CN111175233A - 一种激光精密点焊质量激光超声检测方法和系统 - Google Patents

一种激光精密点焊质量激光超声检测方法和系统 Download PDF

Info

Publication number
CN111175233A
CN111175233A CN202010147830.2A CN202010147830A CN111175233A CN 111175233 A CN111175233 A CN 111175233A CN 202010147830 A CN202010147830 A CN 202010147830A CN 111175233 A CN111175233 A CN 111175233A
Authority
CN
China
Prior art keywords
laser
ultrasonic
detection
welding
tested piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010147830.2A
Other languages
English (en)
Inventor
颜学俊
丁雷
卢明辉
鲁强兵
徐晓东
钱斯文
钱利强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Guangsheng Superstructure Materials Research Institute Co ltd
Nanjing University
Original Assignee
Nanjing Guangsheng Superstructure Materials Research Institute Co ltd
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Guangsheng Superstructure Materials Research Institute Co ltd, Nanjing University filed Critical Nanjing Guangsheng Superstructure Materials Research Institute Co ltd
Priority to CN202010147830.2A priority Critical patent/CN111175233A/zh
Publication of CN111175233A publication Critical patent/CN111175233A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0681Imaging by acoustic microscopy, e.g. scanning acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/228Details, e.g. general constructional or apparatus details related to high temperature conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1706Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids in solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2672Spot welding

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Acoustics & Sound (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明提供一种激光精密点焊质量激光超声检测方法和系统,涉及精密加工质量检测方法技术领域,包括激光器、二向色镜、凸镜、位移平台、激光测振仪、第一光电探测器、信号处理系统、计算机,CCD相机,调整激光器设置,通过凸镜聚焦在待测试件表面,记录超声纵波在未焊接前上层板中的传播信号,记录超声纵波在焊接后待测试件中的传播信号。本发明检测效率高,检测结果精确可靠。

Description

一种激光精密点焊质量激光超声检测方法和系统
技术领域
本发明属于精密加工质量检测方法技术领域,具体涉及一种激光精密点焊质量激光超声检测方法和系统。
背景技术
激光焊接技术是利用高能量的激光脉冲对材料微小区域进行加热,激光辐射的能量通过热传导向材料内部扩散,将材料熔化后形成特定熔池以达到焊接目的。激光焊接技术在焊接过程中无需接触,避免了工具与器件表面接触而造成器件表面损伤,加工精度高,是一种新型的微电子封装与互连技术,适用于各种细微核心器件的生产与加工,在电子通信、交通、医疗、军事等领域应用广泛。
电子元器件焊点数量巨大,焊斑尺寸较小(100-500μm),在焊接过程中可能出现虚焊、漏焊、气孔等缺陷,将对整个焊接工件产生致命性的危害,同时每一个焊点的质量都要合格,才能保证其封装完成后的正常功能,因此急需一种快捷有效的无损检测方式对焊点质量进行在线检测,确保激光精密焊接质量。目前常规的检测手段有外观检测、拉力检测、金相检测、红外光谱监测和传统高频超声检测。外观检测仅对可以用显微镜观测到的外观缺陷,无法检测到焊接内部缺陷;拉力检测可以直观地判断焊接强度,金相检测可以准确地观察焊接内部熔池形貌,但是这两种方法都是破坏性的,只适用于失效分析,不适用于焊接质量检测。红外光谱监测采集焊接过程中产生的等离子体、反射光和温度信号,来共同预判焊接质量,该检测方式在大型构件的焊接过程中效果显著,但在焊点尺寸为100-500μm的焊接过程中误判率过高。传统的超声无损检测技术以压电换能器作为超声的激励和检测探头,但该检测技术存在以下问题:需要压电换能器与试样紧密接触,且需在二者之间涂抹适量的超声耦合剂,无法满足激光点焊的高速加工过程;压电换能器的尺寸较大,无法满足直径约0.5mm焊点的局部检测;压电换能器的带宽一般低于20MHz,纵向分辨率较低(-0.3mm),无法满足总厚度约0.3-0.5mm金属薄板的焊点检测。激光超声检测利用激光激励和接收超声波,是一种远距离非接触式的无损检测技术,具有宽带宽(最高可达1GHz)、检测分辨率高(横向-0.1mm,纵向-0.05mm)、检测效率高等优势,可与激光焊接的光学系统实现整体集成,是实现激光精密点焊质量在线检测最具潜力的检测技术。
目前,激光超声检测技术已实现金属、半导体、复合材料、陶瓷材料中缺陷、形貌和显微结构检测,特别是在高温、高压、强辐射以及强腐蚀性等恶劣环境中具有不可替代的作用,已广泛应用于航空航天飞行器检修、芯片质量检测、精密仪器检测、国防军事设施维护等众多领域。特别是在在线检测领域,该技术已经成功实现激光焊接过程的表面质量检测、钢管制造厚度检测,充分展现了其在非接触式快速检测方面的优势,但是针对激光精密点焊质量激光超声在线检测技术尚处于空白状态。
因此急需提供一种检测效率高,检测结果精确可靠的激光精密点焊质量激光超声检测方法和系统。
发明内容
本发明的目的是针对现有激光精密点焊质量激光超声检测方法和系统的不足,提供一种激光精密点焊质量激光超声检测方法和系统。
本发明提供了如下的技术方案:
一种激光精密点焊质量激光超声检测系统,包括激光器、二向色镜、凸镜、位移平台、激光测振仪、第一光电探测器、信号处理系统、计算机和CCD相机。
优选的,所述激光测振仪包括探测激光器和第二光电探测器。
优选的,待测试件放置所述位移平台的上表面。
一种激光精密点焊质量激光超声检测方法,应用于激光精密点焊质量激光超声检测系统,包括以下检测步骤:
S1:根据待测试件的厚度和材料,兼顾超声波的激发效率和对待测试件无损,选择激光器进行激光精密点焊质量检测,根据待测试件放置方式,确定单侧式和透射式的检测方式;
S2:通过数据线将激光器、二向色镜、凸镜、位移平台、激光测振仪、第一光电探测器、信号处理系统、计算机和CCD相机进行连接;
S3:利用CCD相机监测激光在待测试件表面的聚焦点位置调整光路,确保激发点和接收点在待测试件表面重合或者二者连线平行于待测试件厚度方向;
S4:对于未熔合区域,上层板上表面所激发的超声波在其内部传播后,在上层板的底面出发生超声回波的反射,对于熔合区域,由于二者之间已经形成了机械结合,超声波可穿过融合区域进入到下层板,在下层板的底面处发生超声回波反射,超声回波返回到上层板上表面所需的时间存在显著的差异,可以通过测量超声回波在焊点处的传播时间来确定其是否熔合良好,从而筛选出虚焊、漏焊的试件;
S5:调整激光器设置,发射波长为1064nm激光,单侧检测时利用二分色镜改变激光传播方向,通过凸镜聚焦在待测试件表面;
S6:调整激光测振仪发射波长为532nm激光,聚焦在待测试件表面,记录超声波所引起待测试件表面振动位移,其中采用频率为1GHz,通过128次平均采集超声纵波信号,并输入信号处理系统;
S7:记录超声纵波在未焊接前上层板中的传播信号,确定其传播时间t0;
S8:记录超声纵波在焊接后待测试件中的传播信号,确定其传播待测试件t1,当焊接后超声纵波未传播至下层板,则存在虚焊、漏焊现象,信号处理系统给出报警指令;
S9:当试样中两块板焊接在一起时,采用C扫描成像技术对焊接的三维轮廓进行检测;利用超声纵波在熔接区域与基板的界面处的回波信号,通过移动检测激光,根据超声回波的传播时间,检测界面与表面之间的距离,进而将整个熔池的三维轮廓描绘出来;
S10:通过计算机设置位移平台的零点和扫描方式、步长和范围等参数,根据纵波回波时间tij和幅值Aij对扫描区域进行成像,并在计算机上显示焊接轮廓,从而综合评估激光精密点焊质量。
本发明的有益效果是:
1)采用非接触式的激发和接收超声波的方式,适用于激光精密点焊质量在线检测,检测效率高;
2)高频宽带激光器的频率可达200MHz,激光测振仪的检测精度可达亚纳米级,因此成像分辨率可达纳米级,检测精度高;
3)基于光折变晶体动态全息衍射光栅的双波混合技术,采用自适应外差干涉光学系统和改进的卡尔曼滤波器滤除强电磁干扰,可以滤除外界低频振动对干涉光路的影响,数据采集的可靠性高。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明的单侧式检测示意图;
图2为本发明的透射式检测示意图;
图3为本发明中虚焊及漏焊检测原理图;
图4为本发明中整个熔池的C扫描成像检测原理图以及扫描路径;
图5为检测处激光与式样作用原理(左)和检测式样电焊位置标记(右);
图6为在不同电焊位置检测到的波形。
图中标记为:1、激光器;2、二向色镜;3、凸镜;4、激光测振仪;5、探测激光器;6、第二光电探测器;7、第一光电探测器;8、信号处理系统;9、待测试件;10、位移平台;11、CCD相机;12、计算机;13、试件上层板;14、试件下层板;15、未熔合区域;16、熔合区域;17、扫描路径。
具体实施方式
如图1至图6所示,一种激光精密点焊质量激光超声检测系统,包括激光器1、二向色镜2、凸镜3、位移平台10、激光测振仪4、第一光电探测器7、信号处理系统、计算机12和CCD相机11。
激光测振仪4包括探测激光器5和第二光电探测器6。待测试件9放置所述位移平台10的上表面。
一种激光精密点焊质量激光超声检测方法,应用于激光精密点焊质量激光超声检测系统,包括以下检测步骤:
S1:根据待测试件9的厚度和材料,兼顾超声波的激发效率和对待测试件9无损,选择激光器1进行激光精密点焊质量检测,根据待测试件9放置方式,确定单侧式和透射式的检测方式;
S2:通过数据线将激光器1、二向色镜2、凸镜3、位移平台10、激光测振仪4、第一光电探测器7、信号处理系统、计算机12和CCD相机11进行连接;
S3:利用CCD相机11监测激光在待测试件9表面的聚焦点位置调整光路,确保激发点和接收点在待测试件9表面重合或者二者连线平行于待测试件9厚度方向;
S4:对于未熔合区域15,上层板上表面所激发的超声波在其内部传播后,在上层板的底面出发生超声回波的反射,对于熔合区域16,由于二者之间已经形成了机械结合,超声波可穿过融合区域进入到下层板,在下层板的底面处发生超声回波反射,超声回波返回到上层板上表面所需的时间存在显著的差异,可以通过测量超声回波在焊点处的传播时间来确定其是否熔合良好,从而筛选出虚焊、漏焊的试件;
S5:调整激光器1设置,发射波长为1064nm激光,单侧检测时利用二分色镜改变激光传播方向,通过凸镜3聚焦在待测试件9表面;
S6:调整激光测振仪4发射波长为532nm激光,聚焦在待测试件9表面,记录超声波所引起待测试件9表面振动位移,其中采用频率为1GHz,通过128次平均采集超声纵波信号,并输入信号处理系统;
S7:记录超声纵波在未焊接前上层板中的传播信号,确定其传播时间t0;
S8:记录超声纵波在焊接后待测试件9中的传播信号,确定其传播待测试件9t1,当焊接后超声纵波未传播至下层板,则存在虚焊、漏焊现象,信号处理系统给出报警指令;
S9:当试样中两块板焊接在一起时,采用C扫描成像技术对焊接的三维轮廓进行检测;利用超声纵波在熔接区域与基板的界面处的回波信号,通过移动检测激光,根据超声回波的传播时间,检测界面与表面之间的距离,进而将整个熔池的三维轮廓描绘出来;
S10:通过计算机12设置位移平台10的零点和扫描方式、步长和范围等参数,根据纵波回波时间tij和幅值Aij对扫描区域进行成像,并在计算机12上显示焊接轮廓,从而综合评估激光精密点焊质量。
实施例
在检测过程中,首先计算机12发出命令到激光器1激发出高频宽带激光(波长为1064nm),利用二向色镜2使激光传播方向改变90°,通过凸镜3使激光聚焦在待检试件的表面,由于热弹效应,试件中产生高频宽带的超声纵波,并利用CCD相机11实时显示激光聚焦点在试件表面的位置。纵波在试件中沿其厚度方向传播至底面发生反射,当反射波传播至试件表面引起表面产生振动,激光测振仪4(波长为532nm)利用光的干涉原理测量试件振动产生的位移信号。通过计算机12控制位移平台10可以对试件进行C扫描,通过USB接口输入到信号处理系统,由计算机12中基于MATLAB语言的系统软件完成对整个检测系统的控制和对超声检测结果的实时显示,以在试样同一侧实现激光精密点焊质量在线检测。
透射式激光超声检测装置如图2所示,其检测过程与上述单侧式相同,可以实现在试件一侧激发超声波,在另一侧接收超声波。
上述计算机12中基于MATLAB编程的检测软件主要功能包括超声信号数据采集、滤波、小波变换、声时互相关算法、C扫描成像、焊接深度和面积定量分析等,可实现对激光精密焊接质量进行检测和评估。
利用激光器1在被焊接件中激发超声波(纵波),光纤式激光测振仪4检测纵波引起焊接件表面微弱位移的方式,采用主动视觉测量与激光超声无损检测的一体化联动多信息融合技术,实现精密激光焊接的表面形貌、材料缺陷、显微结构以及应力分布的微米级成像,完成典型缺陷的三维重构成像,包括:宽带高频激光器1、光纤式激光测振仪4、待测试件9及位移平台10、信号处理和成像系统、通过数据线与计算机12连接。
在检测过程中,首先计算机12发出命令到激光器1激发出高频宽带激光(波长为1064nm),利用二向色镜2使激光传播方向改变90°,通过凸镜3使激光聚焦在待检待测试件9表面,由于热弹效应,待测试件9中产生高频宽带的超声纵波,并利用CCD相机11实时显示激光聚焦点在待测试件9表面的位置。纵波在待测试件9中沿其厚度方向传播至底面发生反射,当反射波传播至待测试件9表面引起表面产生振动,激光测振仪4(波长为532nm)利用光的干涉原理测量待测试件9振动产生的位移信号。通过计算机12控制位移平台10可以对待测试件9进行C扫描,通过USB接口输入到信号处理系统,由计算机12中基于MATLAB语言的系统软件完成对整个检测系统的控制和对超声检测结果的实时显示,以在试样同一侧实现激光精密点焊质量在线检测。透射式激光超声检测装置如图2所示,其检测过程与上述单侧式相同,可以实现在待测试件9一侧激发超声波,在另一侧接收超声波。
上述计算机12中基于MATLAB编程的检测软件主要功能包括超声信号数据采集、滤波、小波变换、声时互相关算法、C扫描成像、焊接深度和面积定量分析等,可实现对激光精密焊接质量进行检测和评估。
实现点焊质量在线检测,检测效率高,检测结果精确可靠,同时该检测技术不局限于激光精密点焊质量检测,亦适用于高温高压等极端环境下,金属焊接和热处理产生的残余应力测量和结构力学性能测试。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种激光精密点焊质量激光超声检测系统,其特征在于,包括激光器、二向色镜、凸镜、位移平台、激光测振仪、第一光电探测器、信号处理系统、计算机和CCD相机。
2.根据权利要求1所述的激光精密点焊质量激光超声检测系统,其特征在于,所述激光测振仪包括探测激光器和第二光电探测器。
3.根据权利要求2所述的激光精密点焊质量激光超声检测系统,其特征在于,待测试件放置所述位移平台的上表面。
4.一种激光精密点焊质量激光超声检测方法,应用于激光精密点焊质量激光超声检测系统,其特征在于,包括以下检测步骤:
S1:根据待测试件的厚度和材料,兼顾超声波的激发效率和对待测试件无损,选择激光器进行激光精密点焊质量检测,根据待测试件放置方式,确定单侧式和透射式的检测方式;
S2:通过数据线将激光器、二向色镜、凸镜、位移平台、激光测振仪、第一光电探测器、信号处理系统、计算机和CCD相机进行连接;
S3:利用CCD相机监测激光在待测试件表面的聚焦点位置调整光路,确保激发点和接收点在待测试件表面重合或者二者连线平行于待测试件厚度方向;
S4:对于未熔合区域,上层板上表面所激发的超声波在其内部传播后,在上层板的底面出发生超声回波的反射,对于熔合区域,由于二者之间已经形成了机械结合,超声波可穿过融合区域进入到下层板,在下层板的底面处发生超声回波反射,超声回波返回到上层板上表面所需的时间存在显著的差异,可以通过测量超声回波在焊点处的传播时间来确定其是否熔合良好,从而筛选出虚焊、漏焊的试件;
S5:调整激光器设置,发射波长为1064nm激光,单侧检测时利用二分色镜改变激光传播方向,通过凸镜聚焦在待测试件表面;
S6:调整激光测振仪发射波长为532nm激光,聚焦在待测试件表面,记录超声波所引起待测试件表面振动位移,其中采用频率为1GHz,通过128次平均采集超声纵波信号,并输入信号处理系统;
S7:记录超声纵波在未焊接前上层板中的传播信号,确定其传播时间t0;
S8:记录超声纵波在焊接后待测试件中的传播信号,确定其传播待测试件t1,当焊接后超声纵波未传播至下层板,则存在虚焊、漏焊现象,信号处理系统给出报警指令;
S9:当试样中两块板焊接在一起时,采用C扫描成像技术对焊接的三维轮廓进行检测;利用超声纵波在熔接区域与基板的界面处的回波信号,通过移动检测激光,根据超声回波的传播时间,检测界面与表面之间的距离,进而将整个熔池的三维轮廓描绘出来;
S10:通过计算机设置位移平台的零点和扫描方式、步长和范围等参数,根据纵波回波时间tij和幅值Aij对扫描区域进行成像,并在计算机上显示焊接轮廓,从而综合评估激光精密点焊质量。
CN202010147830.2A 2020-03-05 2020-03-05 一种激光精密点焊质量激光超声检测方法和系统 Pending CN111175233A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010147830.2A CN111175233A (zh) 2020-03-05 2020-03-05 一种激光精密点焊质量激光超声检测方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010147830.2A CN111175233A (zh) 2020-03-05 2020-03-05 一种激光精密点焊质量激光超声检测方法和系统

Publications (1)

Publication Number Publication Date
CN111175233A true CN111175233A (zh) 2020-05-19

Family

ID=70648503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010147830.2A Pending CN111175233A (zh) 2020-03-05 2020-03-05 一种激光精密点焊质量激光超声检测方法和系统

Country Status (1)

Country Link
CN (1) CN111175233A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098520A (zh) * 2020-10-20 2020-12-18 北京石油化工学院 一种基于激光超声检测材料内部缺陷形状的检测系统及方法
CN112461920A (zh) * 2020-09-29 2021-03-09 湖北超卓航空科技股份有限公司 基于超声测量的高温合金点焊缺陷的判别方法及装置
CN113588566A (zh) * 2021-08-23 2021-11-02 南京大学 基于激光超声的激光点焊微焊点质量检测装置及方法
CN114414658A (zh) * 2022-01-11 2022-04-29 南京大学 一种金属表面微裂纹深度的激光超声探测方法
CN115541715A (zh) * 2022-11-23 2022-12-30 江苏时代新能源科技有限公司 焊接检测方法、装置、系统、计算机设备及存储介质
CN116067889A (zh) * 2023-02-16 2023-05-05 宁波宁兴精密制造有限公司 一种汽车一体化压铸模具材料组织的无损检测系统及方法
CN116202968A (zh) * 2023-03-13 2023-06-02 哈尔滨工业大学(威海) 一种增材钛合金激光超声缺陷检测系统及激光超声相位相干成像检测方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112461920A (zh) * 2020-09-29 2021-03-09 湖北超卓航空科技股份有限公司 基于超声测量的高温合金点焊缺陷的判别方法及装置
CN112461920B (zh) * 2020-09-29 2021-09-24 湖北超卓航空科技股份有限公司 基于超声测量的高温合金点焊缺陷的判别方法及装置
CN112098520A (zh) * 2020-10-20 2020-12-18 北京石油化工学院 一种基于激光超声检测材料内部缺陷形状的检测系统及方法
CN113588566A (zh) * 2021-08-23 2021-11-02 南京大学 基于激光超声的激光点焊微焊点质量检测装置及方法
CN113588566B (zh) * 2021-08-23 2022-06-21 南京大学 基于激光超声的激光点焊微焊点质量检测装置及方法
WO2023024741A1 (zh) * 2021-08-23 2023-03-02 南京大学 基于激光超声的激光点焊微焊点质量检测装置及方法
CN114414658B (zh) * 2022-01-11 2024-04-09 南京大学 一种金属表面微裂纹深度的激光超声探测方法
CN114414658A (zh) * 2022-01-11 2022-04-29 南京大学 一种金属表面微裂纹深度的激光超声探测方法
CN115541715A (zh) * 2022-11-23 2022-12-30 江苏时代新能源科技有限公司 焊接检测方法、装置、系统、计算机设备及存储介质
CN115541715B (zh) * 2022-11-23 2024-01-05 江苏时代新能源科技有限公司 焊接检测方法、装置、系统、计算机设备及存储介质
CN116067889A (zh) * 2023-02-16 2023-05-05 宁波宁兴精密制造有限公司 一种汽车一体化压铸模具材料组织的无损检测系统及方法
CN116202968A (zh) * 2023-03-13 2023-06-02 哈尔滨工业大学(威海) 一种增材钛合金激光超声缺陷检测系统及激光超声相位相干成像检测方法
CN116202968B (zh) * 2023-03-13 2024-05-03 哈尔滨工业大学(威海) 一种增材钛合金激光超声缺陷检测系统及激光超声相位相干成像检测方法

Similar Documents

Publication Publication Date Title
CN111175233A (zh) 一种激光精密点焊质量激光超声检测方法和系统
Mallet et al. Structural health monitoring using scanning laser vibrometry: II. Lamb waves for damage detection
Staszewski et al. Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry
Leong et al. Structural health monitoring using scanning laser vibrometry: III. Lamb waves for fatigue crack detection
US8368289B2 (en) Nondestructive testing apparatus and method
US10761066B2 (en) Micro-resolution ultrasonic nondestructive imaging method
Choi et al. Internal defect detection using laser-generated longitudinal waves in ablation regime
US10578586B2 (en) Weld analysis using Lamb waves and a neural network
Ying et al. Multi-mode laser-ultrasound imaging using Time-domain Synthetic Aperture Focusing Technique (T-SAFT)
WO2023024741A1 (zh) 基于激光超声的激光点焊微焊点质量检测装置及方法
Liu et al. A novel approach for flip chip solder joint quality inspection: Laser ultrasound and interferometric system
Vasilev et al. Non-contact in-process ultrasonic screening of thin fusion welded joints
Chertov et al. Acoustic microscopy of internal structure of resistance spot welds
CN110687204A (zh) 一种激光超声检测的方法及装置
JP2007057485A (ja) 溶接部可視化装置及び溶接部可視化方法
Erdahl et al. Online-offline laser ultrasonic quality inspection tool for multilayer ceramic capacitors-Part I
Nomura et al. In-situ detection of weld defect during the welding process by laser ultrasonic technique
CN212540112U (zh) 一种激光精密点焊质量激光超声检测系统
Ma et al. Application of C-mode scanning acoustic microscopy in packaging
Kuo et al. Non-immersive ultrasound scanning and inspection of internal defects using a water droplet coupling device
Liu et al. A novel method and device for solder joint quality inspection by using laser ultrasound
JPH0348153A (ja) セラミツクス接合部の強度判定方法
Severin et al. Industrial Applications of Scanning Acoustic Microscopy
CN115647591A (zh) 基于环形光激励超声的激光精密点焊质量检测装置及方法
Bond Basic inspection methods (Pulse-echo and transmission methods)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination