CN111180547B - 一种新型两端光栅压结构SiC光探测器及其制备方法 - Google Patents

一种新型两端光栅压结构SiC光探测器及其制备方法 Download PDF

Info

Publication number
CN111180547B
CN111180547B CN202010011698.2A CN202010011698A CN111180547B CN 111180547 B CN111180547 B CN 111180547B CN 202010011698 A CN202010011698 A CN 202010011698A CN 111180547 B CN111180547 B CN 111180547B
Authority
CN
China
Prior art keywords
type
layer
region
electrode
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010011698.2A
Other languages
English (en)
Other versions
CN111180547A (zh
Inventor
汤乃云
叶怀宇
张国旗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN202010011698.2A priority Critical patent/CN111180547B/zh
Publication of CN111180547A publication Critical patent/CN111180547A/zh
Application granted granted Critical
Publication of CN111180547B publication Critical patent/CN111180547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种新型两端光栅压结构SiC光探测器及其制备方法,包括以下步骤:1)在P型SiC衬底上制备N型重掺杂的源区和漏区,即形成MOSFET的源、漏区域;2)在N型重掺杂的源区和漏区之间的沟道区之上沉积SiO2层;3)在SiO2层之上生长P型掺杂的多晶硅层;4)在P型多晶硅之上生长N型掺杂的多晶硅层;5)在源区、漏区和N型多晶硅之上分别制备源极、漏极和栅极金属电极,并使源极和栅极短路,构成一个两端结构光探测器件。本发明基于MOSFET工作原理,在SiC宽禁带半导体上创新性地实现对可见光波段的探测;其次,该发明能够提高探测器的灵敏度、响应率等光电特性。

Description

一种新型两端光栅压结构SiC光探测器及其制备方法
技术领域
本发明涉及光电探测领域,具体为一种新型两端光栅压结构SiC光探测器及其制备方法。
背景技术
SiC材料具有宽禁带、高击穿临界电场、高电子饱和漂移速度、高热导率和强抗辐射性等,而且目前也是技术成熟度最高的第三代半导体材料,已经被应用在高温、高频、高功率器件方面,近些年来人们在研制光电探测器方面开展的研究也越来越多。但是由于SiC材料本身具有很大的禁带宽度,其对应的吸收截止波长在紫外波段,致使常规的SiC材料光探测器不能够探测可见光或更长波长的光。因此,需要在传统结构上进行改进设计以使得SiC基器件能够实现对其它波长的光子探测,以拓展SiC基器件的应用领域。
传统的光栅压器件是利用栅极上施加额外电压,在浮栅和控制栅极之间产生电场,来实现光生载流子分离,从而产生光电压。因此,工艺步骤和电路结构较为复杂。
发明内容
针对上述现有技术中所存在的技术问题,本发明提供了一种新型两端光栅压结构SiC光探测器及其制备方法,该方法在栅极部位不需要额外形成浮栅结构,而是在栅极上构筑一个PN结结构,利用PN结的内建电场效应实现光生载流子的分离,从而减少一个栅极电路输入端,简化了工艺和电路结构。该发明不仅能够利用了SiC良好的热稳定性、热导率等优点使得新型器件能够工作在复杂的环境中,而且能够利用PN结构的多晶硅材料吸收可见光,并结合金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)实现信号的放大输出,以满足高灵敏的可见光探测。
具体方法包括:
1)在P型SiC衬底上制备N型重掺杂的源区和漏区,即形成MOSFET的源、漏区域;
2)在N型重掺杂的源区和漏区之间的沟道区之上沉积SiO2层;
3)在SiO2层之上生长P型掺杂的多晶硅层;
4)在P型多晶硅之上生长N型掺杂的多晶硅层;
5)在源区、漏区和N型多晶硅之上分别制备源极、漏极和栅极金属电极,并使源极和栅极短接。
在新器件结构中,顶栅区域生长了PN结构的多晶硅层,由于多晶硅能够吸收可见光,所以当有可见光照射多晶硅层时,光生载流子会被PN结内建电场分离,从而在PN两边形成光生电压,而该光生电压会通过MOSFET顶栅的调控作用将光信号通过源漏电流适当的放大并输出,提高光生信号的分离和收集效率。因此本发明能够实现高效、高灵敏的可见光探测。
优选地,所述1)中的P型SiC衬底;所述P型掺杂浓度为1×1017cm-3~2.5×1017cm-3,掺杂元素为Al或Ga。
优选地,所述制备N型重掺杂源区和漏区的方式为离子注入或扩散的方式。
优选地,所述1)中的N型重掺杂的源区和漏区;所述N型掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为P或As。
优选地,所述2)中的SiO2层厚度为90nm~300nm。
优选地,所述3)中的P型掺杂的多晶硅层,其厚度为0.5μm~2μm,掺杂浓度为1×1018cm-3~2.5×1018cm-3,掺杂元素为B。
优选地,所述4)中N型掺杂的多晶硅层,其厚度为0.5μm~2μm,掺杂浓度为5×1016cm-3~1×1017cm-3,掺杂元素为P。
由以上方法制备的一种SiC光探测器包括:SiC衬底、源极区、漏极区、SiO2层、P型多晶硅层、N型多晶硅层,并且源极和栅极短接。
利用栅极所存在的PN结内建电场,以减少栅极电压的输入,从而可以使栅极和源极短路,实现一个两端的SiC光探测器结构,其优点在于简化电路结构和工艺制造步骤。
优选地,所述源极区,漏极区通过离子注入或扩散的方式在SiC衬底层上端两侧形成。
优选地,所述SiO2层位于SiC衬底上方,P型多晶硅层位于SiO2层上方,N型多晶硅层位于P型多晶硅层上方。
本发明的有益效果至少包括:
A.本发明的光探测器利用多晶硅材料实现SiC器件对可见光的探测,拓展了SiC器件的探测范围。
B.本发明利用了MOSFET结构的信号放大特点,将栅压提供的光信号提供给源漏电流并放大输出,以提高光生载流子的收集效率,提高响应度、探测率、灵敏度等性能。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明的二维剖面结构示意图;
图2、3、4为本发明的制备工艺流程图;
图1中:1.SiC衬底,2.源极区,3.漏极区,4.SiO2层,5.P型多晶硅层,6.N型多晶硅层。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护范围。
本实施例提供一种新型栅控PIN结构GaN紫外探测器及其制备方法,器件的剖面如图1所示,它由SiC衬底1、源极区2、漏极区3、SiO2层4、P型多晶硅层5和N型多晶硅层6组成。
实施例1
一种优选地新型两端光栅压结构SiC光探测器具体制备工艺流程如图2所示,包括:
1)取样P型掺杂浓度为1×1017cm-3的SiC衬底,并对其表面进行预处理。
2)利用注入或扩散掩膜,通过扩散或者离子注入的方式,在SiC衬底之上选择性地形成N型重掺杂区,掺杂浓度为1×1018cm-3
3)在源、漏区之间的沟道区域之上淀积90nm厚的SiO2层。
4)在SiO2层上生长0.5μm厚P型掺杂浓度为1×1018cm-3的多晶硅层。
5)在P型多晶硅层之上生长0.5μm厚N型掺杂浓度为5×1016cm-3的多晶硅层。
6)在源区、漏区和栅区多晶硅层之上分别制备源极、漏极和栅极金属电极,并使源极和栅极短接。
实施例2
一种优选地新型两端光栅压结构SiC光探测器具体制备工艺流程如图3所示,包括:
1)取样P型掺杂浓度为2×1017cm-3的SiC衬底,并对其表面进行预处理。
2)利用注入或扩散掩膜,通过扩散或者离子注入的方式,在SiC衬底之上选择性地形成N型重掺杂区,掺杂浓度为2×1018cm-3
3)在源、漏区之间的沟道区域之上淀积200nm厚的SiO2层。
4)在SiO2层上生长0.75μm厚P型掺杂浓度为2×1018cm-3的多晶硅层。
5)在P型多晶硅层之上生长1.0μm厚N型掺杂浓度为7.5×1016cm-3的多晶硅层。
6)在源区、漏区和栅区多晶硅层之上分别制备源极、漏极和栅极金属电极,并使源极和栅极短接。
实施例3
一种优选地新型两端光栅压结构SiC光探测器具体制备工艺流程如图4所示,包括:
1)取样P型掺杂浓度为2.5×1017cm-3的SiC衬底,并对其表面进行预处理。
2)利用注入或扩散掩膜,通过扩散或者离子注入的方式,在SiC衬底之上选择性地形成N型重掺杂区,掺杂浓度为5×1018cm-3
3)在源、漏区之间的沟道区域之上淀积300nm厚的SiO2层。
4)在SiO2层上生长1.0μm厚P型掺杂浓度为2.5×1018cm-3的多晶硅层。
5)在P型多晶硅层之上生长2.μm厚N型掺杂浓度为1×1017cm-3的多晶硅层。
6)在源区、漏区和栅区多晶硅层之上分别制备源极、漏极和栅极金属电极,并使源极和栅极短接。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (5)

1.一种新型两端光栅压结构SiC光探测器的制备方法,其特征在于,包括以下制备步骤:
1)在P型SiC衬底上制备N型重掺杂的源区和漏区,即形成MOSFET的源、漏区域;
2)在N型重掺杂的源区和漏区之间的沟道区上沉积SiO2层;
3)在SiO2层之上生长P型掺杂的多晶硅层;
4)在P型多晶硅上生长N型掺杂的多晶硅层;
5)在源区、漏区和N型多晶硅之上分别制备源极、漏极和栅极金属电极,并使源极和栅极短接;
所述1)中的P型SiC衬底的P型掺杂浓度为1×1017cm-3~2.5×1017cm-3,掺杂元素为Al或Ga;
所述N型重掺杂的掺杂浓度为1×1018cm-3~5×1018cm-3,掺杂元素为P或As;
所述3)中的P型掺杂的多晶硅层,其厚度为0.5μm~2μm,掺杂浓度为1×1018cm-3~2.5×1018cm-3,掺杂元素为B;
所述4)中N型掺杂的多晶硅层,其厚度为0.5μm~2μm,掺杂浓度为5×1016cm-3~1×1017cm-3,掺杂元素为P。
2.如权利要求1所述的制备方法,其特征在于,所述制备N型重掺杂源区和漏区的方式为离子注入或扩散的方式。
3.如权利要求1所述的制备方法,其特征在于,所述2)中的SiO2层厚度为90nm~300nm。
4.一种根据权利要求1-3中任一项所述的制备方法制备的SiC光探测器,其特征在于,SiC光探测器包括:SiC衬底、源极区、漏极区、SiO2层、P型多晶硅层、N型多晶硅层,并且源极和栅极短接;
所述SiO2层位于SiC衬底上方,P型多晶硅层位于SiO2层上方,N型多晶硅层位于P型多晶硅层上方。
5.如权利要求4所述的SiC光探测器,其特征在于,所述源极区、漏极区通过离子注入或扩散的方式在SiC衬底层上端两侧形成。
CN202010011698.2A 2020-01-06 2020-01-06 一种新型两端光栅压结构SiC光探测器及其制备方法 Active CN111180547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010011698.2A CN111180547B (zh) 2020-01-06 2020-01-06 一种新型两端光栅压结构SiC光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010011698.2A CN111180547B (zh) 2020-01-06 2020-01-06 一种新型两端光栅压结构SiC光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111180547A CN111180547A (zh) 2020-05-19
CN111180547B true CN111180547B (zh) 2022-04-05

Family

ID=70654450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010011698.2A Active CN111180547B (zh) 2020-01-06 2020-01-06 一种新型两端光栅压结构SiC光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111180547B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382692B (zh) * 2020-10-16 2022-08-19 复旦大学 基于双光电栅极结构的半导体波长探测器及其制备方法
CN114496761B (zh) * 2022-04-06 2022-06-17 泰科天润半导体科技(北京)有限公司 一种圆形栅纵向mosfet功率器件的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598305A (en) * 1984-06-18 1986-07-01 Xerox Corporation Depletion mode thin film semiconductor photodetectors
CN102931272A (zh) * 2012-11-23 2013-02-13 中国科学院微电子研究所 一种具有增益的紫外探测器结构及其制备方法
CN103165726A (zh) * 2011-12-14 2013-06-19 南京大学 Pn结薄膜晶体管非挥发光电探测器
CN106876515A (zh) * 2017-03-06 2017-06-20 中国科学院宁波材料技术与工程研究所 薄膜晶体管结构可见盲光电探测器及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031243A (en) * 1996-10-16 2000-02-29 Geoff W. Taylor Grating coupled vertical cavity optoelectronic devices
US10680067B2 (en) * 2015-09-10 2020-06-09 Institute of Microelectronics, Chinese Academy of Sciences Silicon carbide MOSFET device and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598305A (en) * 1984-06-18 1986-07-01 Xerox Corporation Depletion mode thin film semiconductor photodetectors
CN103165726A (zh) * 2011-12-14 2013-06-19 南京大学 Pn结薄膜晶体管非挥发光电探测器
CN102931272A (zh) * 2012-11-23 2013-02-13 中国科学院微电子研究所 一种具有增益的紫外探测器结构及其制备方法
CN106876515A (zh) * 2017-03-06 2017-06-20 中国科学院宁波材料技术与工程研究所 薄膜晶体管结构可见盲光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Radiation effec on pn-SiC diode as a detector;Akimasa Kinoshita 等;《Nuclear Instruments and Methods in Physics Research A》;20050307(第541期);第213-220页 *

Also Published As

Publication number Publication date
CN111180547A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
KR101052030B1 (ko) 전자기 방사 컨버터
CN106409967B (zh) p‑i‑n—‑n型GaN单光子雪崩探测器
US8946617B2 (en) Photodiode having a p-n junction with varying expansion of the space charge zone due to application of a variable voltage
CN111180547B (zh) 一种新型两端光栅压结构SiC光探测器及其制备方法
CN108231817A (zh) 一种基于二维材料/绝缘层/半导体结构的低功耗电荷耦合器件
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
US11164988B2 (en) Photovoltage Field-Effect Transistor
CN108305911A (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN111900217A (zh) 一种中/长波红外双波段超晶格红外探测器及其制备方法
CN107452820A (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
US7205525B2 (en) Light conversion apparatus with topside electrode
CN102931272A (zh) 一种具有增益的紫外探测器结构及其制备方法
Zhang et al. High-response heterojunction phototransistor based on vertically grown graphene nanosheets film
Zheng et al. Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response
CN110676272A (zh) 一种半导体紫外光电探测器
EP1470574B1 (en) High speed pin photodiode with increased responsivity
US4488038A (en) Phototransistor for long wavelength radiation
Gaitonde et al. Comparative analysis of buried-gate GaN OPFET models for UV photodetector applications
CN107240616B (zh) 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
Yang et al. High-Performance Photodetectors With Polarization Sensitivity Based on pn and pp+ Black Phosphorus/Germanium Heterojunctions
KR100436019B1 (ko) 저온성장 화합물반도체를 이용한 hemt 구조의 msm광검출기 제조방법
Wang et al. Realizing high zero-bias gain in a GaN-based bipolar phototransistor through thin-base configuration for ultraviolet imaging
Yang et al. Properties of GaAs/InGaAs quantum well solar cells under low concentration operation
Lv et al. High performance InGaN/GaN visible-light field effect phototransistor using polarization induced virtual photogate
CN111384196A (zh) 硅基Si/Si1-xGex量子阱APD

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230412

Address after: No. 1088, Xueyuan Avenue, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: Southern University of Science and Technology

Address before: No.1088 Xueyuan Avenue, Xili University Town, Nanshan District, Shenzhen, Guangdong 518055

Patentee before: SHENZHEN THIRD GENERATION SEMICONDUCTOR Research Institute

TR01 Transfer of patent right