CN111175329B - 一种液氮冷冻岩石微观结构原位观测方法 - Google Patents

一种液氮冷冻岩石微观结构原位观测方法 Download PDF

Info

Publication number
CN111175329B
CN111175329B CN202010045754.4A CN202010045754A CN111175329B CN 111175329 B CN111175329 B CN 111175329B CN 202010045754 A CN202010045754 A CN 202010045754A CN 111175329 B CN111175329 B CN 111175329B
Authority
CN
China
Prior art keywords
rock sample
rock
liquid nitrogen
sample
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010045754.4A
Other languages
English (en)
Other versions
CN111175329A (zh
Inventor
杨睿月
黄中伟
李根生
洪纯阳
温海涛
丛日超
张逸群
李敬彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum Beijing
Original Assignee
China University of Petroleum Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum Beijing filed Critical China University of Petroleum Beijing
Priority to CN202010045754.4A priority Critical patent/CN111175329B/zh
Publication of CN111175329A publication Critical patent/CN111175329A/zh
Application granted granted Critical
Publication of CN111175329B publication Critical patent/CN111175329B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/2005Preparation of powder samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2252Measuring emitted X-rays, e.g. electron probe microanalysis [EPMA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/053Investigating materials by wave or particle radiation by diffraction, scatter or reflection back scatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • G01N2223/0565Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction diffraction of electrons, e.g. LEED
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/071Investigating materials by wave or particle radiation secondary emission combination of measurements, at least 1 secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/079Investigating materials by wave or particle radiation secondary emission incident electron beam and measuring excited X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/102Different kinds of radiation or particles beta or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/616Specific applications or type of materials earth materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提供了一种液氮冷冻岩石微观结构原位观测方法。所述方法包括如下步骤:(1)将抛光后的岩石样品加热,以使得岩石样品受热均匀;(2)将受热均匀的岩石样品固定在样品座上;(3)将岩石样品浸泡在液氮中至岩石内部温度场达到稳定;(4)依次对岩石样品进行抽真空处理、升华处理和镀膜处理;(5)利用冷冻电镜对镀膜处理后的岩石样品进行观测。本发明的方法能够在超低温环境下(‑185℃)原位观测液氮冷冻岩石的微观结构,观测过程中的岩样所处温度与液氮压裂现场实际情况一致,所观测到的热应力微裂缝大小及其它微观结构更符合液氮压裂现场的实际情况。

Description

一种液氮冷冻岩石微观结构原位观测方法
技术领域
本发明涉及石油、地热领域,具体的说,本发明涉及一种液氮冷冻岩石微观结构原位观测方法。
背景技术
2018年中国石油对外依存度升至69.8%,天然气对外依存度升至45.3%,预计2019年,中国油气对外依存度还将继续上升,大力开发地热资源和非常规天然气资源是降低依存度的关键。然而,石油工程领域常用的以水基工作液为主的钻采技术存在以下问题:干热岩储层破岩效率低,起裂压力高;非常规天然气储层易发生水敏水锁反应。
采用液氮作为新型工作液,具有节约水资源、环境零污染、储层零伤害等优势,对于解决干热岩和非常规天然气开发存在的上述问题具有重要意义。液氮温度极低(常压下-196℃),与储层接触时,会导致储层岩石温度急剧降低,从而促进岩石内部初始裂隙的扩展或在岩石内部产生新的破裂。原位观测液氮冷冻条件下岩石的微观结构,从微纳米尺度探索液氮热损伤岩石机理,对液氮在石油工程领域的应用具有重大意义。
传统观测方法采用常规扫描电镜,只能观测液氮冷冻恢复室温后岩石的微观结构。观测过程中的岩样所处温度与液氮压裂现场实际情况存在很大差异,所观测到的热应力微裂缝大小及其它微观结构不符合液氮压裂现场的实际情况,无法实现超低温环境下的原位观测,岩石样品会发生裂缝闭合等微观结构失真的问题。生命科学领域兴起的冷冻电镜观测技术能实现在超低温环境下(最低-185℃)观测生物样品,但缺乏观测岩石样品的案例。对于冷冻电镜而言,能否获得高质量的冷冻电镜图像,主要取决于样品的制备方法和观察条件。换言之,由于样品的种类和研究目的各不相同,所选择的升华温度和时间、电镜冷台温度、观察电压也各不相同,而上述参数的选择将直接影响成像效果,对观察液氮冷冻岩石微观结构造成较大影响。
发明内容
本发明的目的在于提供一种液氮冷冻岩石微观结构原位观测方法。
本发明能实现在超低温环境下(-185℃)原位观测液氮冷冻岩石的微观结构,能够结合EDS和EBSD等识别矿物元素和分析晶体结构,同时,探索出了一套冷冻电镜观测岩石样品的方法,填补了冷冻电镜观测岩石样品的空白。
为达上述目的,本发明提供了一种液氮冷冻岩石微观结构原位观测方法,其中,所述方法包括如下步骤:
(1)将抛光后的岩石样品加热,以使得岩石样品受热均匀;
(2)将受热均匀的岩石样品固定在样品座上;
(3)将岩石样品浸泡在液氮中至岩石内部温度场达到稳定;
(4)依次对岩石样品进行抽真空处理、升华处理和镀膜处理;
(5)利用冷冻电镜对镀膜处理后的岩石样品进行观测。
根据本发明一些具体实施方案,其中,步骤(1)所述抛光是将岩石样品表面抛光至岩石表面粗糙度Ra为0.008-0.012μm。
根据本发明一些具体实施方案,其中,岩石样品的尺寸为6mm×6mm×1.5mm。
根据本发明一些具体实施方案,其中,步骤(1)是利用氩离子抛光方法对岩石样品进行抛光。
根据本发明一些具体实施方案,其中,步骤(1)是将岩石样品根据研究的需要加热到预设温度,并在该温度下恒温保持30~60min。
其中可以理解的是,本发明所述的预设温度,可以是根据研究的需要所期望的任意温度,譬如,可以是岩石样品所在地层的温度,或者是任何研究所需的温度。
根据本发明一些具体实施方案,其中,步骤(1)采用加热温度上限为450℃的数显加热套进行加热。
根据本发明一些具体实施方案,其中,所述数显加热套采用金属浴加热,最高加热温度达到450℃,加热温度、加热速率可调。
根据本发明一些具体实施方案,其中,步骤(2)是利用在-185℃以下仍具有粘附性和导电性的导电胶将岩石样品固定在样品座上。
根据本发明一些具体实施方案,其中,所述导电胶为英国Agar Scientific公司生产的双面铜导电胶带。
根据本发明一些具体实施方案,其中,步骤(3)是将岩石样品完全浸没在液氮中,并浸泡20-30min后取出岩石样品。
根据本发明一些具体实施方案,其中,步骤(3)是将加热后的岩石样品用镊子取出,立即置于盛有液氮的烧杯内,液氮液面发生下降后可适当添加液氮,浸泡20~30min后,液氮液面趋于平静不再沸腾,取出岩石样品。
根据本发明一些具体实施方案,其中,步骤(4)所述抽真空处理包括将岩石样品在真空度6~10mbar的环境下抽真空处理。
根据本发明一些具体实施方案,其中,步骤(4)所述抽真空处理包括将岩石样品置于密闭容器中进行抽真空处理。
根据本发明一些具体实施方案,其中,步骤(4)所述抽真空处理包括将岩石样品置于密闭容器中并抽真空至真空度6~10mbar。
根据本发明一些具体实施方案,其中,步骤(4)抽真空处理的次数为1~2次。
根据本发明一些具体实施方案,其中,步骤(4)所述升华处理包括将抽真空处理后的岩石样品进行加热,以使得岩石样品表面冰渍气化。
根据本发明一些具体实施方案,其中,步骤(4)包括将抽真空处理后的岩石样品在-90℃~-100℃环境下维持5~6min,然后再将环境温度降至-180℃~-185℃。
根据本发明一些具体实施方案,其中,步骤(4)所述镀膜处理包括在岩石样品表面喷覆金和/或铂粉末。
根据本发明一些具体实施方案,其中,步骤(4)所述镀膜处理的次数为1-2次。
根据本发明一些具体实施方案,其中,步骤(4)所述喷覆金和/或铂粉末是通过离子溅射方法喷覆,离子溅射电流为8~10mA,镀膜时间为60~70s。
根据本发明一些具体实施方案,其中,步骤(5)是将岩石样品保持在-180℃-185℃利用冷冻电镜进行观测。
根据本发明一些具体实施方案,其中,步骤(5)用冷冻电镜进行观测的观测电压为2~3kV。
根据本发明一些具体实施方案,其中,步骤(5)还包括利用EDS(能量色散X-射线光谱)和EBSD(电子背散射衍射)识别矿物元素和分析晶体结构。
综上所述,本发明提供了一种液氮冷冻岩石微观结构原位观测方法。本发明的观测方法具有如下优点:
一是能够在超低温环境下(-185℃)原位观测液氮冷冻岩石的微观结构,观测过程中的岩样所处温度与液氮压裂现场实际情况一致,所观测到的热应力微裂缝大小及其它微观结构更符合液氮压裂现场的实际情况;
二是制样简单,放大倍数可调、图像分辨率高,很够结合EDS(能量色散X-射线光谱)和EBSD(电子背散射衍射)识别矿物元素和分析晶体结构。
附图说明
图1为本发明实施例1的观测方法的流程图。
图2为常规电镜观测到的岩样裂缝。
图3为本发明冷冻电镜观察到的岩样裂缝。
图4为常规电镜观测到的岩石样品缝网结构。
图5为本发明冷冻电镜观测到的岩石样品缝网结构。
图6为两种电镜观测的同条件岩样裂缝宽度的统计图。
具体实施方式
以下通过具体实施例详细说明本发明的实施过程和产生的有益效果,旨在帮助阅读者更好地理解本发明的实质和特点,不作为对本案可实施范围的限定。
实施例1
本发明的液氮冷冻岩石微观结构原位观测方法,如图1所示,包括以下步骤:(1)将切片抛光后的煤岩放入数显加热套,加热至50℃;(2)待岩石样品受热均匀后直接取出,放入液氮浸泡直至内部温度场达到稳定;(3)将岩石样品从液氮中取出,用导电胶固定在载物圆盘上;(4)依次进行抽真空处理、升华处理和镀膜处理;(5)将样品送入冷冻电镜观测。
切片抛光岩石样品的尺寸为6mm×6mm×1.5mm,该尺寸岩石样品一次可以放置四个在冷冻电镜载物圆盘上观测,一个样品观测结束移动镜头位置即可观测下一个,可以节约样品准备时间。
切片抛光岩石样品表面进行氩离子抛光,优选地,将所述岩石样品表面抛光至其粗糙度指标Ra为0.008~0.012μm,粗糙度过高,不利于电镜成像,粗糙度过低,加工成本较高。
数显加热套采用金属浴加热,最高加热温度达到450℃,加热温度、加热速率可调。采用金属浴加热,可使岩石样品受热均匀,降低加热过程中的热损伤的影响,相对于水浴加热,能极大的提高加热温度上限,以满足实际需求,加热速率也是影响加热过程的关键因素,应当保持一致。
数显加热套将加热到设定温度后,维持加热温度恒定30min~60min后取出岩石样品,以使岩石受热均匀。
导电胶在超低温环境下(-185℃)仍具有良好的粘附性和导电性,以使岩石样品紧密的固定在载物圆盘上。
液氮浸泡的方法是将加热后的岩石样品用镊子取出,立即置于液氮中,液氮液面发生下降后可适当添加液氮,浸泡20-30min后,液氮液面趋于平静不再沸腾,此时岩石内部温度场达到平衡,冷冻完成,取出岩石样品。
抽真空处理是将样品及密闭容器内空气抽出,以避免空气进入冷冻电镜,影响扫描效果。
升华处理是将岩石样品所处制备腔室环境温度升高至-90℃,维持5min再降低温度至-185℃,使样品表面冰渍气化,以免影响冷冻电镜成像。升温时间短,岩石导热性差,对岩石微观结构的影响小。
镀膜处理是在岩石表面喷洒金、铂等金属粉末,能够极为有效的提升样品的导电性减少等离子体对样品的热影响和离子轰击损伤,显著提供扫描电镜观测结果,根据岩石样品的特性,镀膜1次,每次离子溅射电流设置为10mA,镀膜时间为60s。
冷冻电镜在观察岩石样品过程中可以保持温度恒定为-185℃,观察电压为2kV,分辨率高,放大倍数可调,能够直观的观察岩石的微观结构,还能够结合EDS(能量色散X-射线光谱)和EBSD(电子背散射衍射)等识别矿物元素和分析晶体结构。能够在超低温环境下(-185℃)原位观测液氮冷冻岩石的微观结构,观测过程中的岩样所处温度与液氮压裂现场实际情况一致,所观测到的热应力微裂缝大小及其它微观结构更符合液氮压裂现场的实际情况。
图2为常规电镜观测到的岩样裂缝,图3为冷冻电镜观察到的岩样裂缝,图4为常规电镜观测到的岩石样品缝网结构,图5为冷冻电镜观测到的岩石样品缝网结构,图6为两种电镜观测的同条件岩样裂缝宽度的统计图。可以看出,常规电镜在裂缝宽度和裂缝的复杂程度上与冷冻电镜观测结果存在明显不同。常规电镜观测的平均裂缝宽度为3.81μm,而冷冻电镜观测的平均裂缝宽度为7.61μm;常规电镜观测的裂缝多为单一裂缝,冷冻电镜观测到的多为复杂缝,且在主裂缝周围多发育有次生微裂缝。其原因在于常规电镜观测岩石样品为常温条件,与真实液氮压裂现场液氮处理地层的温度条件存在较大差异(温度是影响热应力大小的关键因素,热应力大小直接影响裂缝的宽度),液氮冷冻岩石样品恢复常温后热应力裂缝发生闭合,导致常规电镜观测结果失真。

Claims (18)

1.一种液氮冷冻岩石微观结构原位观测方法,其中,所述方法包括如下步骤:
(1)将抛光后的岩石样品加热,以使得岩石样品受热均匀;
(2)将受热均匀的岩石样品固定在样品座上;
(3)将岩石样品浸泡在液氮中至岩石内部温度场达到稳定;
(4)依次对岩石样品进行抽真空处理、升华处理和镀膜处理;
(5)利用冷冻电镜对镀膜处理后的岩石样品的缝网结构进行观测。
2.根据权利要求1所述的方法,其中,步骤(1)所述抛光是将岩石样品表面抛光至岩石表面粗糙度Ra为0.008~0.012μm。
3.根据权利要求2所述的方法,其中,步骤(1)所述抛光是利用氩离子抛光方法对岩石样品进行抛光。
4.根据权利要求1~3任意一项所述的方法,其中,步骤(1)是将岩石样品根据研究的需要将岩石样品加热到预设温度,并在该温度下恒温保持30~60min。
5.根据权利要求4所述的方法,其中,步骤(1)是采用加热温度上限为450℃的数显加热套将岩石样品加热到预设温度。
6.根据权利要求1~3任意一项所述的方法,其中,步骤(2)是利用在-185℃以下仍具有粘附性和导电性的导电胶将岩石样品固定在样品座上。
7.根据权利要求6所述的方法,其中,步骤(2)所述导电胶为英国Agar Scientific公司生产的双面铜导电胶带。
8.根据权利要求1~3任意一项所述的方法,其中,步骤(3)是将岩石样品及样品座完全浸没在液氮中,并浸泡20~30min后取出岩石样品。
9.根据权利要求1~3任意一项所述的方法,其中,步骤(4)所述抽真空处理包括将岩石样品在真空度6~10mbar的环境下抽真空处理。
10.根据权利要求9所述的方法,其中,步骤(4)所述抽真空处理包括将岩石样品及样品座置于密闭容器中进行抽真空处理。
11.根据权利要求9所述的方法,其中,步骤(4)所述抽真空处理的次数为1~2次。
12.根据权利要求1~3任意一项所述的方法,其中,步骤(4)所述升华处理包括将抽真空处理后的岩石样品进行加热,以使得岩石样品表面冰渍气化。
13.根据权利要求12所述的方法,其中,步骤(4)所述升华处理包括将抽真空处理后的岩石样品进行加热,在-90℃~-100℃环境下维持5~6min,然后再将环境温度降至-180℃~-185℃,以使得岩石样品表面冰渍气化。
14.根据权利要求1~3任意一项所述的方法,其中,步骤(4)所述镀膜处理包括在岩石样品表面喷覆金和/或铂粉末。
15.根据权利要求14所述的方法,其中,步骤(4)所述镀膜处理的次数为1~2次。
16.根据权利要求14所述的方法,其中,步骤(4)所述喷覆金和/或铂粉末是通过离子溅射方法喷覆,离子溅射电流为8~10mA,镀膜时间为60~70s。
17.根据权利要求1~3任意一项所述的方法,其中,步骤(5)是将岩石样品保持在-180℃~-185℃利用冷冻电镜进行观测。
18.根据权利要求17所述的方法,其中,步骤(5)的观测电压为2~3kV。
CN202010045754.4A 2020-01-16 2020-01-16 一种液氮冷冻岩石微观结构原位观测方法 Active CN111175329B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010045754.4A CN111175329B (zh) 2020-01-16 2020-01-16 一种液氮冷冻岩石微观结构原位观测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010045754.4A CN111175329B (zh) 2020-01-16 2020-01-16 一种液氮冷冻岩石微观结构原位观测方法

Publications (2)

Publication Number Publication Date
CN111175329A CN111175329A (zh) 2020-05-19
CN111175329B true CN111175329B (zh) 2020-11-27

Family

ID=70647899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010045754.4A Active CN111175329B (zh) 2020-01-16 2020-01-16 一种液氮冷冻岩石微观结构原位观测方法

Country Status (1)

Country Link
CN (1) CN111175329B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112523735B (zh) * 2020-12-08 2021-10-26 中国矿业大学 一种用于页岩储层改造的压裂方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278922B2 (en) * 2009-03-23 2012-10-02 Schlumberger Technology Corporation Continuous wettability logging based on NMR measurements
CN104360106A (zh) * 2014-10-21 2015-02-18 中国检验检疫科学研究院 化妆品中纳米粒子的冷冻扫描电子显微镜检测方法
US10429372B2 (en) * 2015-07-17 2019-10-01 Saudi Arabian Oil Company Smart water flooding processes for increasing hydrocarbon recovery
CN110573591A (zh) * 2016-10-06 2019-12-13 杜兰教育基金委员会 用于递送油溶性材料的水溶性胶束
WO2018145243A1 (en) * 2017-02-07 2018-08-16 Dow Global Technologies Llc Process for foaming polyolefin compositions using a modified high density polyethylene
CN107247062B (zh) * 2017-06-06 2019-04-19 中国科学院遗传与发育生物学研究所 一种冷冻扫描电镜用样品冻存装置
CN108716395B (zh) * 2018-05-22 2019-09-17 中国石油大学(北京) 基于冰块压裂的可视化试验方法
CN108709815B (zh) * 2018-05-23 2021-03-23 中国石油大学(华东) 测量低温下岩石断裂韧性的实验装置及方法
CN109030519B (zh) * 2018-06-15 2020-11-17 义乌市研创工业设计有限公司 一种冷冻电镜用的可操作观察记录装置
CN109826606B (zh) * 2019-02-15 2020-12-25 中国石油大学(北京) 高低温流体交替压裂间断原位开采油页岩的方法及装置

Also Published As

Publication number Publication date
CN111175329A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
Drory et al. Diamond coating of titanium alloys
CN111175329B (zh) 一种液氮冷冻岩石微观结构原位观测方法
Zhao et al. The effect of heat treatment on the electrochemical corrosion behavior of reactive plasma-sprayed TiN coatings
CN108118340B (zh) 钼及钼合金电极表面Mo5Si3-MoSi2-SiO2高温防护复合涂层及制备方法
CN109207952A (zh) 采用高通量技术制备梯度Nb-Si基合金薄膜的方法
CN107643309A (zh) 电工钢表面涂层的分析方法
Baiamonte et al. Tribological and high-temperature mechanical characterization of cold sprayed and PTA-deposited Stellite coatings
RU2742751C1 (ru) Способ получения износостойкого наноструктурированного покрытия
CN109632436A (zh) 一种高氮不锈钢的ebsd测试试样表面处理方法
Yi et al. Enhanced toughness and hardness at cryogenic temperatures of silicon carbide sintered by SPS
CN106048519A (zh) 一种聚变堆氚增殖包层用Fe‑Al/Al2O3 阻氚涂层及其制备方法
CN108559952A (zh) 一种Mg/Zn梯度合金的制备方法
CN109470560A (zh) 一种材料微观组织压缩/弯曲性能动态表征方法
Bandyopadhyay et al. Microstructural, tribological and corrosion aspects of thermally sprayed Ti–Cr–Si coatings
CN103448341B (zh) 用于空间活动部件的耐盐雾腐蚀自润滑薄膜及其制备方法
CN103981500A (zh) 一种提高二氧化钒薄膜相变幅度的表面微结构
Islamoglu et al. Effects on residual stresses of annealing parameters in high-temperature ZrO2 insulation coatings on Ag/Bi-2212 superconducting tapes using finite element method
Sarafoglou et al. Study of Al2O3 coatings on AISI 316 stainless steel obtained by controlled atmosphere plasma spraying (CAPS)
CN108107065A (zh) 一种稻米淀粉粒断面的制备及观察分析方法
Viklund et al. Improving Nb3Sn cavity performance using centrifugal barrel polishing
Zhou et al. Influence of CH4 flow rate on microstructure and properties of Ti-C: H films deposited by DC reactive magnetron sputtering
Hu et al. Enhanced adhesion and conductivity of Cu electrode on AlN substrate for thin film thermoelectric device
KamalanKirubaharan et al. Evaluation of corrosion resistance of Gd2O3/YSZ thermal barrier coating using electrochemical impedance spectroscopy
Tong et al. Effect of Heat Treatment and Passivation on Corrosion Behavior of Electroless Ni-P Coating on 20# Steel in Simulated Soil Solution
Wu et al. Effect of surface microstructure of aluminum coating on corrosion properties of magnetic refrigerant gadolinium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant