CN111175604B - 一种基于谐振电容电压的llc谐振变换器故障诊断方法 - Google Patents

一种基于谐振电容电压的llc谐振变换器故障诊断方法 Download PDF

Info

Publication number
CN111175604B
CN111175604B CN202010020591.4A CN202010020591A CN111175604B CN 111175604 B CN111175604 B CN 111175604B CN 202010020591 A CN202010020591 A CN 202010020591A CN 111175604 B CN111175604 B CN 111175604B
Authority
CN
China
Prior art keywords
threshold voltage
voltage
fault
resonant capacitor
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010020591.4A
Other languages
English (en)
Other versions
CN111175604A (zh
Inventor
王春生
谭凯元
毛建辉
王鹏程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010020591.4A priority Critical patent/CN111175604B/zh
Publication of CN111175604A publication Critical patent/CN111175604A/zh
Priority to US17/143,844 priority patent/US11391789B2/en
Application granted granted Critical
Publication of CN111175604B publication Critical patent/CN111175604B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种基于谐振电容电压的LLC谐振变换器开路故障诊断方法,根据LLC谐振变换器正常工作情况下的谐振电容电压幅值,设定合理阈值,通过对故障后谐振电容电压采样,并与设定的阈值相比较,实现故障诊断;之后通过桥臂之间移相控制,实现故障定位;本发明提供了一种LLC谐振变换器开路故障诊断方法,诊断速度快、误诊断率低、鲁棒性强,对于保证所述LLC谐振变换器在开路故障情况下的不间断运行具备重要意义。

Description

一种基于谐振电容电压的LLC谐振变换器故障诊断方法
技术领域
本发明涉及电力电子技术领域,更具体地,涉及一种基于谐振电容电压的LLC谐振变换器故障诊断方法。
背景技术
随着电力电子技术的飞速发展,其在新能源开发和节能降耗方面得到广泛应用。LLC谐振变换器作为一种带变压器隔离的DC-DC变换器,因为其控制简单,并且可以实现零电压开通,所以被广泛应用于现代工业的各个领域,如作为中间隔离级,应用于固态变压器,实现电压幅值调整和原、副边的电气隔离。在多电飞机的供电系统中,LLC谐振变换器作为核心电力电子变换器,实现电能的转换。
LLC谐振变换器作为电能转换的核心部分,如果其发生故障,则将对整个电力电子系统造成严重的影响,所以研究有效的LLC谐振变换器故障诊断方法对于提高整个电力电子系统的可靠性具有重要的意义。目前针对DC-DC变换器故障诊断的研究大多集中在双向有源桥(DAB),且大多数诊断方法复杂,也不适用于LLC谐振变换器。
发明内容
本发明的目的在于,针对DC-DC变换器故障诊断存在的上述问题,提供一种基于谐振电容电压的LLC谐振变换器故障诊断方法,通过采集的谐振电容电压与所设定的阈值电压进行比较,得到故障判别信号,之后通过移相PWM,实现故障定位。本发明提供的故障诊断方法算法简单、故障诊断速度快、误诊断率低、鲁棒性好,对于保证所述LLC谐振变换器在开路故障情况下的不间断运行具备重要意义。
为了克服上述问题或者至少部分地解决上述问题,本发明提供基于谐振电容电压的LLC谐振变换器故障诊断方法,包括:
根据LLC谐振变换器的谐振电容电压与零、第一阈值电压
Figure BDA0002360632720000011
第二阈值电压
Figure BDA0002360632720000012
的关系,得到故障判别信号F0、F1和F2,并触发控制器产生移相PWM信号;再对LLC谐振变换器的谐振电容电压进行采样,根据谐振电容电压与第三阈值电压
Figure BDA0002360632720000013
第四阈值电压
Figure BDA0002360632720000014
第五阈值电压
Figure BDA0002360632720000015
第六阈值电压
Figure BDA0002360632720000016
的关系及F1和F2的取值,得到故障位置信号FS1、FS2、FS3、FS4,确定开路故障位置。
根据LLC谐振变换器的谐振电容电压与零、第一阈值电压
Figure BDA0002360632720000021
第二阈值电压
Figure BDA0002360632720000022
的关系,得到故障发生信号,并触发控制器产生移相PWM信号具体包括:
采集谐振电容电压ucr
将谐振电容电压ucr与零相比后得到故障判别信号F0,若相比后的结果为正负交替,则F0取值0;若相比后的结果只为正或负,则F0取值1;
将谐振电容电压ucr与第一阈值电压
Figure BDA0002360632720000023
第二阈值电压
Figure BDA0002360632720000024
相比,若故障判别信号F0取值为1且谐振电容电压ucr大于第一阈值电压
Figure BDA0002360632720000025
则故障判别信号F1取值1;若故障判别信号F0取值为1且谐振电容电压小于第二阈值电压
Figure BDA0002360632720000026
则故障判别信号F2取值1;
若F1或F2取值为1,则判定故障发生,故障诊断电路向控制电路发送故障信号,控制电路产生移相PWM信号作用于功率管;
若F0的取值为0,则判定故障没有发生。
根据谐振电容电压与第三阈值电压
Figure BDA0002360632720000027
第四阈值电压
Figure BDA0002360632720000028
第五阈值电压
Figure BDA0002360632720000029
第六阈值电压
Figure BDA00023606327200000210
的关系及F1和F2的取值,得到故障位置信号FS1、FS2、FS3、FS4,确定开路故障位置具体包括:
采集谐振电容电压ucr
将谐振电容电压ucr与第三阈值电压
Figure BDA00023606327200000211
第四阈值电压
Figure BDA00023606327200000212
第五阈值电压
Figure BDA00023606327200000213
第六阈值电压
Figure BDA00023606327200000214
相比,若F1取值为1且谐振电容电压大于第五阈值电压
Figure BDA00023606327200000215
则故障位置信号FS3取值为1,判定S3发生开路故障;若F1取值为1且谐振电容电压小于第三阈值电压
Figure BDA00023606327200000216
则故障位置信号FS2取值为1,判定S2发生开路故障;
若F2取值为1且谐振电容电压大于第四阈值电压
Figure BDA00023606327200000217
则故障位置信号FS1取值为1,判定S1发生开路故障;若F2取值为1且谐振电容电压小于第六阈值电压
Figure BDA00023606327200000218
则故障位置信号FS4取值为1,判定S4发生开路故障。
所述第一阈值电压
Figure BDA00023606327200000219
大于正常工作情况下谐振电容电压峰值。
所述第三阈值电压
Figure BDA00023606327200000220
小于第一阈值电压
Figure BDA00023606327200000221
并大于零。
所述第五阈值电压
Figure BDA00023606327200000222
大于第一阈值电压
Figure BDA00023606327200000223
控制电路产生的PWM移相信号为:忽略死区时间,S1、S2、S3和S4的PWM信号均为占空比50%的方波,且S4的PWM信号滞后S1的PWM信号四分之一个周期,S2的PWM信号滞后S1的PWM信号二分之一个周期,S3的PWM信号滞后S1的PWM信号四分之三个周期。
本发明与现有技术相比,本发明提供了一种基于谐振电容电压的LLC谐振变换器故障诊断方法,通过采集的谐振电容电压与所设定的阈值电压进行比较,得到故障判别信号,之后通过移相PWM,实现故障定位。本发明提供的故障诊断方法算法简单、故障诊断速度快、误诊断率低、鲁棒性好,对于保证所述LLC谐振变换器在开路故障情况下的不间断运行具备重要意义。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明一个实施例中基于谐振电容电压的LLC谐振变换器故障诊断方法原理图;
图2为根据本发明一个实施例中S1发生开路故障时谐振电容电压波形;
图3为根据本发明一个实施例中S2发生开路故障时谐振电容电压波形;
图4为根据本发明一个实施例中S3发生开路故障时谐振电容电压波形;
图5为根据本发明一个实施例中S4发生开路故障时谐振电容电压波形。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
作为本发明的一个实施例,本实施例提供一种基于谐振电容电压的LLC故障诊断方法,其特征在于,包括:
根据LLC谐振变换器的谐振电容电压与零、第一阈值电压
Figure BDA0002360632720000041
第二阈值电压
Figure BDA0002360632720000042
的关系,得到故障判别信号F0、F1和F2,并触发控制器产生移相PWM信号;再对LLC谐振变换器的谐振电容电压进行采样,根据谐振电容电压与第三阈值电压
Figure BDA0002360632720000043
第四阈值电压
Figure BDA0002360632720000044
第五阈值电压
Figure BDA0002360632720000045
第六阈值电压
Figure BDA0002360632720000046
的关系及F1和F2的取值,得到故障位置信号FS1、FS2、FS3、FS4,确定开路故障位置。
本实施例中,谐振电容电压峰值45V,上述第一阈值电压
Figure BDA0002360632720000047
为60V;第二阈值电压
Figure BDA0002360632720000048
为-60V;第三阈值电压
Figure BDA0002360632720000049
为40V;第四阈值电压
Figure BDA00023606327200000410
为-40V;第五阈值电压
Figure BDA00023606327200000411
为80V;第六阈值电压
Figure BDA00023606327200000412
为-80V。
根据LLC谐振变换器的谐振电容电压与零、第一阈值电压
Figure BDA00023606327200000413
第二阈值电压
Figure BDA00023606327200000414
的关系,得到故障发生信号,并触发控制器产生移相PWM信号具体包括:
采集谐振电容电压ucr
将谐振电容电压ucr与零相比后得到故障判别信号F0,若相比后的结果为正负交替,则F0取值0;若相比后的结果只为正或负,则F0取值1;
将谐振电容电压ucr与第一阈值电压
Figure BDA00023606327200000415
第二阈值电压
Figure BDA00023606327200000416
相比,若故障判别信号F0取值为1且谐振电容电压ucr大于第一阈值电压
Figure BDA00023606327200000417
则故障判别信号F1取值1;若故障判别信号F0取值为1且谐振电容电压小于第二阈值电压
Figure BDA00023606327200000418
则故障判别信号F2取值1;
若F1或F2取值为1,则判定故障发生,故障诊断电路向控制电路发送故障信号,控制电路产生移相PWM信号作用于功率管;
若F0的取值为0,则判定故障没有发生。
根据谐振电容电压与第三阈值电压
Figure BDA00023606327200000419
第四阈值电压
Figure BDA00023606327200000420
第五阈值电压
Figure BDA00023606327200000421
第六阈值电压
Figure BDA00023606327200000422
的关系及F1和F2的取值,得到故障位置信号FS1、FS2、FS3、FS4,确定开路故障位置具体包括:
采集谐振电容电压ucr
将谐振电容电压ucr与第三阈值电压
Figure BDA0002360632720000051
第四阈值电压
Figure BDA0002360632720000052
第五阈值电压
Figure BDA0002360632720000053
第六阈值电压
Figure BDA0002360632720000054
相比,若F1取值为1且谐振电容电压大于第五阈值电压
Figure BDA0002360632720000055
则故障位置信号FS3取值为1,判定S3发生开路故障;若F1取值为1且谐振电容电压小于第三阈值电压
Figure BDA0002360632720000056
则故障位置信号FS2取值为1,判定S2发生开路故障;
若F2取值为1且谐振电容电压大于第四阈值电压
Figure BDA0002360632720000057
则故障位置信号FS1取值为1,判定S1发生开路故障;若F2取值为1且谐振电容电压小于第六阈值电压
Figure BDA0002360632720000058
则故障位置信号FS4取值为1,判定S4发生开路故障。
控制电路产生的PWM移相信号为:忽略死区时间,S1、S2、S3和S4的PWM信号均为占空比50%的方波,且S4的PWM信号滞后S1的PWM信号四分之一个周期,S2的PWM信号滞后S1的PWM信号二分之一个周期,S3的PWM信号滞后S1的PWM信号四分之三个周期。
最后,本发明的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于谐振电容电压的LLC谐振变换器故障诊断方法,电路连接中,S1与S2串联组成第一支路,S3与S4串联组成第二支路,第一支路、第二支路与电源并联,S1与S2的连接点引线接到谐振电容Cr,谐振电容Cr的出端接电感Lr,电感Lm与变压器原边并联构成第三支路,电感Lr连接到第三支路的一端,第三支路的另一端连接到S3与S4的连接点;其特征在于,包括以下过程:
根据LLC谐振变换器的谐振电容电压与零、第一阈值电压
Figure FDA0002881388410000011
第二阈值电压
Figure FDA0002881388410000012
的关系,得到故障判别信号F0、F1和F2,并触发控制器产生移相PWM信号;再对LLC谐振变换器的谐振电容电压进行采样,根据谐振电容电压与第三阈值电压
Figure FDA0002881388410000013
第四阈值电压
Figure FDA0002881388410000014
第五阈值电压
Figure FDA0002881388410000015
第六阈值电压
Figure FDA0002881388410000016
的关系及F1和F2的取值,得到故障位置信号FS1、FS2、FS3、FS4,确定开路故障位置;所述根据LLC谐振变换器的谐振电容电压与零、第一阈值电压
Figure FDA0002881388410000017
第二阈值电压
Figure FDA0002881388410000018
的关系,得到故障判别信号,并触发控制器产生移相PWM信号具体包括:
采集谐振电容电压ucr
将谐振电容Cr的谐振电容电压ucr与零相比后得到故障判别信号F0,若相比后的结果为正负交替,则F0取值0;若相比后的结果只为正或负,则F0取值1;
将谐振电容电压ucr与第一阈值电压
Figure FDA0002881388410000019
第二阈值电压
Figure FDA00028813884100000110
相比,若故障判别信号F0取值为1且谐振电容电压ucr大于第一阈值电压
Figure FDA00028813884100000111
则故障判别信号F1取值1;若故障判别信号F0取值为1且谐振电容电压小于第二阈值电压
Figure FDA00028813884100000112
则故障判别信号F2取值1;
若F1或F2取值为1,则判定故障发生,故障诊断电路向控制电路发送故障信号,控制电路产生移相PWM信号作用于功率管;
若F0的取值为0,则判定故障没有发生;
其中,所述第一阈值电压
Figure FDA00028813884100000113
大于正常工作情况下谐振电容电压峰值;所述第三阈值电压
Figure FDA00028813884100000114
小于第一阈值电压
Figure FDA00028813884100000115
并大于零;所述第五阈值电压
Figure FDA00028813884100000116
大于第一阈值电压
Figure FDA00028813884100000117
2.根据权利要求1所述的基于谐振电容电压的LLC谐振变换器故障诊断方法,其特征在于,所述根据谐振电容电压与第三阈值电压
Figure FDA0002881388410000021
第四阈值电压
Figure FDA0002881388410000022
第五阈值电压
Figure FDA0002881388410000023
第六阈值电压
Figure FDA0002881388410000024
的关系及F1和F2的取值,得到故障位置信号FS1、FS2、FS3、FS4,确定开路故障位置具体包括:
采集谐振电容电压ucr
将谐振电容电压ucr与第三阈值电压
Figure FDA0002881388410000025
第四阈值电压
Figure FDA0002881388410000026
第五阈值电压
Figure FDA0002881388410000027
第六阈值电压
Figure FDA0002881388410000028
相比,若F1取值为1且谐振电容电压大于第五阈值电压
Figure FDA0002881388410000029
则故障位置信号FS3取值为1,判定S3发生开路故障;若F1取值为1且谐振电容电压小于第三阈值电压
Figure FDA00028813884100000210
则故障位置信号FS2取值为1,判定S2发生开路故障;
若F2取值为1且谐振电容电压大于第四阈值电压
Figure FDA00028813884100000211
则故障位置信号FS1取值为1,判定S1发生开路故障;若F2取值为1且谐振电容电压小于第六阈值电压
Figure FDA00028813884100000212
则故障位置信号FS4取值为1,判定S4发生开路故障。
3.根据权利要求1所述的基于谐振电容电压的LLC谐振变换器故障诊断方法,其特征在于,所述移相PWM信号为:忽略死区时间,S1、S2、S3和S4的PWM信号均为占空比50%的方波,且S4的PWM信号滞后S1的PWM信号四分之一个周期,S2的PWM信号滞后S1的PWM信号二分之一个周期,S3的PWM信号滞后S1的PWM信号四分之三个周期。
CN202010020591.4A 2020-01-09 2020-01-09 一种基于谐振电容电压的llc谐振变换器故障诊断方法 Expired - Fee Related CN111175604B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010020591.4A CN111175604B (zh) 2020-01-09 2020-01-09 一种基于谐振电容电压的llc谐振变换器故障诊断方法
US17/143,844 US11391789B2 (en) 2020-01-09 2021-01-07 Method for diagnosing fault of LLC resonant converter based on resonant capacitor voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010020591.4A CN111175604B (zh) 2020-01-09 2020-01-09 一种基于谐振电容电压的llc谐振变换器故障诊断方法

Publications (2)

Publication Number Publication Date
CN111175604A CN111175604A (zh) 2020-05-19
CN111175604B true CN111175604B (zh) 2021-02-26

Family

ID=70654610

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010020591.4A Expired - Fee Related CN111175604B (zh) 2020-01-09 2020-01-09 一种基于谐振电容电压的llc谐振变换器故障诊断方法

Country Status (2)

Country Link
US (1) US11391789B2 (zh)
CN (1) CN111175604B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114244128B (zh) * 2021-12-09 2023-09-19 珠海格力电器股份有限公司 一种开路故障的检测定位方法、系统、装置及存储介质
CN116593938B (zh) * 2023-07-13 2023-09-26 湖南大学 一种全桥llc谐振变换器开关管开路故障检测方法与电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247565A (zh) * 2012-04-13 2014-12-24 赤多尼科两合股份有限公司 操作发光装置、转换器和led变换器的llc谐振转换器的方法
US8924170B2 (en) * 2011-10-21 2014-12-30 Abb Research Ltd. Method and system for detecting a failed rectifier in an AC/DC converter
CN104597370A (zh) * 2015-02-16 2015-05-06 哈尔滨工业大学 基于状态观测器的模块化多电平换流器igbt开路故障的检测方法
CN106405307A (zh) * 2016-08-29 2017-02-15 西北工业大学 一种浮地交错变换器单管开路故障检测方法
CN109613449A (zh) * 2018-12-29 2019-04-12 西交利物浦大学 一种针对双主动全桥变换器的故障检测方法
CN110187209A (zh) * 2019-06-04 2019-08-30 长沙晟道电气科技有限公司 模块化多电平变换器子模块故障检测方法、系统及介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200849792A (en) * 2007-06-01 2008-12-16 Richtek Technology Corp Apparatus and method for reducing the die area of a PWM controller
KR100911540B1 (ko) * 2007-07-18 2009-08-10 현대자동차주식회사 디씨/디씨 컨버터의 스위치 고장시 비상동작 방법
CN103414322B (zh) * 2013-08-27 2015-11-25 成都芯源系统有限公司 一种控制电路、开关变换器及其控制方法
CN204903623U (zh) * 2015-06-25 2015-12-23 深圳麦格米特电气股份有限公司 一种llc谐振变换器电流采样电路
JP6699253B2 (ja) * 2016-03-10 2020-05-27 富士電機株式会社 電力変換装置、スイッチング素子の短絡故障診断方法およびスイッチング素子のオープン故障診断方法
EP3324504B1 (en) * 2016-11-22 2021-04-07 ABB Power Grids Switzerland AG Monitoring tap changer switching
CN106885966B (zh) * 2017-02-15 2019-06-14 南京航空航天大学 一种mmc功率器件开路故障诊断方法
CN107589335A (zh) * 2017-09-21 2018-01-16 南京航空航天大学 一种mmc子模块功率管开路故障的诊断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8924170B2 (en) * 2011-10-21 2014-12-30 Abb Research Ltd. Method and system for detecting a failed rectifier in an AC/DC converter
CN104247565A (zh) * 2012-04-13 2014-12-24 赤多尼科两合股份有限公司 操作发光装置、转换器和led变换器的llc谐振转换器的方法
CN104597370A (zh) * 2015-02-16 2015-05-06 哈尔滨工业大学 基于状态观测器的模块化多电平换流器igbt开路故障的检测方法
CN106405307A (zh) * 2016-08-29 2017-02-15 西北工业大学 一种浮地交错变换器单管开路故障检测方法
CN109613449A (zh) * 2018-12-29 2019-04-12 西交利物浦大学 一种针对双主动全桥变换器的故障检测方法
CN110187209A (zh) * 2019-06-04 2019-08-30 长沙晟道电气科技有限公司 模块化多电平变换器子模块故障检测方法、系统及介质

Also Published As

Publication number Publication date
US11391789B2 (en) 2022-07-19
US20210215771A1 (en) 2021-07-15
CN111175604A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
CN110838793B (zh) 一种应用于双向cllc谐振变换器的同步整流电路及控制策略
CN107425728B (zh) 一种llc全桥变换器同步整流的数字优化控制方法及其系统
CN104506040B (zh) 同一占空比的双pwm加移相控制方法
CN202167993U (zh) 具有无损缓冲电路的移相全桥开关电源变换器
CN103312165B (zh) 一种高频多相交错式变换装置及控制方法
CN111175604B (zh) 一种基于谐振电容电压的llc谐振变换器故障诊断方法
WO2019129275A1 (zh) 一种llc变换器同步整流管的控制系统
CN104300795A (zh) 一种反激变换器及其控制方法
CN103872920A (zh) 隔离式双向三电平变换器的漏感电流直接斜率控制方法
TWI481181B (zh) 直流轉交流電力轉換裝置及其方法
CN104779828A (zh) 一种高效率光伏并网逆变器
CN108254688B (zh) 开关磁阻电机功率变换器小波变比故障诊断方法
CN115242095A (zh) 一种隔离型cllc变换器双向同步整流控制装置和方法
CN112491277A (zh) 一种通过死区时间自适应提高电力电子变压器效率的方法
CN111600488A (zh) 一种利用过零检测技术提高电力电子变压器效率的方法
CN114878901A (zh) 可消除比较器失调电压影响的dc-dc过零电流检测电路
CN114448248A (zh) 耦合电感交错并联四开关升降压双向变换器的控制电路
CN111413647A (zh) 一种clllc谐振变换器开路故障实时检测方法和系统
CN108696133A (zh) 控制装置及控制方法
CN105226986A (zh) 一种消除输入侧二次功率脉动的逆变器及其控制方法
CN104852560A (zh) 开关电源中应力平衡的优化方法及适用该方法的开关电源
CN2744056Y (zh) 一种开关电源的控制装置
CN115242096A (zh) 带磁平衡的电源变换电路及其控制方法
CN209516949U (zh) 一种宽范围同步整流驱动控制电路
CN116593938B (zh) 一种全桥llc谐振变换器开关管开路故障检测方法与电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210226