CN111900217A - 一种中/长波红外双波段超晶格红外探测器及其制备方法 - Google Patents

一种中/长波红外双波段超晶格红外探测器及其制备方法 Download PDF

Info

Publication number
CN111900217A
CN111900217A CN202010715331.9A CN202010715331A CN111900217A CN 111900217 A CN111900217 A CN 111900217A CN 202010715331 A CN202010715331 A CN 202010715331A CN 111900217 A CN111900217 A CN 111900217A
Authority
CN
China
Prior art keywords
layer
gasb
type
infrared
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010715331.9A
Other languages
English (en)
Other versions
CN111900217B (zh
Inventor
尚林涛
邢伟荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 11 Research Institute
Original Assignee
CETC 11 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 11 Research Institute filed Critical CETC 11 Research Institute
Priority to CN202010715331.9A priority Critical patent/CN111900217B/zh
Publication of CN111900217A publication Critical patent/CN111900217A/zh
Application granted granted Critical
Publication of CN111900217B publication Critical patent/CN111900217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种中/长波红外双波段超晶格红外探测器及其制备方法,本发明的红外探测器结构设计简单,容易实现,其中M结构SL势垒结构可有效阻挡两个吸收层中大多数空穴载流子暗电流输运,而近零导带偏差几乎不会影响光生少子电子自由通行。通过势垒可有效降低G‑R、隧穿和表面泄露暗电流,具有超过传统光伏器件的潜力。少子是电子,扩散长度更长,预测QE要比nBn型结构更高,而且p型材料的本征载流子浓度比n型更稳定,不易随温度变化,可以实现高温工作。

Description

一种中/长波红外双波段超晶格红外探测器及其制备方法
技术领域
本发明涉及半导体技术领域,特别是涉及一种偏压可选的中波红外/长波红外双波段超晶格红外探测器及其制备方法。
背景技术
由于高灵敏、高分辨和多功能红外成像的需求在增长,实现双光谱或多光谱焦平面阵列(Focal Plane Array,FPA)红外探测是第三代红外探测器发展的重要方向之一。
热辐射物体有很大一部分处于3~5μm波段的中波红外(Medium wave infraredchannel,MWIR)范围,较热的目标在普朗克黑体辐射曲线的MWIR段上具有较高的能量,中波红外探测广泛用于空中监控、恶劣环境中的目标确定、血管和癌症探测、工业过程监控等应用中;然而室温物体的发射大多位于8~12μm的长波红外(Long wave infrared,LWIR)大气窗口,LWIR适合陆基红外成像;MWIR可提供比LWIR更好的对比度,适合探测热焰物体,而LWIR可提供室温或更冷物体的成像。但是现有的针对中波红外和长波红外进行同时探测的探测器的结构复杂制备相对困难,从而限制其使用范围。
发明内容
本发明提供了一种偏压可选的中波红外/长波红外双波段超晶格红外探测器及其制备方法,以解决现有技术现有的针对中波红外和长波红外进行同时探测的探测器的结构复杂制备困难的问题。
第一方面,本发明提供了一种偏压可选的中波红外/长波红外双波段超晶格红外探测器,包括:所述探测器的每个像元均为pMp型中/长波双带超晶格结构;
所述pMp型中/长波双带超晶格结构从衬底开始依次包括:第一预设厚度的中波红外MWIR GaSb电极层、第二预设厚度的MWIR SL接触层、第三预设厚度的MWIR SL吸收层、第四预设厚度的M结构SL势垒层、第五预设厚度的长波红外LWIR SL吸收层、第六预设厚度的LWIR SL接触层以及第七预设厚度的LWIR电极覆盖层;
通过所述M结构SL势垒层夹在所述MWIR SL吸收层和所述长波红外LWIR SL吸收层之间构成pMp结构,并通过导带高度或掺杂保持与所述MWIR SL吸收层和所述长波红外LWIRSL吸收层之间连续的导带偏差。
可选地,通过调节所述M结构SL势垒层的n型掺杂浓度,使得与所述MWIR SL吸收层和所述长波红外LWIR SL吸收层间形成两个不同势垒高度的pn结,通过调节工作偏压极性及大小来改变不同pn结的势垒高度,以使所述MWIR SL吸收层和所述长波红外LWIR SL吸收层产生的光生少子电子通过,得到偏压可选择的中波红外/长波红外双波段超晶格红外探测器。
可选地,所述M结构SL势垒层为0.5μm厚的n掺M结构SL势垒。
可选地,所述MW GaSb电极层为200nm厚的掺p型GaSb电极层。
可选地,所述MW SL接触层为0.5μm厚的掺p型SL接触层。
可选地,所述MW SL吸收层为2~4μm厚的截止波长5μm的p型掺杂吸收层。
可选地,所述的LW SL吸收层为2~4μm厚的截止波长10μm的p型掺杂吸收层。
可选地,所述LWIR SL接触层为0.5μm厚的p型掺杂接触层。
可选地,所述LWIR电极覆盖层为200nm厚的p型GaSb LW电极覆盖层。
第二方面,本发明提供了一种制备上述任一种所述的偏压可选的中/长波双波段超晶格红外探测器的方法,该方法包括:
外延生长0.5~1μm非掺GaSb缓冲层,用于平滑衬底表面;
外延生长0.5~1μm非掺InAs0.91Sb0.09刻蚀阻挡层,用于去除GaSb衬底;
外延生长200nm p型GaSb电极层,并用于去除InAsSb刻蚀阻挡层;
外延生长0.5μm p型MW SL接触层,SL周期为:10ML InAs/10ML GaSb,每周期1个InSb界面和1个InGaSb界面;
外延生长2~4μm的p型MW SL吸收层,截止波长5μm,SL周期为:10ML InAs/10MLGaSb,每周期1个InSb界面和1个InGaSb界面;
外延生长0.5μm的n掺M结构SL势垒,InAs中掺Si:1~5x1015cm-3,SL周期为:10/1/5/1ML InAs/GaSb/AlSb/GaSb,每周期1个GaAs界面和1个InSb界面;
外延生长2~4μm非掺p型LW SL吸收层,截止波长10μm,SL周期为:10ML InAs/5.5ML GaSb,每周期2个InSb界面;
外延生长0.5μmp型LW SL接触层,SL周期为:10ML InAs/5.5ML GaSb,每周期2个InSb界面;
最后外延生长200nm p型LW GaSb覆盖电极层。
本发明有益效果如下:
本发明的红外探测器结构设计简单,容易实现,其中M结构SL势垒结构可有效阻挡两个吸收层中大多数空穴载流子的暗电流输运,而近零导带偏差几乎不会影响光生少子电子自由通行。通过势垒可有效降低G-R、隧穿和表面泄露暗电流,具有超过传统光伏器件的潜力。少子是电子,扩散长度更长,预测QE要比nBn型结构更高,而且p型材料的本征载流子浓度比n型更稳定,不易随温度变化,可以实现高温工作。
附图说明
图1是本发明实施例提供的一种偏压可选的中波红外/长波红外双波段超晶格红外探测器的结构示意图;
图2是本发明实施例提供的pMp基中/长波双带能带结构示意图。
具体实施方式
本发明实施例通过在一个薄的M结构SL价带势垒夹在两个p型中波和长波SL吸收层之间而构成pMp结构,具有近零导带不连续,在阻挡大多数空穴载流子(暗电流)输运的同时而不影响光生少子电子收集,从而制备得到本发明实施例的探测器。以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
多光谱FPA发展的趋势是在单像元中集成多带探测功能,而不是集成多个单光谱FPA,可以去除分束器、滤波器等外在部件,显著降低系统尺寸、重量和功耗。目前,碲镉汞(MCT)和量子阱(QWIP)虽然也适合双波段探测,但MCT制造成本高,产量低,QWIP的QE低,工作温度低。III-V族
Figure BDA0002597960540000041
系Sb基InAs/GaSb/AlSb二类超晶格(T2SL)材料系统工艺简单,能带及材料结构设计灵活,不仅能提供成熟的单色探测性能,而且易于在单个FPA探测像元上集成多个红外光谱波段,可以满足双光谱和多光谱探测需求。
pMp结构属于少子电子单极势垒器件。是传统光导和光伏器件之间的混合体,无M结构时为光导,继承了光导探测器家族设计简单性以及不存在内置电场的优势;带M结构时价带势垒可阻挡大多数空穴暗电流的输运,而不影响导带光生少子收集。当施加偏压时,偏压大多降落在高阻抗的势垒,导电性基于活性区的少子,器件工作类似于光伏。与其他少子单极势垒器件一样,可获得低的二极管暗电流,尤其在LW和VLW上由于隧穿暗电流抑制优势远胜于传统的光伏。
基于上述原理,通过设置得到本发明实施例的pMp型中/长波双带超晶格结构,如图1和2所示,本发明实施例中,所述pMp型中/长波双带超晶格结构从衬底开始依次包括:第一预设厚度的中波红外MWIR GaSb电极层、第二预设厚度的MWIR SL接触层、第三预设厚度的MWIR SL吸收层、第四预设厚度的M结构SL势垒层、第五预设厚度的长波红外LWIR SL吸收层、第六预设厚度的LWIR SL接触层以及第七预设厚度的LWIR电极覆盖层;
通过所述M结构SL势垒层夹在所述MWIR SL吸收层和所述长波红外LWIR SL吸收层之间构成pMp结构,并通过导带高度或掺杂保持与所述MWIR SL吸收层和所述长波红外LWIRSL吸收层之间连续的导带偏差。
进一步来说,本发明实施例是通过调节所述M结构SL势垒层的n型掺杂浓度,使得与所述MWIR SL吸收层和所述长波红外LWIR SL吸收层间形成两个不同势垒高度的pn结,通过调节工作偏压极性及大小来改变不同pn结的势垒高度,以使所述MWIR SL吸收层和所述长波红外LWIR SL吸收层产生的光生少子电子通过,得到偏压可选择的中波红外/长波红外双波段超晶格红外探测器。
也就是说,本发明实施例在pMp结构中,SL结构可选,材料晶格相互区配,生长条件相似。M结构SL势垒在能带排列上具有巨大灵活性,可在两个p型中长波吸收区之间形成大的价带势垒,阻挡多子空穴暗电流输运;通过调节M结构SL势垒的导带高度或掺杂可保持与两个p型中/长波吸收区之间近乎连续的导带偏差,几乎在零偏压下就可实现光生少子电子自由输运到接触电极两端被收集。
具体地,本发明实施例设置的pMp型中/波双带超晶格结构为:
①.200nm厚重掺p型(1017~1018cm-3)MW GaSb电极层;
②.0.5μm厚重掺p型(1017~1018cm-3)MW SL接触层;
③.2~4μm厚截止波长5μm的轻掺p型(2~3x1016cm-3)MW SL吸收层;
④.0.5μm厚轻n掺M结构SL势垒;
⑤.2~4μm厚截止波长10μm的轻掺p型(1~5x1015cm-3)LW SL吸收层;
⑥.0.5μm厚重掺p型(1017~1018cm-3)LW SL接触层;
⑦.最后是200nm p型(1017~1018cm-3)GaSb LW电极覆盖层。
在结构两端的两个p型电极层上可以分别制备中波和长波接触电极;
双带探测:由于两个吸收层之间的内建电场,在正偏和反偏不同偏压下可以分别扫出中波和长波两个吸收通道的电流光学信号从而实现双带探测。
实验表明,本发明实施例制得的探测器的结构设计简单,容易实现。M结构SL势垒结构可有效阻挡两个吸收层中大多数空穴载流子输运,而近零导带偏差几乎不会影响光生少子电子自由通行。通过势垒可有效降低G-R、隧穿和表面泄露暗电流,具有超过传统光伏器件的潜力。少子是电子,扩散长度更长,预测QE要比nBn型结构更高,而且p型材料的本征载流子浓度比n型更稳定,不易随温度变化,可以实现高温工作。
需要说明的是,本发明实施例中的基于pMp结构的中波/长波双带超晶格红外探测器,并不仅仅限于中波/长波,根据本发明实施例的超晶格设计原理,本领域技术人员还可以用于设计长波/甚长波双带、短波/中波双带或双色红外探测器器件。
下面将以商业直接外延型(Epi-ready)N型GaSb(100)衬底,在MBE设备中经过衬底预处理和彻底脱氧为例,通过以下步骤详细说明外延生长中/波双带超晶格结构:
S101.外延生长0.5~1μm非掺GaSb缓冲层,用于平滑衬底表面;
S102.外延生长0.5~1μm非掺InAs0.91Sb0.09刻蚀阻挡层,用于去除GaSb衬底;
S103.外延生长200nm重p型(GaSb中掺Be:1017~1018cm-3)MW GaSb电极层,并用于去除InAsSb刻蚀阻挡层;
S104.外延生长0.5μm重p型(GaSb中掺Be:1017~1018cm-3)MW SL接触层,SL周期为:10ML InAs/10ML GaSb,每周期1个InSb界面和1个InGaSb界面;
S105.外延生长2~4μm轻p型(GaSb中掺Be:2~3x1016cm-3)MW SL吸收层,截止波长5μm,SL周期为:10ML InAs/10ML GaSb,每周期1个InSb界面和1个InGaSb界面;
S106.外延生长0.5μm轻n掺M结构SL势垒(InAs中掺Si:1~5x1015cm-3),SL周期为:10/1/5/1ML InAs/GaSb/AlSb/GaSb,每周期1个GaAs界面和1个InSb界面;
S107.外延生长2~4μm非掺p型(GaSb中掺Be:1~5x1015cm-3)LW SL吸收层,截止波长10μm,SL周期为:10ML InAs/5.5ML GaSb,每周期2个InSb界面;
S108.外延生长0.5μm重p型(GaSb中掺Be:1017~1018cm-3)LW SL接触层,SL周期为:10ML InAs/5.5ML GaSb,每周期2个InSb界面;
S109.最后外延生长200nm重p型(GaSb中掺Be:1017~1018cm-3)LW GaSb覆盖电极层。
总体来说,本发明实施例是基于两个吸收层之间的内建电场,在正偏和反偏不同偏压下可以分别扫出中波和长波两个吸收通道的电流光学信号从而实现双带探测。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。

Claims (10)

1.一种偏压可选的中波红外/长波红外双波段超晶格红外探测器,其特征在于,包括:所述探测器的每个像元均为pMp型中/长波双带超晶格结构;
所述pMp型中/长波双带超晶格结构从衬底开始依次包括:第一预设厚度的中波红外MWIR GaSb电极层、第二预设厚度的MWIR SL接触层、第三预设厚度的MWIR SL吸收层、第四预设厚度的M结构SL势垒层、第五预设厚度的长波红外LWIR SL吸收层、第六预设厚度的LWIR SL接触层以及第七预设厚度的LWIR电极覆盖层;
通过所述M结构SL势垒层夹在所述MWIR SL吸收层和所述长波红外LWIR SL吸收层之间构成pMp结构,并通过导带高度或掺杂保持与所述MWIR SL吸收层和所述长波红外LWIR SL吸收层之间连续的导带偏差。
2.根据权利要求1所述的红外探测器,其特征在于,
通过调节所述M结构SL势垒层的n型掺杂浓度,使得与所述MWIR SL吸收层和所述长波红外LWIR SL吸收层间形成两个不同势垒高度的pn结,通过调节工作偏压极性及大小来改变不同pn结的势垒高度,以使所述MWIR SL吸收层和所述长波红外LWIR SL吸收层产生的光生少子电子通过,得到偏压可选择的中波红外/长波红外双波段超晶格红外探测器。
3.根据权利要求1所述的红外探测器,其特征在于,
所述M结构SL势垒层为0.5μm厚的n掺M结构SL势垒。
4.根据权利要求1-3中任意一项所述的红外探测器,其特征在于,
所述MW GaSb电极层为200nm厚的掺p型GaSb电极层。
5.根据权利要求1-3中任意一项所述的红外探测器,其特征在于,
所述MW SL接触层为0.5μm厚的掺p型SL接触层。
6.根据权利要求1-3中任意一项所述的红外探测器,其特征在于,
所述MW SL吸收层为2~4μm厚的截止波长5μm的p型掺杂吸收层。
7.根据权利要求1-3中任意一项所述的红外探测器,其特征在于,
所述的LW SL吸收层为2~4μm厚的截止波长10μm的p型掺杂吸收层。
8.根据权利要求1-3中任意一项所述的红外探测器,其特征在于,
所述LWIR SL接触层为0.5μm厚的p型掺杂接触层。
9.根据权利要求1-3中任意一项所述的红外探测器,其特征在于,
所述LWIR电极覆盖层为200nm厚的p型GaSb LW电极覆盖层。
10.一种制备权利要求1-9中任意一项所述的偏压可选的中/长波双波段超晶格红外探测器的方法,其他特征在于,包括:
外延生长0.5~1μm非掺GaSb缓冲层,用于平滑衬底表面;
外延生长0.5~1μm非掺InAs0.91Sb0.09刻蚀阻挡层,用于去除GaSb衬底;
外延生长200nm p型GaSb电极层,并用于去除InAsSb刻蚀阻挡层;
外延生长0.5μm p型MW SL接触层,SL周期为:10ML InAs/10ML GaSb,每周期1个InSb界面和1个InGaSb界面;
外延生长2~4μm的p型MW SL吸收层,截止波长5μm,SL周期为:10ML InAs/10ML GaSb,每周期1个InSb界面和1个InGaSb界面;
外延生长0.5μm的n掺M结构SL势垒,InAs中掺Si:1~5x1015cm-3,SL周期为:10/1/5/1MLInAs/GaSb/AlSb/GaSb,每周期1个GaAs界面和1个InSb界面;
外延生长2~4μm非掺p型LW SL吸收层,截止波长10μm,SL周期为:10ML InAs/5.5MLGaSb,每周期2个InSb界面;
外延生长0.5μm p型LW SL接触层,SL周期为:10ML InAs/5.5ML GaSb,每周期2个InSb界面;
最后外延生长200nm p型LW GaSb覆盖电极层。
CN202010715331.9A 2020-07-23 2020-07-23 一种中/长波红外双波段超晶格红外探测器及其制备方法 Active CN111900217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010715331.9A CN111900217B (zh) 2020-07-23 2020-07-23 一种中/长波红外双波段超晶格红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010715331.9A CN111900217B (zh) 2020-07-23 2020-07-23 一种中/长波红外双波段超晶格红外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111900217A true CN111900217A (zh) 2020-11-06
CN111900217B CN111900217B (zh) 2022-03-11

Family

ID=73189632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010715331.9A Active CN111900217B (zh) 2020-07-23 2020-07-23 一种中/长波红外双波段超晶格红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111900217B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410329A (zh) * 2021-06-17 2021-09-17 苏州晶歌半导体有限公司 双色红外探测器及其制作方法
CN116387394A (zh) * 2023-06-05 2023-07-04 苏州焜原光电有限公司 光敏元环形分布双波段超晶格探测器芯片组件及制备方法
CN117747692A (zh) * 2023-11-22 2024-03-22 广州市南沙区北科光子感知技术研究院 一种高量子效率的短中波超晶格双色探测器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814545A (zh) * 2010-03-11 2010-08-25 中国科学院半导体研究所 HPT结构的InAs/GaSb超晶格红外光电探测器
CN102436532A (zh) * 2011-11-28 2012-05-02 华北电力大学 InAs/GaSb超晶格电子结构的设计方法
US20120145996A1 (en) * 2010-10-22 2012-06-14 California Institute Of Technology Barrier infrared detector
CN103208565A (zh) * 2013-04-17 2013-07-17 中国电子科技集团公司第十一研究所 双色红外探测器材料及其制备方法
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
CN106684200A (zh) * 2016-12-30 2017-05-17 云南师范大学 一种三色红外探测器的制备方法
CN108231926A (zh) * 2016-12-15 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 一种红外探测器及其制备方法
US20190237594A1 (en) * 2016-05-27 2019-08-01 The Government Of The United States Of America, As Represented By The Secretary Of The Navy In-Plane Resonant-Cavity Infrared Photodetectors with Fully-Depleted Absorbers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814545A (zh) * 2010-03-11 2010-08-25 中国科学院半导体研究所 HPT结构的InAs/GaSb超晶格红外光电探测器
US20120145996A1 (en) * 2010-10-22 2012-06-14 California Institute Of Technology Barrier infrared detector
CN102436532A (zh) * 2011-11-28 2012-05-02 华北电力大学 InAs/GaSb超晶格电子结构的设计方法
CN103208565A (zh) * 2013-04-17 2013-07-17 中国电子科技集团公司第十一研究所 双色红外探测器材料及其制备方法
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
US20190237594A1 (en) * 2016-05-27 2019-08-01 The Government Of The United States Of America, As Represented By The Secretary Of The Navy In-Plane Resonant-Cavity Infrared Photodetectors with Fully-Depleted Absorbers
CN108231926A (zh) * 2016-12-15 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 一种红外探测器及其制备方法
CN106684200A (zh) * 2016-12-30 2017-05-17 云南师范大学 一种三色红外探测器的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. HADDADI,: "Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1−xSbx type-II superlattices", 《APPLIED PHYSICS LETTERS》 *
VINCENT M. COWAN等: "Radiation Tolerance of a Dual-Band IR Detector based on a pBp architecture", 《PROC. SPIE, INFRARED TECHNOLOGY AND APPLICATIONS XXXVIII》 *
XIAO-LI LANG AND JIAN-BAI XIA: "Electronic structure and optical properties of InAs/GaSb/AlSb/GaSb superlattice", 《JOURNAL OF APPLIED PHYSICS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410329A (zh) * 2021-06-17 2021-09-17 苏州晶歌半导体有限公司 双色红外探测器及其制作方法
CN113410329B (zh) * 2021-06-17 2023-12-08 苏州晶歌半导体有限公司 双色红外探测器及其制作方法
CN116387394A (zh) * 2023-06-05 2023-07-04 苏州焜原光电有限公司 光敏元环形分布双波段超晶格探测器芯片组件及制备方法
CN116387394B (zh) * 2023-06-05 2023-08-18 苏州焜原光电有限公司 光敏元环形分布双波段超晶格探测器芯片组件及制备方法
CN117747692A (zh) * 2023-11-22 2024-03-22 广州市南沙区北科光子感知技术研究院 一种高量子效率的短中波超晶格双色探测器

Also Published As

Publication number Publication date
CN111900217B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN111900217B (zh) 一种中/长波红外双波段超晶格红外探测器及其制备方法
CN109285911B (zh) 一种短波/中波/长波三波段红外探测器及其制备方法
Miao et al. Avalanche photodetectors based on two-dimensional layered materials
US9024296B2 (en) Focal plane array with pixels defined by modulation of surface Fermi energy
US9755091B2 (en) Dual-band infrared detector and method of detecting multiple bands of infrared radiation
US9312410B2 (en) INAS/ALSB/GASB based type-II SL pin detector with P on N and N on P configurations
Plis et al. Bias switchable dual-band InAs/GaSb superlattice detector with pBp architecture
CN102790100B (zh) 一种基于中间能带的InSb量子点多色红外探测器
CN108878576B (zh) 一种氧化镓基紫外探测器
CN113707751B (zh) 单光子雪崩光电探测器及其制备方法
CN106684200A (zh) 一种三色红外探测器的制备方法
US9698192B1 (en) Two-color barrier photodetector with dilute-nitride active region
Kalinowski et al. Recent advances in manufacturing of miniaturized uncooled IR detection modules
CN111129187B (zh) 红外光探测器及其制作方法
Jiang et al. Bias-selectable mid-/long-wave dual band infrared focal plane array based on Type-II InAs/GaSb superlattice
CN111799350B (zh) 双色红外探测器及其制作方法
CN111863981A (zh) 一种氧化镓日盲光电探测器及其制备方法
Plis et al. Dual-band pBp detectors based on InAs/GaSb strained layer superlattices
Chen et al. Ultrahigh Responsivity β-Ga 2 O 3/BP Junction Field Effect Phototransistors for UV/IR Dual-Band Detection
CN114464632A (zh) 近-远红外宽光谱超晶格探测器
Zavala-Moran et al. Antimonide-based Superlattice Infrared Barrier Photodetectors.
Bansal et al. Bilayer graphene/HgCdTe based self-powered mid-wave IR nBn photodetector
Jia et al. Antimonide-based High Operating Temperature Infrared Photodetectors and Focal Plane Arrays: A Review and Outlook
Tang et al. Boosting performances of ZnO microwire homojunction ultraviolet self-powered photodetector by coupled interfacial engineering and plasmonic effects
US20230114881A1 (en) Barrier Infrared Detector Architecture for Focal Plane Arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant