111180892A CN111180892A (zh) 2020-05-19
CN111180892B true CN111180892B (zh) 2021-05-07

Family

ID=70611120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811329790.2A Active CN111180892B (zh) 2018-11-09 2018-11-09 天线及移相器

Country Status (3)

Country Link
EP (1) EP3879628B1 (zh)
CN (1) CN111180892B (zh)
WO (1) WO2020093696A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111600099B (zh) * 2019-02-20 2021-10-26 华为技术有限公司 移相器及电调天线
CN113013625B (zh) 2019-12-20 2022-11-04 华为机器有限公司 一种波束调整组件及天线系统
CN111585024B (zh) * 2020-05-20 2023-03-31 中信科移动通信技术股份有限公司 介质移相器及5g基站天线
WO2022156385A1 (en) * 2021-01-19 2022-07-28 Telefonaktiebolaget Lm Ericsson (Publ) Device for power dividing and phase shifting
CN112928454B (zh) * 2021-02-01 2023-01-20 中信科移动通信技术股份有限公司 一种馈电网络切换装置及天线
WO2024088526A1 (en) 2022-10-25 2024-05-02 Telefonaktiebolaget Lm Ericsson (Publ) Antenna

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333683B1 (en) * 1998-09-04 2001-12-25 Agere System Optoelectronics Guardian Corp. Reflection mode phase shifter
JP3310260B2 (ja) * 2000-07-19 2002-08-05 日本電業工作株式会社 移相器
WO2010131895A2 (en) * 2009-05-11 2010-11-18 Kmw Inc. Multi-line phase shifter for vertical beam tilt-controlled antenna
CN203787537U (zh) * 2014-03-27 2014-08-20 华为技术有限公司 一种电调天线移相器
CN104090531A (zh) * 2014-06-06 2014-10-08 西安华为技术有限公司 开关组件、开关组件控制方法、控制器及基站
CN106921011A (zh) * 2015-12-28 2017-07-04 西安华为技术有限公司 一种移相器及天线
CN108598707A (zh) * 2018-05-29 2018-09-28 深圳国人通信股份有限公司 一种移相器开关

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2773242A (en) * 1952-04-02 1956-12-04 Itt Microwave switching arrangements
US2990523A (en) * 1958-12-03 1961-06-27 Thompson Ramo Wooldridge Inc Tri-plate line switch and power splitter
JPH104305A (ja) * 1996-06-18 1998-01-06 Furukawa Electric Co Ltd:The 電力分配型移相器
CA2298326A1 (en) * 1999-03-02 2000-09-02 Li-Chung Chang Ultrawide bandwidth electromechanical phase shifter
JP2005303690A (ja) * 2004-04-13 2005-10-27 Makita Corp 移相器
US20110140805A1 (en) * 2009-12-16 2011-06-16 Wha Yu Industrial Co., Ltd. Phase shifter
KR101089514B1 (ko) * 2010-01-21 2011-12-05 (주)하이게인안테나 이동통신 안테나용 전력위상가변기
CN101820090A (zh) * 2010-04-15 2010-09-01 中国科学技术大学 一种采用齿状或梳状结构介质滑片的新型移相器
WO2018120618A1 (zh) * 2016-12-27 2018-07-05 深圳国人通信股份有限公司 一种小型化单步式移相器
CN106684561B (zh) * 2017-01-16 2023-07-07 东南大学 一种天线结构及设计方法
CN109638391B (zh) * 2018-11-09 2020-07-07 华南理工大学 介质移动式移相器及基站天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333683B1 (en) * 1998-09-04 2001-12-25 Agere System Optoelectronics Guardian Corp. Reflection mode phase shifter
JP3310260B2 (ja) * 2000-07-19 2002-08-05 日本電業工作株式会社 移相器
WO2010131895A2 (en) * 2009-05-11 2010-11-18 Kmw Inc. Multi-line phase shifter for vertical beam tilt-controlled antenna
CN203787537U (zh) * 2014-03-27 2014-08-20 华为技术有限公司 一种电调天线移相器
CN104090531A (zh) * 2014-06-06 2014-10-08 西安华为技术有限公司 开关组件、开关组件控制方法、控制器及基站
CN106921011A (zh) * 2015-12-28 2017-07-04 西安华为技术有限公司 一种移相器及天线
CN108598707A (zh) * 2018-05-29 2018-09-28 深圳国人通信股份有限公司 一种移相器开关

Also Published As

Publication number Publication date
EP3879628A4 (en) 2022-01-05
CN111180892A (zh) 2020-05-19
EP3879628B1 (en) 2023-04-12
WO2020093696A1 (zh) 2020-05-14
EP3879628A1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
CN111180892B (zh) 天线及移相器
CN109921157B (zh) 移相器及天线
CN109638391B (zh) 介质移动式移相器及基站天线
CN100435414C (zh) 差分相位连续可变的波束形成网络
Ruiz-Cruz et al. Waveguide antenna feeders with integrated reconfigurable dual circular polarization
CN108604730B (zh) 相位变换装置
CN201699109U (zh) 基站电调天线的移相器
CN112803163B (zh) 移相电路、移相器及天线
CN104681896A (zh) 一种多路一体化介质移相器
CN105140600A (zh) 小型化介质移相器组及天线阵馈电网络
CN106972267B (zh) 一种应用于基站天线的空间立体移相器
CN111668577A (zh) 一种小型化移相器
EP3823089A1 (en) Phase switcher and electric tilt antenna
CN103094689A (zh) 介质移相模块及其移相单元、馈电网络和天线
CN204614906U (zh) 一种多路一体化介质移相器
CN113193313A (zh) 移相器及天线系统
CN111180838B (zh) 移相器单元、移相器及天线
CN112003017A (zh) 阵列天线移相馈电装置及阵列天线
CN2872609Y (zh) 差分相位连续可变的波束形成网络
CN210956929U (zh) 天线及移相器
CN113871822B (zh) 一种输出模式可调的移相器以及天线
CN101252214B (zh) 复合移相器
JP6565838B2 (ja) 導波管型可変移相器および導波管スロットアレーアンテナ装置
CN110137635B (zh) 一种移相器介质结构、移相器及基站天线
CN204834800U (zh) 小型化介质移相器组及天线阵馈电网络

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200519

Assignee: Zhongtian Communication Technology Co.,Ltd.

Assignor: COMBA TELECOM TECHNOLOGY (GUANGZHOU) Ltd.

Contract record no.: X2023980041759

Denomination of invention: Antenna and phase shifter

Granted publication date: 20210507

License type: Exclusive License

Record date: 20230914

EE01 Entry into force of recordation of patent licensing contract